D. M. Goldfeld
A. Schinzel

On Siegel’s zero

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 2, n° 4 (1975), p. 571-583

<http://www.numdam.org/item?id=ASNSP_1975_4_2_4_571_0>
On Siegel's Zero.

D. M. GOLDFELD (*) - A. SCHINZEL (**)

1. - Let \(d \) be fundamental discriminant, and let

\[
\chi(n) = \left(\frac{d}{n} \right) \quad \text{(Kronecker's symbol).}
\]

It is well known (see [1]) that \(L(s, \chi) \) has at most one zero \(\beta \) in the interval \((1 - c_1 \log |d|, 1)\) where \(c_1 \) is an absolute positive constant. The main aim of this paper is to prove:

Theorem 1. Let \(d, \chi \) and \(\beta \) have the meaning defined above. Then the following asymptotic relation holds

\[
1 - \beta = \frac{6}{\pi^2} \frac{L(1, \chi)}{\zeta(2)} \sum' \frac{1}{a} \left[1 + O \left(\frac{(\log \log |d|)^3}{\log |d|} \right) + O((1 - \beta) \log |d|) \right]
\]

where \(\sum' \) is taken over all quadratic forms \((a, b, c)\) of discriminant \(d \) such that

\[
-a < b < a < \frac{1}{4} \sqrt{|d|},
\]

and the constants in the \(O \)-symbols are effectively computable.

In order to apply the above theorem we need some information about the size of the sum \(\sum' 1/a \). This is supplied by the following.

Theorem 2. If \((a, b, c)\) runs through a class \(C \) of properly equivalent primitive forms of discriminant \(d \), supposed fundamental, then

\[
\sum_{\substack{|a| > |b| > -a \\ (a,b,c) \in C}} \frac{1}{a} < \begin{cases} \frac{1}{m_0} \log \epsilon_0 & \text{if } d < 0, \\ \frac{\log \epsilon_0}{\log \left(\frac{1}{2} \sqrt{d} - 1 \right)} + \frac{4}{\sqrt{d}} & \text{if } d > 676, \end{cases}
\]

(*) Scuola Normale Superiore, Pisa.
(**) Institut of Mathematics, Warsaw.
Pervenuto alla Redazione il 30 Maggio 1975.
where \(m_0 \) is the least positive integer represented by \(C \) and \(e_0 \) is the least totally positive unit of the field \(Q(\sqrt{d}) \).

Theorems 1 and 2 together imply

Corollary. For any \(\eta > 0 \) and \(|d| > c(\eta) \) (\(d \) fundamental) we have

\[
1 - \beta > \begin{cases} \left(\frac{6}{\pi} - \eta \right) \frac{1}{\sqrt{|d|}} & \text{if } d < 0, \\ \left(\frac{6}{\pi^2} - \eta \right) \frac{\log d}{\sqrt{d}} & \text{if } d > 0, \end{cases}
\]

where \(c(\eta) \) is an effectively computable constant.

Remark. In the case \(d < 0 \), the constant \(6/\pi \) could be improved by using the knowledge of all fields with class number \(< 2 \).

Similar inequalities with \(6/\pi \) and \(6/\pi^2 \) replaced by unspecified positive constants have been claimed by Hanecke [3], however, as pointed out by Pintz [8], Hanecke's proof is defective and when corrected gives inequalities weaker by a factor \(\log \log |d| \). Pintz himself has proved the first inequality of the corollary with the constant \(6/\pi \) replaced by \(12/\pi \) (see [8]).

For \(d < 0 \), the first named author [2] has obtained (1) with a better error term by an entirely different method. M. Huxley has also found a proof in the case \(d < 0 \) by a more elementary method different, however, from the method of the present paper.

The authors wish to thank Scuola Normale Superiore which gave them the opportunity for this joint work.

2. - The proofs of Theorems 1 and 2 are based on several lemmata.

Lemma 1. Let \(f(d) = (\log |d|/\log \log |d|)^2 \). Then

\[
\sum_{N_a < \frac{1}{4} \sqrt{|d|/\log |d|}} \frac{1}{N_a} = \sum_{N_a} \frac{1}{a} \left(1 + O \left(\frac{(\log \log |d|)^2}{\log |d|} \right) \right),
\]

where the left hand sum goes over all ideals \(a \in Q(\sqrt{d}) \) with norm \(< \frac{1}{4} \sqrt{|d|} f(d) \) and the constant in the \(O \)-symbol is effectively computable.

Proof. Every ideal \(a \) of \(\Omega(\sqrt{d}) \) can be represented in the form

\[
a = u \left[a, \frac{b + \sqrt{d}}{2} \right]
\]
where \(u, a \) are positive integers and \(b^2 \equiv d \pmod{4a} \) (see [5], Theorem 59). If we impose the condition that
\[
-\alpha < b < \alpha
\]
then the representation becomes unique. Since \(Na = u^2a \), it follows that
\[
\frac{1}{N^a} = \sum_{1 \leq a, b < \sqrt{d}/4a} \frac{1}{a} + O \left(\sum_{1 \leq a, b < \sqrt{d}/4a} \frac{1}{a^2} \right) = \sum_{a} \frac{1}{a} \left(\frac{\pi^2}{6} + O \left(f(d) \right) \right) + O(S).
\]

To estimate the sum \(S \), we divide it into two sums \(S_1 \) and \(S_2 \). In the sum \(S_1 \), we gather all the terms \(1/a \) such that \(a \) has at least one prime power factor
\[
p^x > \ell(d) = d^{1/21} \log \log |d|,
\]
\[
p^x | a,
\]
and in \(S_2 \) all the other terms.

Let \(\nu(a) \) be the number of representations of \(a \) as \(Na \) where \(a \) has no rational integer divisor \(> 1 \). Then \(\nu(a) \) is a multiplicative function satisfying
\[
\nu(p^x) = \begin{cases} 1 + \left(\frac{d}{p^x} \right) & \text{if } p \nmid d \text{ or } \alpha = 1, \\ 0 & \text{otherwise.} \end{cases}
\]

Clearly
\[
S_1 < \sum_{a} \frac{1}{a} \sum \nu(p^x) p^{-x} < \sum_{a} \frac{1}{a} \sum 2p^{-x}
\]
where \(\sum \) goes over all prime powers \(p^x \) with
\[
\max (\ell(d), \sqrt{|d|}/4a) < p^x < \sqrt{|d|} f(d)/4\alpha.
\]

Now, by a well known result of Mertens,
\[
\sum_{p^x < x} p^{-x} = \log \log x + c + O((\log x)^{-1})
\]
where \(c \) is a constant.
Hence
\[\sum_{x < p^2 < y} p^{-x} = \log \left(\frac{\log y}{\log x} \right) + O((\log x)^{-1}) \ll \frac{\log y}{\log x} - 1 + O((\log x)^{-1}) = \frac{\log y/x + O(1)}{\log x}. \]

This gives
\[\sum_{x} p^{-x} \ll \frac{\log f(d) + O(1)}{\log l(d)} \ll \frac{(\log \log |d|)^2}{\log d} \]

and we get
\[S_1 = O \left(\frac{(\log \log |d|)^2}{\log |d|} \right) \sum_{x} \frac{1}{\sigma} . \tag{4} \]

To estimate S_2, we notice that each a occurring in it must have at least
\[k_0 = \log \left(\frac{\sqrt{|d|}}{\log l(d)} \right) > 10 \log \log |d| \]
distinct prime factors. Therefore
\[S_2 \ll \sum_{k > k_0} \left(\frac{1}{k!} \right) \left(\sum_{p^k < l(d)} \nu(p^k) p^{-x} \right) \ll (1/k_0!) \sigma^{k_0} e^\sigma \]

where
\[\sigma = \sum_{p^k < l(d)} \nu(p^k) p^{-x} \ll 2 \log \log l(d) + O(1) = 2 \log \log |d| + O(1) . \]

Now, Stirling’s formula gives $k! > k_0^k e^{-k_0}$. Hence
\[\log S_2 \ll -k_0 \log k_0 + k_0 (\log \sigma + 1) + \sigma \ll -k_0 [\log 10 + \log \log \log |d| - \log 2 - \log \log \log |d| - 1] + \sigma \ll -3 \log \log |d| + O(1) \]

and
\[S_2 = O((\log |d|)^{-1}) . \]
The lemma now follows from equations (3), (4) and (5). The next lemma gives the growth conditions for the Riemann zeta-function and Dirichlet L-functions on the imaginary axis.

Lemma 2. For all real t

(6) \[|\zeta(it)| \ll (|t|^\frac{3}{2} + 1) \log(|t| + 2) \]

(7) \[|L(it, \chi)| \ll \sqrt{|d|} (|t|^\frac{3}{2} + 1) \log \left(|d|(|t| + 2) \right). \]

Proof. If $|t| > t_0$, the estimate

\[|\zeta(it)| \ll |t|^\frac{3}{2} \log |t| \]

holds (see [10], p. 19). Since $\zeta(s)$ has no pole on the imaginary axis, we have

\[|\zeta(it)| \ll 1 \quad \text{for } |t| < t_0 \]

and the inequality (6) now follows.

To prove (7), we note that

\[|L(1 - it, \chi)| \ll \log(|d|(|t| + 2)) \]

(see [1], p. 17, lemma 2 with $q = |d|, x = 2|d|(|t| + 2)$).

Now, by the fundamental equation for L-functions

\[|L(it, \chi)| = |L(1 - it, \chi)| |d|^\frac{1}{2} |\Gamma(\frac{1}{2}it + A)\Gamma(\frac{1}{2}it + A)\Gamma^{-1}(\frac{1}{2} - \frac{1}{2}it + A)| \]

where

\[A = \frac{1}{4}(1 - \chi(-1)). \]

Using the formula

\[|\Gamma(s)| = \sqrt{2\pi}|s|^{s-\frac{1}{2}} \exp \left(-\frac{1}{2} \pi t \right)(1 + O(|t|^{-1})) \]

valid for $s = \sigma + it, 0 < \sigma < \frac{1}{2}, |t| > 1$ (see [9], p. 395), equation (7) follows, upon noting that

\[|\Gamma(\frac{1}{2}t + A)\Gamma^{-1}(\frac{1}{2} - \frac{1}{2}it + A)| \ll 1 \quad \text{for } |t| < 1. \]
PROOF OF THEOREM 1. By the standard argument ([4], p. 31)

\[
\frac{1}{2\pi i} \int_{2-\infty}^{2+i\infty} \frac{y^s}{s(s+2)(s+3)} ds = \begin{cases} \frac{1}{6} \frac{y^{-2}}{2} + \frac{y^{-3}}{3} & \text{if } y > 1, \\ 0 & \text{if } 0 < y < 1. \end{cases}
\]

Since for Re \(s\) > 1

\[
\zeta(s) L(s, \chi) = \sum (Na)^{-s},
\]

it follows that for any \(x > 0\)

\[
I = \frac{1}{2\pi i} \int_{2-\infty}^{2+i\infty} \zeta(s + \beta) L(s + \beta, \chi) \frac{x^s}{s(s+2)(s+3)} ds = \sum_{Na \leq x} (Na)^{-\beta} \left[\frac{1}{6} - \frac{(Na)^2}{2x^2} + \frac{(Na)^3}{3x^3} \right].
\]

Choose \(x = \frac{1}{2} \sqrt{\log f(d)}\) with \(f(d) = (\log |d|/\log \log |d|)^2\).

If \(Na \ll x\), we have

\[(Na)^{-\beta} = (Na)^{-1} \left(1 + O(1 - \beta) \log |d| \right).\]

Hence

\[
I = \frac{1}{6} \sum_{Na \leq x} (Na)^{-1} \left(1 + O((1 - \beta) \log |d|) \right) + O \left(\sum_{Na \leq x} (Na)^{-1} f(d)^{-\beta} + O \left(\sum_{x/|f(d)| \leq Na \leq x} (Na)^{-1} \right) \right),
\]

and by lemma (1) (cf. formula (3))

\[
I = \frac{1}{6} \sum_{Na \leq x} \left[\frac{1}{a} + O \left(\frac{(\log \log |d|)^2}{\log |d|} \right) \right] = O((1 - \beta) \log |d|). \tag{8}
\]

On the other hand, after shifting the line of integration to Re \(s\) = \(-\beta\)

\[
I = \frac{L(1, \chi) x^{1-\beta}}{(1-\beta)(3-\beta)(4-\beta)} + \frac{1}{2\pi i} \int_{-\beta-\infty}^{-\beta+i\infty} \zeta(s + \beta) L(s + \beta, \chi) \frac{x^s}{s(s+2)(s+3)} ds.
\]

By lemma (2), the integral on the right does not exceed

\[O(x^{-\beta} \sqrt{|d| \log |d|})\]
and since
\[x^{1-\beta} = 1 + O((1 - \beta) \log |d|) \]
\[(1 - \beta)(3 - \beta)(4 - \beta) = 6 + O(1 - \beta) \]
we get from (8) and (9)
\[1 - \beta = \frac{6}{\pi^2} \frac{L(1, \chi)}{\sum \frac{1}{1/a}} \log |d| + O(1 - \beta) \log |d| \bigg| \]

3. - Proof of Theorem 2. For \(d < 0 \) it is enough to prove that every class contains at most one form satisfying

(10) \[-|a| < b < |a| < \frac{1}{2} \sqrt{|d|}. \]

Now, since
\[|d| = 4ac - b^2 \]
we infer from (10) that
\[a < \sqrt{|d|} < |d|/4a < c, \]
thus every form satisfying (10) is reduced, and it is well known that every class contains at most one such form.

For \(d > 0 \), let us choose in the class \(C \) a form (*) \((a, \beta, \gamma)\) reduced in the sense of Gauss, i.e. such that

(11) \[\beta + \sqrt{d} > 2|\alpha| > -\beta + \sqrt{d} > 0. \]

We can assume without loss of generality that \(\alpha > 0 \). Now, for any form \(f \in C \), there exists a properly unimodular transformation
\[T = \begin{pmatrix} p & r \\ q & s \end{pmatrix} \]
taking \((\alpha, \beta, \gamma)\) into \(f \). The first column of this transformation can be made to consist of positive rational integers by Theorem 79 of [5]. If \(f \) satisfies (10), we infer from

(12) \[\alpha p^2 + \beta pq + \gamma q^2 = a \]

(*) \(\beta \) is not to be confused with Siegel's zero.
that

\[\left| p + \frac{\beta - \sqrt{d}}{2x} q \right| = a \left| xp + \frac{\beta + \sqrt{d}}{2} q \right|^{-1} \leq \frac{1}{4} \sqrt{d} \cdot 2(\sqrt{d} q)^{-1} = \frac{1}{2} q^{-1} \]

and by lemma (16), p. 175 from [5], \(p/q \) is a convergent of the continued fraction expansion for

\[\omega = -\frac{\beta + \sqrt{d}}{2x}. \]

From this point onwards, we shall use the notation of Perron’s monograph [7]. Since by (11)

\[\omega^{-1} > 1 \quad \text{and} \quad O > (\omega')^{-1} > -1, \]

\(\omega^{-1} \) is a reduced quadratic surd and it has a pure periodic expansion into a continued fraction. Hence

\[\omega = [0, b_1, b_2, \ldots, b_k] \]

where the bar denotes the primitive period. The corresponding complete quotients form again a periodic sequence

\[\omega_v = \frac{P_v + \sqrt{d}}{Q_v}, \quad \omega_0 = \omega \]

where for all \(v > 1 \), \(\omega_v \) is reduced,

\[\omega_v = \omega_{v+1}, \]

and \(k \) is the least number with the said property.

Lemma 3. Let \([0, b_1, b_2, \ldots, b_k] \) be the continued fraction for \(\omega \) defined above. Then

\[\sum_{(a,b,c) \in \mathcal{C}} \frac{1}{|a|} \leq \frac{2}{\sqrt{d}} \sum_{n=2}^{[k/2]} \min \left(\frac{\sqrt{d}}{2}, b_n + 1 \right) \]

where the sum on the left is taken over all \((a, b, c) \) in the class \(\mathcal{C} \) satisfying (10).
PROOF. If A_j/B_j is the j-th convergent of ω, we have by formula (18), § 20 of [7]

\[
(A_{v-1} Q_0 - B_{v-1} P_v)^2 - d(B_{v-1})^2 = (-1)^v Q_v Q_v'
\]

which gives on simplification

\[
(14) \quad \alpha A_{v-1}^2 + \beta A_{v-1} B_{v-1} + \gamma B_{v-1}^2 = (-1)^v Q_v/2.
\]

Similarly, eliminating Q_v from formulae (16) and (17) in § 20 of [7], we get

\[
(15) \quad 2\alpha A_{v-1} A_{v-2} + \beta (A_{v-1} B_{v-1} + B_{v-2} A_{v-2}) + 2\gamma B_{v-1} B_{v-2} = (-1)^{v-1} P_v.
\]

Let $p = A_{v-1}$, $q = B_{v-1}$ ($v \geq 1$). By (12)

\[
a = (-1)^v Q_v/2.
\]

Hence, by formula (1) of § 6 of [7]

\[
\begin{vmatrix} A_{v-1} & A_{v-2} \\ B_{v-1} & B_{v-2} \end{vmatrix} = (-1)^v.
\]

and since

\[
\begin{vmatrix} A_{v-1} & r \\ B_{v-1} & s \end{vmatrix} = 1
\]

it follows that

\[
T = \begin{pmatrix} A_{v-1} & A_{v-2} \\ B_{v-1} & B_{v-2} \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & (-1)^v \end{pmatrix}, \quad t \in \mathbb{Z}.
\]

Thus we find using (14) and (15)

\[
f = (\alpha, \beta, \gamma) \begin{pmatrix} A_{v-1} & A_{v-2} \\ B_{v-1} & B_{v-2} \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & (-1)^v \end{pmatrix} =
\]

\[
= \begin{pmatrix} (-1)^v Q_v/2, (-1)^{v-1} P_v, (-1)^v Q_{v-1}/2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & t \end{pmatrix} (-1)^v.
\]

In order to make f satisfy (10) we must choose

\[
t = (-1)^v \left[\frac{P_v}{Q_v} + \frac{1}{2} \right].
\]
Thus f is uniquely determined by ω_r and in view of (13), we have
\[
\sum_{(a, b) \in \mathbb{C}} \frac{1}{|a|} < \sum_{r=1}^{[k, 2]} 2(Q_r)^{-1}.
\]
Since ω_r is reduced, we have further for v in question
\[
\sqrt{d} > \frac{2\sqrt{d}}{Q_r} > \frac{P_r + \sqrt{d}}{Q_r} > \sqrt{d} > 2.
\]
Hence for
\[
b_r = [\omega_r],
\]
we get the inequalities
\[
\sqrt{d} > b_r > 2, \quad b_r + 1 > \sqrt{d}/Q_r,
\]
and by (16), lemma (3) follows.

Now, let ε_0 be the least totally positive unit $\varepsilon_0 > 1$ of the ring $Z(\sigma)$ where
\[
\sigma = \begin{cases}
\frac{1}{2} \sqrt{d} & \text{if } d \equiv 0 \pmod{4}, \\
\frac{1 + \sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4}.
\end{cases}
\]
By Theorem (7) of Chapter IV of [6]
\[
\varepsilon_0 = \frac{u + v\sqrt{d}}{2},
\]
where for $l = [k, 2],
\[
v = (q_{l-1}, p_{l-1} - q_{l-2}, p_{l-3}), \quad u = p_{l-1} + q_{l-2}
\]
and p_j, q_j are the numerator and denominator, respectively, of the j-th convergent for ω^{-1}. Moreover, since ω^{-1} satisfies the equation
\[-\gamma\omega^2 - \beta\omega - \alpha = 0, \quad (\gamma > 0)
\]
we find from formula (1) of § 2 of Chapter IV of [6] that
\[
q_{l-1} - p_{l-1} = -\beta v, \quad -p_{l-2} = -\alpha v.
\]
Hence
\[
\varepsilon_0 = \frac{p_{l-1} + q_{l-2}}{2} + \frac{p_{l-2} \sqrt{d}}{2\alpha} = q_{l-1} + \frac{\beta + \sqrt{d}}{2\alpha} - p_{l-2}.
\]
Since \(p_j = B_{t+1} \), \(q_j = A_{t+1} \), we get

\[
(17) \quad \varepsilon_\theta = B_{t-1} \left(\frac{A_{t-1}}{B_{t-1}} + \frac{\beta + \sqrt{d}}{2\alpha} \right) > B_{t-1} \left(\omega + \frac{\beta + \sqrt{d}}{2\alpha} \right) = \frac{\sqrt{d}}{\alpha} B_{t-1}.
\]

Now,

\[
\omega_t = b_t + \omega_{t+1} = b_t + \omega_t^{-1} = b_t + \omega, \quad \omega_t' = b_t + \omega'
\]

and since \(\omega_t \) is reduced \(0 > b_t + \omega' > -1 \)

\[
b_t = \left[-\omega'\right] = \left[\frac{\beta + \sqrt{d}}{2\alpha}\right] = \frac{\sqrt{d}}{\alpha}.
\]

Thus (17) gives

\[
\varepsilon_\theta > b_t B_{t-1} \geq \prod_{r=1}^{l} b_r,
\]

and by (16)

\[
(18) \quad \sum_{(a,b) \in \mathcal{C}} \frac{1}{|a|} \leq \frac{2}{\sqrt{d}} \max \sum (x_i + 1) = \frac{2}{\sqrt{d}} M
\]

where maximum is taken over all non-decreasing sequence of at most \(l \) numbers satisfying

\[
2 < x_i \leq \frac{1}{2} \sqrt{d} - 1 = D, \quad \prod x_i < \varepsilon_\theta.
\]

Let \((x_1, x_2, \ldots, x_m)\) be a point in which the maximum is taken with the least number \(m \). We assert that the sequence contains at most one term \(x \) with \(2 < x < D \). Indeed, if we had \(2 < x_i < x_{i+1} < D \), we could replace the numbers \(x_i, x_{i+1} \) by

\[
\frac{x_i}{\min(x_i/2, D/x_{i+1})}, \quad x_{i+1} \min\left(\frac{x_i}{2}, \frac{D}{x_{i+1}}\right)
\]

and the sum \(\sum (x_i + 1) \) would increase. Also, if we had \(x_1 = x_2 = x_3 = 2 \), we could replace them by \(x_1 = 8 \), and the sum \(\sum (x_i + 1) \) would remain the same while \(m \) would decrease.

Let

\[
\frac{\varepsilon_\theta}{4} = D^\theta, \quad \text{where } \theta = \log \left(\frac{\varepsilon_\theta}{4}\right).
\]

Using \(d > 676 \), we get

\[
M = \begin{cases}
\frac{1}{2} \varepsilon \sqrt{d} + \max(4\theta + 1, 2\theta + 4) & \text{if } 4\theta < D, \\
\frac{1}{2} \varepsilon \sqrt{d} + 2\theta + 4 & \text{if } 2\theta < D < 4\theta, \\
\frac{1}{2} \varepsilon \sqrt{d} + \theta + 7 & \text{if } D < 2\theta.
\end{cases}
\]
Now,

\[e = \frac{\log \varepsilon_0}{\log D} - \frac{\log 4\theta}{\log D}. \]

Since for \(1 < x < y, \ y(\log x/\log y) > x - 1 \), and for \(d > 676, \ D/\log D > 12/\log 12 > 4.8 \), we obtain if \(4\theta < D \).

\[
M - \frac{1}{2} \sqrt{d} \frac{\log \varepsilon_0}{\log D} = \max (4\theta + 1, 2\theta + 4) - D \frac{\log 4\theta}{\log D} = \frac{\log 4\theta}{\log D} < \\
< \max (4\theta + 1, 2\theta + 4) - \max (4\theta - 1, 6) < 2,
\]

if \(2\theta < D \leq 4\theta \)

\[
M - \frac{1}{2} \sqrt{d} \frac{\log \varepsilon_0}{\log D} = 2\theta + 4 - D \frac{\log 2\theta}{\log D} - D \frac{\log 2}{\log D} - \frac{\log 4\theta}{\log D} < \\
< 2\theta + 4 - 2\theta + 1 - 3 - 1 = 1,
\]

if \(D \leq 2\theta \)

\[
M - \frac{1}{2} \sqrt{d} \frac{\log \varepsilon_0}{\log D} = \theta + 7 - D \frac{\log \theta}{\log D} - D \frac{\log 4}{\log D} - \frac{\log 4\theta}{\log D} < \\
< \theta + 7 - \theta + 1 - 6 - 1 = 1.
\]

This together with (18) gives the theorem.

4. - PROOF OF COROLLARY. We can assume \(1 - \beta < (\log |d|)^{-\frac{1}{2}} \). It then by Theorem (1) that for every \(\eta > 0 \), there exists \(c(\eta) \) such that if \(d > c(\eta) \)

\[
1 - \beta > \frac{6}{\pi^2} \frac{L(1, \chi)}{\sum' \frac{1}{a}} \left(1 - \frac{\eta}{2} \right).
\]

Let \(h_0 \) be the number of classes of forms in question. For \(d < -4 \), we have

\[
L(1, \chi) = \frac{\pi h_0}{\sqrt{|d|}},
\]

and by Theorem (2)

\[
\sum' \frac{1}{a} < h_0.
\]

Hence by (19)

\[
1 - \beta > \frac{6}{\pi^2} \frac{h_0 \pi}{h_0 \sqrt{|d|}} \left(1 - \frac{\eta}{2} \right) > \left(\frac{6}{\pi} - \eta \right) \frac{1}{\sqrt{|d|}}.
\]
For \(d > 0 \), we have
\[
L(1, \chi) = \frac{h_d \log \varepsilon_0}{\sqrt{d}}.
\]

Now, for any class \(C \) of forms
\[
\sum_{(a,b,c) \in C} \frac{1}{|a|} = \sum_{\{d \geq a \geq b > -a \}} \frac{1}{|a|} + \sum_{\{d > -a \geq b > -a \}} \frac{1}{|a|}.
\]

If \((a, b, c)\) runs through \(C \), \((-a, b, -c)\) runs through another class which we denote by \(-C\) (it may happen that \(-C = C\)). If \(C_1 \neq C_2 \), then \(-C_1 \neq -C_2\). Hence
\[
\sum_{C} \sum_{\{d \geq a \geq b > -a \}} \frac{1}{|a|} = 2 \sum_{C} \frac{1}{a}
\]
and by Theorem (2)
\[
\sum \frac{1}{a} \leq \frac{h_d}{2} \left(\frac{\log \varepsilon_0}{\log \left(\frac{1}{2} \sqrt{d} - 1 \right)} + \frac{4}{\sqrt{d}} \right) \leq \frac{h_d \log \varepsilon_0}{\log d} \left(1 + O \left(\frac{1}{\sqrt{d}} \right) \right),
\]
where the constant in the \(O \)-symbol is effective. (Note that \(\varepsilon_0 > \frac{1}{2} \sqrt{d} \)). This together with (19) gives the corollary.

REFERENCES