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Boundary Value Problems for Non-Parametric Surfaces
of Prescribed Mean Curvature.

ENRICO GIUSTI (*)

dedicated to Hans Lewy

0. - Introduction.

The equation of surfaces of prescribed mean curvature:

has received considerable attention; in particular in connection with the
Dirichlet problem, i.e. the problem of the existence of a solution to the
equation (0.1) in an open set D, taking prescribed values at the boundary.

For the two-dimensional case the theory was initiated by Bernstein at
the beginning of the century, and received contributions from various au-
thors. On the contrary, the general n-dimensional problem has been suc-
cessfully studied only recently; we shall mention the work of Jenkins and
Serrin [17] in the case of minimal surfaces (H = 0), and of Serrin [25] for
general H.

The method of Serrin is based on a-priori bounds for solutions of the
Dirichlet problem for equation (0.1), in view of an application of the Leray-
Schauder fixed point theorem. This allows to prove the existence of a C2

solution to the problem, provided some conditions are satisfied, involving the
function B’(x, u) and the mean curvature of aS2.

In the meantime, a different approach to the Dirichlet problem for equa-
tion (0.1) was developed, starting from the observation that (0.1) is the Euler
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equation for the functional

where Euristic considerations (see [15]) suggest in-

cluding the boundary datum 99 in the functional, and hence looking for a
minimum of

in the class BV(Q) of function with bounded variation in S~.
This variational approach to the Dirichlet problem (see [15], [11] and [23])

permits separate discussion of the assumptions on the mean curvature func-
tion B’(x, ~c) and on the boundary mean curvature .g(x), so that one can ob-
tain sharp (and in many cases necessary and sufficient) conditions for the
existence of a minimum for ~1. These conditions do not involve the mean

curvature of the boundary.
A careful use of the a-priori estimate for the gradient (see [18], [30]

and [3]) shows that the solution u(x) is smooth in Q, and is a solution of
equation (0.1). If in addition is continuous and

at every point x E aS2, then u(x) _ q(r) at 8Q (see [23]) and hence is a

" elassical" solution to the Dirichlet problem.
The two methods outlined above have been successfully applied to the

problem of capillary free surfaces. In this case one looks for a solution

to (0.1), with H(r, u) = 2u, subject to the boundary condition

where v is the exterior normal, and x is the cosinus of the (prescribed) angle
between the surface y = u(x) and the boundary of the cylinder S~ X R.

For this problem, variational results have been obtained in [4], minimizing
the functional
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and at the same time the classical approach has been shown to work in [31]
(see also [27] and [26]).

The situation is quite different when a mixed boundary value problem
is considered:

with 81Q W a2 S~ = aS2. In this case, when singularities at points of Ol!J r1
can possibly occur, the classical method seems to be hardly appli-

cable as it is; on the contrary one can show the existence of a minimum for
the functional

The aim of this paper is to prove such existence results under sharp condi-
tions for the functions H and x. As Y reduces to 3:, or to 3,, when or

3i.Q is empty, we shall find the existence of a solution with pure Dirichlet
or capillarity boundary conditions. We want to observe that our results are
significantly new also in these situations.

The paper is divided in four sections. The first is devoted to the assump-
tions on H and x, and to the discussion of a variety of special cases. In

chapter 2 we prove the existence of a minimum for the functional Y. After

a brief discussion of the regularity of the solution in S~ and at a,, S2, we
refine our method in order to treat some borderline situations, including
the capillary free surfaces with In I == 1 (compare [7]; see also [8] for an

application of the results of ch. 4).
In conclusion, we shall get a quite general existence result for the

problem (0.4). The solutions to this problem are regular in D, and at in-
terior points of provided (0.2) holds. The regularity at 02Q remains
still an open problem; a special case (x = 0) is discussed in [16].

I wish to thank R. Finn for his stimulating remarks.

1. - The variational problem.

1.A. Throughout this paper we shall denote by S~ a bounded connected
open set in Rn, n&#x3E;2, with Lipschitz-continuous boundary 8Q. We will
write U 22 S~, where 01Q is the intersection of 8Q with a bounded
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open set Ai, such that the set

is connected. We suppose that r1 02Q) = 0, and that 02Q coin-
cides with the closure of its interior.

We shall discuss the existence of a minimum for the functional

in the class of functions of bounded total variation in S~.
It can be useful to recall that the symbol

means the total variation in Q of the vector-valued measure whose components
are the Lebesgue measure in Rn and the derivatives Di u of u:

The integrals on 8Q have sense as every function of bounded variation has a
trace on which we denote also by u, in Zi(3D) [21].

1.B. Let

and let u(x) be a function of class C2(S2), a minimum for the functional Y(u).
It is clear that satisfies the equation

and the boundary conditions:
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Let B be a Caccioppoli set; i.e. a Borel set whose characteristic function cpB
has distributional derivatives which are measures of bounded total variation.

We can integrate (1.2) over B to get:

Let to = sup lul and suppose H(x, t) is a non decreasing function of t. We have:
D

and

for every Caccioppoli set where

1. C. We will prove the existence of a minimum for the functional Y(u)
under the following assumptions on the functions H and x:

(1.3) x(x) is a bounded measurable f unction in 02Q. g(x, t) is a function
defined in Q X R, which is non-decreasing in t for almost every x E S~,
and belongs to Ln(Q) for every t E R.

(1.4) There exist two positive constants so and to such that for every Caccioppoli
set B c Q we have :

The meaning of assumption (1.3) is clear as it implies that the func-
tional Y is convex. On the other hand condition (1.4), which we have
shown to be necessary for the existence of a smooth minimum, can ap-
pear somewhat involved and artificial, so that it is advisable to illustrate in
some detail its meaning and generality. For that we shall postpone the proof
of the existence theorem to the next chapter and we will devote this section
to a complete discussion of some particular hypotheses leading to (1.4).
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1.D. Let us start from the Dirichlet problem. We have the following

PROPOSITION 1.1..Let

where H+ = max (H, 0) and H- = min (H, 0).
Suppose that

and let a, S2 = 0.
Then (1.4) is satisfied.

PROOF. Since monotonically decreases to we have:

and similarly

whence there exist to and 0 such that

Let B c SZ be a Caccioppoli set; we have

and (1.4’) follows at once from the isoperimetric inequality:

A similar argument lead to ( 1. 4" ) . Q.E.D.
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We remark that if H does not depend on t, conditions (1.5) and (1.6)
reduce to the assumptions of [1] (see also [11]):

Another interesting situation is

with a and b in and a(x) ~ 0. It is clear from the proposition that no
condition has to be imposed on b(x) if a(x) &#x3E; 0 almost everywhere; if we

denote by A the zero set of a(x), condition (1.4) will be satisfied if

1.E. We shall discuss now the general case. For that we remember the

following

LEMMA 1.1 (Sobolev-Poincaré inequality). -Let 92 be a connected bounded
open set with Lipschitz-continuous boundary and let Then

where is the mean value of w in Q and C1 is a constant independent o f w.
As a corollary we get easily, taking w = qJA, the inequality

for every Caccioppoli set A with meas A  meas D/2.
For x E 8Q let B(x, r) be the ball of radius r centered at x, and let

We introduce the function

Let us start with a necessary condition.
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PROPOSITION 1.2. Let assumption (1.4) be satisfied and let x be continuous.
on 02Q. Then for every x E 02Q we have

PROOF. We can suppose 0. Let r be a positive number such that

and let A r).
We have from (1.8) :

where

We observe that mr goes to zero with r. Recalling condition (1.4) we get

On the other hand

with

so that in conclusion we have, for every Caccioppoli set A

and (1.10) follows at once. Q.E.D.

1.F. In order to obtain sufficient conditions we introduce the function

which coincides with I whenever x is continuous.
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LEMMA 1.2. Suppose that there exists a positive constant ar such that for
for every x E 02Q we have

Then there exists a constant c2, depending on x, a and Q, such that for every

PROOF. We can suppose
such that

and for

for every Caccioppoli set B c rs), and

for almost all y E B(xo, rs) f1 ô2Q.
If spt w c B(xo, rs) we have:

where

In conclusion, choosing s small enough, we get from the coarea formula

(cfr. [6], 4.3.2(2)):

and (1.12) is proved if spt(w) c B(xo, rs).
For general w, let x E 02Q and let r be such that (1.13 ) holds. We can

choose a finite covering of 02Q with balls B(xi, ri) (i =1, 2, ..., N) and non-
N N

negative smooth functions 10 with ~ f i c 1 
i=l i=l

on 02Q. Writing (1.13) for each of the functions and adding from 1 to
N we obtain at once ( 1.12 ) . Q.E.D.
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PROPOSITION 1.3. Let x and H satis f y assumption (1.3) and let

for every x E 02Q.
Let B’(x, t) satisfy the assumptions of Proposition 1.1, i. e.

and suppose that for almost every x in a neighborhood of we have

Then (1.4) is satisfied.

PROOF. Let be a closed set with 0 and such that (1.16)
is satisfied in S = A. We can suppose that 8S r1 is smooth and

since 02Q is compact we can assume that S has finitely many connected
components.

As in the proof of Proposition 1.1, there exist positive numbers t1 and E,,
such that for t &#x3E; t1 we have

and

Let B be a Caccioppoli set in S2; we get for 

and hence
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where

elsewhere in as .

Since as t1 Q1 is smooth we have q(x) =1 there (see 1.G below) and
therefore if 4so = min (a, 81):

Applying Lemma 1.2 we get:

where C2 depends on S and x but not on the set B. In conclusion

and in order to prove (1.4) we have only to show that it is possible to choose
in such a way that

Let Z be a connected part of S, and for t &#x3E; t1 let

We have

and hence we can find a number t_, such that for t &#x3E; t :
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We discuss separately two cases:

We have

In this case we use (1.8) and we get

and therefore

whence in both cases we have for t &#x3E; tz.

Since there are only finitely many connected open sets Z* c S, we get
easily (1.17) with to = and hence (1.4’ ) .

In a similar way one can prove (1.4"), thus getting the full result. Q.E.D.

1.G. We conclude this chapter with a computation of the function q(x)
in various situations.

It is easily seen that we have always 

PROPOSITION 1.4. Let of class C1 in a neighborhood of xo E 
Then q(xo) = 1.

PROOF. We can suppose that xo = 0 and that 8Q can be represented
as the graph of a function f (x’ ), x’ _ (x1, 0153a, ..., Xn-l), such that f (0) = 0,

== 0 and that
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Let A c Q(0, r ) and let (we remember that
is the trace of q;A on Let nA be the projection of a2A on the

hyperplane xn = 0 . We have:

If we set = we get lim M, = 0 and

On the other hand

and letting r - 0 we obtain q(xo) =1. Q.E.D.
Another situation in which q(xo) = 1 is when the mean curvature of aS2

is bounded from above in a neighborhood of Xo. More precisely we have

PROPOSITION 1.5. Let there exist I~ &#x3E; 0 and a f unction K(x) in 

(QR = R)) such that

for every set coinciding outside some compact set in BR.
Then q(xo) =1.

PROOF. Let r and let A c From (1.21 ) with .L = ~ 2013 ~i we get
easily

If r is small enough we have meas SZr  meas and hence from (1.8) :

and letting r - 0 we get q(xo) = 1. Q.E.D.
To conclude this section let us calculate the function at the vertex

of an angular region.
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Let S~ be the set and let zo = 0. It is evident that

the supremum in (1.9) is attained when A is the triangle

For such set we have:

and hence

in agreement with the results of Emmer [4].
It can be interesting to remark that if instead of S~ we consider the set

A = R2 - Q, we get q ( o ) =1.

2. - Existence of a minimum.

2.A. We will show in this section that conditions (1.3) and (1.4) of sec-
tion 1. C are sufficient to guarantee the existence of a minimum for the func-
tional

in the class BV(Q). To be precise we have the following

THEOREM 2.1. Let Q be a bounded connected open set with locally Lipschitz-
continuous boundary and tet x and H be two functions satisfying condi-
tions (1.3) and (1.4) of section l.C. Let 99 be a function in Then the

functional Y(u) has a minimum in the class BV(Q).
The proof of Theorem 2.1 will take all this chapter.
The first step is quite usual in the theory of non-parametric minimal

surfaces, and consists in a suitable handling of the integral involving the
function 99.

Since 99 is in Z~( al,~), there exists a function I(x) in the Sobolev space
such that (p is the trace of f on [9]. If we denote by w the

function
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we have [21] w E BV(Ql) and

The problem of minimizing the functional Y in BV(Q) is thus reduced
to a minimum problem for the new functional

in the class

We remark that when = 0 the functionals Y and 9 coincide, and that
W = BV(Q) in this case.

2.B. Let us show first that g(u) is bounded from below in W.

LEMMA 2.1. Let Hand x satisfy (1.3) and (1.4). Then for every function
we have

where C3 is a constant independent of v.

PROOF. We extend v as zero outside D. Let us suppose first Setting

we get

On the other hand:
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so that from (1.4’) :

where

In general we have (2.6) for v+ = max(v, 0), while for v- = min(v, 0)
we get:

From (2.6) and (2.7) we get at once (2.5), recalling the coarea formula:

From the preceding lemma we obtain at once the inequality

for every u E yY, c6being a constant independent of u.

LEMMA 2.2. Let x and H satisfy conditions (1.3) and (1.4). Then for every
~ &#x3E; 0 there exists a constant c~(~) such that for each w E BV(Ql), with w = 0
in we have:

where

PROOF. Let us suppose that and that spt w c $6. We have from (1.4’ ) :
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Suppose now that ~o is such that

and

have from (1.8) :

In a similar way, using ( 1.4" ) instead of (1.4’), we obtain:

and hence

Arguing as in Lemma 2.1 it is easy to see that (2.10) remains valid for
a general w, provided 

Let g(x) be a C°° function with g = 1 on a2 S~, and 

We have

where c7 = C7(b) = sup does not depend on w, so that (2.9) is proved
s.

for 6  It is easily seen that (2.9) remains valid for every . Q.E.D.

We can prove now the lower semicontinuity of the functional 

PROPOSITION 2.1. Let be a sequence of functions in W, bounded in
and convergent in to ac f unction v E W. Suppose that (1.3)

and (1.4) are satisfied. Then

PROOF. Let us prove first the lower semicontinuity of the term
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For that we define, for m &#x3E; 0, the function

and let

We have

and hence it is sufficient to prove the lower semicontinuity of the integral

for each fixed m &#x3E; 0.

Let v ---&#x3E;- v in Zi and let

Since g~k and 1pk tend to zero in Ll and are bounded in Ln/n-l’ they converge
to zero weakly in On the other hand

The right-hand side of (2.13) tends to zero as k -~ oo , thus proving the
lower semicontinuity of (2.12).

For the remaining part of we use Lemma 2.2 and a technique
similar to [9].

Let
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We have from Lemma 2.2 applied to zv = v - vk:

Letting k ~ oo and taking in account the lower semicontinuity of the area
integral we get

for every 6 &#x3E; 0, and hence

2.D. The proof of Theorem 2.1 will be complete if we can show that there
exists a minimizing sequence which is bounded in For, let ~~k~
be such a sequence; from (2.8) we easily see that

and hence lukl is bounded in 

Passing possibly to a subsequence we can suppose that Uk converges in
a function u E W. From Lemma 1.1 it follows that is bounded

in and hence we can apply the semicontinuity result proved above
to get the conclusion of the theorem.

Depending whether a1 S~ ~ ~ or 81 Q = 0 we need two different arguments.
The first situation can be handled by means of the following well-known
result:

LEMMA 2.3. Let be non empty and let w(x) be a f unction in 
with w = 0 in Q. Then

where C9 depends only on Q and Q1.
It is easily seen that Lemma 2.3 settles the case =1= 0. In fact every

minimizing sequence is bounded in L1(Q1) since we have:

and the last integral is bounded by (2.14).


