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Two Point Boundary Value Problems
for Operational Differential Equations.

H. O. FATTORINI (*)

§ 1. - Let E be a complex Banach space, A a linear operator with do-
main D(A) dense in E and range in E, n a positive integer, ao and al subsets
of the set of integers 10, 12 ... 7 n - 1}, T a positive real number. We consider
in the sequel the two-point boundary value problem

Here and ul,, are elements of E; the function ~(’) is defined in 0  t  T,
takes values in D(A) and in n times continuously differentiable (in the sense
of the norm of E), while f is a continuous, E-valued function defined in
OctcT.

For the sake of future reference, we shall say that the boundary value
problem (1.1), (1.2) satisfies condition 8 (existence) if

there exists a subspace D dense in E such that (1.1 ), (1.2) has a solution u(.)
for any f continuous in and any 

We shall denote by go the particular case of Condition 6 where f = 0.
On the other hand, (1.1), (1.2) satisfies Condition CÐ (Continuous Depen-

dence) if
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such that

and such that

we have

We denote by (resp. the particular case of Condition CÐ where
f = 0 (resp. U(j)(0) = U(k)(T) = 0, j c- a,, k E tXI). Note that both condi-

tions and imply iniqueness of the solutions of (1.1), (1.2).
The problem of finding conditions on oc,, oel, A in order that Conditions 6

or CÐ (or variants thereof) should hold has been considered by numerous
authors, for systems of the type of (1.1), (1.2) or for systems that are more
general in various senses and for various definitions of solutions. The reader
is referred to [2], [4], [8], [9] and specially to [10] (where additional biblio-
graphy can be found) for a sampling of results of this type.

We consider in this paper a problem which is, in a sense, converse to the
one outlined above, and which can be roughly formulated as follows. Assame
one (or both) of Conditions 8 and CD or of their particular cases hold : what
can we conclude about the sets ao and a1 and the operator We show in

what follows that, under mild assumptions on A, if condition holds then

where mo (resp. ml) is the number of elements of ao (resp. 0153I). On the other
hand, if Conditions go and hold,

There conclusions are not surprising if one considers the particular case
where ~4. reduces to multiplication by a complex number in onedimensional
Banach space. A perhaps less evident fact is that, when So and CÐ hold,
unless ~. is bounded the boundary conditions (1.2) must be « evenly distri-
buted » among the two end-points; precisely, we must have

where ]p[ denotes the greatest integer less or equal than p. This kind of result
is important in view of the fact that the study of the abstract boundary value
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problem (1.1 ), (1.2) is motivated mainly by the particular case where A
is a differential operator acting in some function space (more often than

not, L2(Q) for some domain In this case A is in general unbounded
and the result above rules out the differential operator interpretation.

Problems that are connected with the present one were considered in [11],
[6] and [7]. In [11] and [6] the basic interval is [0, oo) rather than [0, T]
and the second set of boundary conditions (1.2) is replaced by a growth restric-
tion at infinity, while in [7] solutions are singled out on the basis of boundary
conditions at the origin plus some unspecified selection rule satisfying certain
conditions. Some of the methods in this paper are very similar to those

in [7]; the main idea is due to Radnitz ([11]) and consists on the construc-
tion of the resolvent cf A by means of application of certain functionals to
suitable «test functions »; this idea is combined here with a construction

of approximate resolvents due to Chazarain ([3]).

§ 2. - We assume in the sequel that ~ 0, that is, that A) _
- (~,I - A)w exists for some complex ~1. This is known to imply (see [5],
Chapter VII) that A is closed; moreover, the domain D(A*) of A*-the
adjoint of A-is weakly dense in the dual space .E*, e(A*) = ~(A.*) and
R(~,; ~.*) = 1~(~,; A)* for Â there.

Let e, co be positive numbers. We define A(e, cv) as the set of all com-
plex numbers p such that

If m, n are integers (1  m  n), A*(n, m, 9, co) consists of all A such that at
least m of the n-th roots of A lie in 

2.1. LEMMA. Assume Condition eÐ1 holds with mo, m,,  n. Then there

exist nonnegative numbers e, ro and analytic f unctions (A) with 
bounded operators in E* satisfying

There exists -r &#x3E; 0 such that

5 - Annali della Norm. Sup. di Pisa
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Moreover 9i,o (resp. is analytic in A*(n, mo + 1, ~o, 00) (resp. A*(n, m. +
+ 1, eco)) except on a line To (resp. that divides A*(n, mo + 1, e, 00)
(resp. A*(n, m, + 1, eco)) in at most two connected pieces.

PROOF. Let 1 e A*(n, mo -~-1, ~O, co) (with as yet undetermined) and
let p be the n-th root of A with least positive argument that lies in 00)
(we count arguments, as usual, from - n to n). Then

are all n-th roots of A and belong to Let now jo be an arbitrary
element of 80 (3o denotes the complement of ao in ... , n -1~ ), and let

where the index between parentheses indicates t-differentiation and 0 is
the following (mo + 1) X (mo + 1) matrix:

the index j roaming over a. It is not difficult to check (see [7] for details)
that I) is well defined for all Â =1= 0 (in fact, 0~ is the Vandermonde
matrix corresponding to and y" and that, if we write

then

On the other hand, it follows immediately from the definition of I that

and that

We shall carry through the proof of Lemma 2.1 by means of the applica-
tion of certain linear functionals to (vector multiples) of q. We proceed now
to the construction of these functionals.
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Let C(T ; .E) be the space of all continuous, E-valued functions defined
in 0  t  T endowed with its usual supremum norm, and let 5i be the sub-

space of C(T; E) consisting of all functions of the form

where ~(’) is n times continuously differentiable in 0  t  T, takes values
in D(A) and satisfies

Let u* be an arbitrary element of E*. Define a functional f - Y(u*, f ) in K
by means of the formula

where ~o is some fixed element of g(A) and u*, u) denotes the value of u*
at u. Clearly, condition implies that Y is well-defined ; moreover, it

is linear in f and in u*. be a sequence in X converging to zero. There,
according to condition if

we have

uniformly in 0  t  T. Setting we have

v("I(t) = -R(A.; f "a,) f m(t) + f ~) 

which means that v(") (t) - 0 uniformly in 0 c t c T. But

which is easily seen to imply that

This shows that T is jointly continuous in f and u*, that is that
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for some C &#x3E; 0. Let now be the (algebraic) tensor product
of E* and C(T; E). Let ,~ EE* Q9 C(T; E) and define

the inf taken over all finite sequences u i , ~2 , ..., 11, 12, ... such that

Then (see [12] for this and related facts) 1.1 is a semi-norm in -E7* 0 C(T ; E).
If we now define

(the choice of the decomposition (2.9) does not alter the definition clearly, y

thus we can apply the Hahn-Banach theorem to extend to a linear func-
tional ~ defined in all of E) and satisfying (2.12) as well. If

we now define

then it is clear that § is defined in E* X C(T ; E), bilinear and satisfies (2.9).
We shall write simply Y instead of j-.

Let 99 be a C°° scalar function of t that equals 1 in 0  t  T/3 and vanishes
in Define, for 

where 71 is the function constructed previously. Clearly, y ~ is a bounded
bilinear form in E* X E ; on the other hand, making use of (2.7) and of (2.8)
we obtain
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Define a bounded operator 99): E* -~ E* by means of the formula

Then it is easy to see that (2.13) implies that &#x26;(A, D(A*) and that

where ~?): JE7* -~- E* in defined as ~) by means of the formula

If we have (taking into account the fact that ~ vanishes identically
near zero)

This is immediately seen to imply that 
that, if d(A, 99) = (lI - A*) Q(Â, 9,),

We proceed now to estimate the right-hand side of (2.16). In view of (2.5)
and (2.6) we have

for some .g &#x3E; 0. Taking into account this and (once again) the fact that ~
vanishes identically near zero, we obtain

where .g’ is another constant and
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Accordingly, y taking ~O such that or &#x3E; 0 and co large enough we may assume
that

aD

Hence (I - fP) )-1 == ¡ (2(Â, exists. Pre-multiplying now (2.15) by
,....0

and post-multiplying it by (I - fP) )-1 we obtain (2.1 ) with

in A*(n, mo + 1, ~O, (0). The estimate (2.3) follows immediately from (2.5),
(2.6), (2.15), (2.16), (2.19) and (2.20).

It remains to settle the analyticity question. Observe first that, e being
fixed, is connected 00 large enough. This can be seen as

follows. Let a be the line issuing from the origin and tangent to the curve

(which is convex seen from the left half-plane) and let P be its point of inter-
section with (2.21). If Re cuts x in a point to the left of P, then
no line issuing from the origin can cut the boundary of ll(o, co) more than
once. But this is easily seen to imply that

On the other hand, it is plain that if Â2 mo + 1, (2, (0) and _ 1Â.21 [
then the arc of circumference joining 03BB,1 and Â2 (centered at the origin)
belongs as well to A*(n, mo + 1, e, co). This combined with (2.21) shows

that any two points in A*(n, mo + 1, e, o) can be joined by a curve con-
tained there.

Let To be the set of all complex A such that one of the n-th roots of ~,
lies in the piece of the boundary of A*(n, mo + 1, e, to) lying in the upper
half-plane. The curve 7~ may or may not belong to A*(n, mo + 1, e, (0);
in case it does is a line of discontinuity of 27, for as A traverses ho counterclock-
wise the group of n-th roots of 03BB used to define n changes. On the other hand,
it is plain that a point A moving along a circle can cross ro only once in a
rotation of 2n, so that .h’o can divide A*(n, mo + 1, e, (0) in at most two

connected pieces, and 112.
Now, it is immediate from its definition that 71 and any of its t-derivatives

are analytic (uniformly with respect to t) in AI, ,~2 so that the last conclusion
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of Lemma 2.1 that refers to 90 follows from known results on operator-
valued analytic functions.

To prove the assertions on Jt,, we only have to observe that the change
of variable t ---&#x3E; T - t transforms the boundary-value problem (1.1), (1.2) into

to which problem we can apply all the previous arguments.

2.2. REM.ARK. It is not clear whether we can conclude, on the basis of
the assumptions of Lemma 2.1 that A), (-1)n.A.) ; how-
ever, we can prove

2.3. COROLLARY. Let the assumptions in Lemma 2.1 be 

(a) Suppose that

Then

and there

(b) The same conclusions (replacing A by hold for Jt,,

PROOF : Assume (2.21) holds ; since is open, we can suppose that

where AI, are the two connected pieces of A*(n, mo + 1, e, co) determined
by To. Assume the first relation in (2.23) holds. Then-by uniqueness of
the resolvent-jto(Â) = A*) in e(A) r1 A*(n, mo + 1, e, co); in particular,

for and, a fortiori, by analytic continuation, for all A E !11:
Accordingly,

As A approaches Fo, ’1J and all of its t-derivatives remain bounded; thus the
same is true of A*). But A.*) ~ - oo as A approaches a point in
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a(.A.*), so we conclude that ho E ~(A*). This, in turn implies that ~O(A.*) n
n A, o 0 and we can repeat the previous reasoning for ~2 ? thus proving
the Corollary. Naturally, the argument runs along the same lines if the

second relation in (2.23) holds or if the proof of (b) is concerned.

2.4. REMARK. Note that the assumptions in Corollary 2.3 are satisfied
if is one-to-one for some In fact, assume D(A*) endowed
with its usual graph norm. The operator

is then 1-1 and onto (the latter because of 2.1). By the closed graph theo-
rem, (ÂI - A *)-1: .E* -~ D(A*) must be bounded. But there (AI - 
is also bounded as an operator from E* into E*, that is A E ~O (.~4. * ) .

Note also that the argument in Corollary 2.3 can be used to prove the
following result: let be an analytic operator-valued function defined
in a connected set S2 such that Q n =1= ø. Assume C D(A) and
(~2013J.)~)=7(~eD). There and =1~(~,; ~4.) there.

§ 3. - The main result here is

3.1. THEOREM. Assume Condition holds. Then

The proof will be carried out by application of the functional Y to a
« test function » different from t7. It is constructed as follows. Assume (3.1)
is false, that is, that mo + mi  n ; without loss of generality we may
suppose that mo+m1=n-1. Let"" be an arbitrary n -th root of A, and
let d (t, ~,) be the n X n matrix

where j E k E a2 and define
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where jo is, as in Section 2, a fixed element of 6. Since ¿11o)(O, 1) does not
vanish identically, I) exists for every complex A except for a sequence

of zeros of d ~’°~ (o, ~1) . In the complement of Z, C satisfies

Operating exactly as in Section 2 with q we obtain

so that, if we define a bounded operator

by

then ~(~,) E* C D(A*) and (Al - ~(~,) =1~(~,0; A*). Accordingly, if we set
Jt(A) - (Ao - A) 6 (A) + A*), D(A*) and

This time, however, we can conclude that

in fact, is open r1 (C%Z) = 0 and Remark 2.4 applies to

the connected domain CBZ.
We show now actually coincides with C. Let ~11 E Z. Clearly,

we must have

(p a nonnegative integer) for A near If follows from the definition of

~4.*) in terms of C(t, A) that an estimate of the type of (3.6) holds as
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well for A*) - Accordingly, the (possible) singularity of ~.*) at

can be only a pole. Since A*) = A)*, the same is true

of .A). This is known to imply ([5], Ch VII) that 11 is an eigenvalue of A.
If u is any eigenvector of A corresponding to and let

Then u(.) is a solution of (1.1) with f = 0. But since = 0, it is

easy to see that we can find coefficients co, ..., c.-l not all zero and such that

which obviously violates Condition Accordingly, y R(Â; A) is regular
at 1 = ~,1: Since ~,1 is an arbitrary element of Z,

We estimate now R(1 ; A*). Observe first that, for any t A) is single-
valued (the substitution of ,u by another n-th root of A merely causes a cyclic
change in the columns of d (t, 1)). Then A) is entire, and, for any
E&#x3E;0

uniformly in 0 o t c T. The same reasoning can be applied to any t-derivative
of 4 ; in particular, det (0, 1) satisfies an inequality of the type of (3.8) ;
a fortiori, it is of exponential type. We can then apply Corollary 3.7.3 in [1]
to deduce the existence of a sequence (om) of density 1 (i.e., such that

and of a sequence of positive numbers tending to zero such that

Combining (3.8) and (3.9) we obtain that, for any e &#x3E; 0
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where e~-~0 as m - oo. Then, 7

By the maximum modulus theorem,

where

But + 1) ~ 1 as n - oo so that R(I; A*) is of exponential
type zero.

The result just obtained is now combined with those in Section 2 as
follows. In view of (2.1), (2.2) and uniqueness of the resolvent, we must have

Assume n even, mo  (n - 2)/2. Then it is not difficult to see that there
exists a &#x3E; 0 such that

Making use of (3.12), (2.3) and of Liouville’s theorem we see that B(A; A*)
must be identically zero, which is absurd. The same conclusion holds

(n - 2)/2 (we use (3.13) and (2.4) instead of (3.12) and (2.3) in this
case). If ~o)~i&#x3E;(~20132)/2y as we must have mo = ml =
== (n - 2)/2, so that mo + 1 = n/2. Now, a moment’s consideration shows
that if n = 4k and P &#x3E; 0, there exists a &#x3E; 0 such that

If we take #  n/2, the fact that .A. * ) is of exponential type and (3.3)
we can apply the Phragmén-Lindelöf theorem ([I], § 1.4) to show that

~4.*) is bounded, and we deduce again a contradiction from Liouvine’s
theorem. The case n = 4k + 2 is treated in the same way, but replac-
ing (3.15) by
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Consider now the case n odd. If mo  (n - 1)/2 then (3.14) holds for

some a &#x3E; 0 and the proof ends as before. If (n -1 )/2 we must have
mo = m = (n -1 )/2, so that If n = 3k it is

not difficult to see that, for every r &#x3E; 0 there exists a &#x3E; 0 such that

The proof ends now as in the previous case, but this time making use of
both (3.12) and (3.13), and then (2.3), the Phragm6n-Lindel6f theorem, and
Liouville’s theorem. The case n = 31~ + 2 is treated exactly in the same
way, but here (3.17) is replaced by

3.2. THEOREM. Assume Conditions e and hold. Then

PROOF. Assume (3.18) does not hold, and let jo be a fixed element of ao .
Let u E D and denote by u(t) the solution of (1.1) with f = 0,

Define an operator by the formula

Then it is easy to see that Condition implies that each is bounded

in D and can thus be extended to a bounded operator from .E into itself;
moreover, t - ~S(t) u is continuous in for any u E E and {S(t); 0  t  T}
is uniformly bounded in 0  t  T. Let now u** E E**, f E E*). Define

Since S**(.) u** is weakly measurable, (3.20) makes sense. Assume now u*( . )
is a n times continuously differentiable function with values in such

that
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and let

Taking into account the definition of /S(’) we obtain, integrating by parts
in (3.20)

It is easy to see that (3.21) actually holds for u** E E**; this follows
from the fact ([5], Chapter II) that any element u** E E** can be approx-
imated by a sequence of elements in E or in D, since the latter is
dense in E such that ¡ukl  lu**1 in the weak a(E**, E*) topology.

Having constructed the functional T with respect to ao = {j ; n -1-
- j E 6,} (which has n - mo elements) and &#x26;i = {k; n - 1 - k E (which has
n - ml elements) the proof continues exactly like that of Theorem 3.1.

§4.

4.1. THEOREM..Assume Conditions 6 andeg) hold for (1.1), (1.2)..A.s-
sume, further, that (a) n is even and

or that (b) n is odd and

Then A must be bounded.

PROOF. Let 1 E C, ,un = 1. Consider the n X n matrix

where n -1- j E 6,, y n -1- k E fi : -. Plainly E is entire and does not vanish
identically, so that it can only have a countable set of zeros

Let A,. be one of these zeros, p."= A.; Then we can find coefficient
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ci, ... , cn , not all zero and such that if

we have

Since C is not identically zero, there must exist some jo, 9 n -1- jo E «o
such that ~ 0; multiplying C by a constant if necessary we may
assume that

Let ~S(’) be the operator constructed in the proof of Theorem 3.2, and let

A simple integration by parts shows that for 

this and the fact that A is closed and D dense show that 

and

This and a simple duality argument show that (ÂmI -.A *) is one-to-one (in
fact, (u*, must vanish for any eigenvector u* of ~* correspond-
ing to Âm).

Observe next that E is of order 1/n; then according to [1], 2.9.2 the
set of zeros Z must be infinite; in particular, we must have zeros 1. of Z
of arbitrarily large module. Assume n even and mo  (n - 2)/2. Then (as
indicated in (3.14))

Since A. mo + 1, py a~) for m large enough, there exist points therein
where is one-to-one; then Remark 2.4 applies to show that


