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The Class Number of Quadratic Fields and the Conjectures
of Birch and Swinnerton-Dyer.

DORIAN M. GOLDFELD (*)

1. - Introduction.

The value of the Dirichlet L-function

formed with a real primitive character x(mod d), at the point s =1 has
received considerable attention ever since the appearance of Dirichlet’s

class number formulae

where h is the class number, ~,u the number of roots of unity, and 1 the

fundamental unit of the quadratic field Siegel’s basic ine-

quality (see [18], [7J )

is fundamental in this field, and has wide applications in the theory of
numbers. The only disadvantage is that there is no known method to

compute the constant c(s) &#x3E; 0.

(*) Scuola Normale Superiore di Pisa and Massachusetts Institute of Technology.
Pervenuto alla Redazione il 4 Febbraio 1976 ed in forma definitiva il 29 Apri-

le 1976.
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In this connection, it is interesting to note, [6], [9], that if L(l, X) =
= then L(s, X) will have a real zero @ (Siegel zero) near to s =1
satisfying

where the sum goes over all rational integers a, b, c such that b 2 - 4ac =

= X(-1) d, - a C b c ac  41/d. This, of course, contradicts the Riemann

hypothesis, and it is, therefore, likely that E(l, X) log d will never get
too small.

Non trivial effective lower bounds for Z(l, X) seem to be very difficult
to obtain. Heegner [13], Stark [19] and Baker [1] established that there

are only 9 imaginary quadratic fields with class number one. Also, Stark
and Baker, [20], [2] by using a transcendence theorem showed that there
are exactly 18 imaginary quadratic fields with class number two. As a

consequence, the lower bound

was obtained.

By developing a novel method, we shall prove

THEOREM 1. Let E be an elliptic curve over Q with conductor N. I f .E’ has
complex multiplication and the E-function associated to .E has a zero of order g
at s =1, then for any real primitive Dirichlet character X(mod d) with

(d, N) = 1 and d &#x3E; egp egp (c1 Ng3), we have

where It = I or 2 is suitably chosen so that x(- N) _ (-1 )g-~, and the con-
stants c1, C2 &#x3E; 0 can be effectively computed and are independent of g, N and d.

If the condition (d, N) = 1 is dropped, then Theorem 1 will still hold.

In this case, however, the relation x(- N) _ (-:L)9-9 will have to be re-
placed by a more complicated one.

Theorem 1 is also true for elliptic curves E without complex multiplication
provided L(8) comes from a cusp form of 1-’o(N) as conjectured by Weil [23].
It can even be shown that if II (1- has a

p

zero of at s =1, and if rj (1- a~p’~s)-1(1--~pp-s)-1 has a zero
p
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of ordere or at s = 2, then

with c, effectively computable. The value of e is given in the conjectures
of Tate [22] on the zeros and poles of L-functions associated to products
of elliptic curves, and as shown by Ogg [17], ~ =1 assuming Weil’s conjecture.

If the curve .E may be taken in Weierstrass normal form

then the associated .L-function is defined as

where t,, = p -E- 1- Np, and Np is just the number of solutions (including
the point at infinity) of the congruence

If then t,, is the  trace of Frobenius &#x3E;&#x3E;, and otherwise tp = 1 or 0.
Weil [23] has conjectured that LE(s) is entire and satisfies the functional

equation

where N, a certain integer divisible only by primes is the conductor of E.

If the group of rational points on E, which is finitely generated by the
Mordell-Weil Theorem ([16], pp. 138-149), has g independent generators of
infinite order, then Birch-Swinnerton-Dyer [4] have conjectured

CONJECTURE. has a zero of = 1.

This conjecture has been confirmed in hundreds of cases (see [4], [21])
for which g = 0, 1, and 2. Stephens [21] has shown that the curve
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has rank g = 3, that LE(s) satisfies the functional equation (4) with

N = 33.732 and the minus sign, and that L(s) has a zero of odd order &#x3E;1
at s =1. It is a particular example of curves admitting complex multipli-
cation by V::~-3. The constant L~(1) was calculated to three decimal places
and turned out to be 0.000, all in support of the Birch-Swinnerton-Dyer
conjecture.

The only curve (*) that seems to be known with rank g &#x3E; 4 and complex
multiplication is the example given by Wiman [24]

This curve has complex multiplication by and is 2-isogenous to the
curve

Using the results of [3], it can be shown that for this example LE(s) satisfies (4)
with N = 2g ~ (3 ~ 7 ~ 11 ~ 17 ~ 41) 2 and the plus sign, and that L(s) has a zero
of even order &#x3E; 2 at s =1.

If in the last example one could prove that LE(s) has a zero of order 4
at s =1, then h(- d) -~ + oo with d in a constructive way and hence the
class number problem h(- d) = const is effectively solvable.

The proof of Theorem 1 is divided into three parts. First, LE(s) is

« twisted » (in this connection see also [8]) by X and Liouville’s function A
where

the series

being obtained. The key functions

and

are then defined. Note that if .LE(s -E- 2 ) _ ~ (1- ~~p-s)-1(1- ~pp-$)-1
then = II (1- ~"’)’’(1 2013 ~P")’’. We also let

(*) For this example I am indebted to Professor A. SCHINZEL.
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where it is clear that G(s) == 1 under the absurd assumption that X(p) = - 1
for all primes p. If and then G (s, x )

nx

measures the deviation by which X(n) differs from A(n) for 
In the second part of the proof, by a careful analysis of ~(s) L(s, 

we show that can be measured in terms of L(1, X) and x. For

example, if Q( V d) has class number one, then == -f -1 if and only
if p = x2-~- xy-+- (d+1)/4)y2 so that x(p) _ -1 for all primes p(~+l)/4.
In this case, G(s, x) ---1 for x  (d + 1)/4. In general, if .L(1, X) is small,
then -~ 1 for suitable x.

In the final part, we prove that

where A = U = and 6 - 1 + (-1 ) K x (- N ) . Assuming that
q(s) has a zero of order g at s = 2 , this leads to Theorem 1 as long as

is suitably chosen so that 6 =A 0.

I wish to express my grateful appreciation to Professor Enrico Bombieri
for the illuminating discussions and patient interest he showed for this work.

I thank the C.N.R. and Scuola Normale Superiore, Pisa, for their sup-
port during the past year.

2. - Hecke .L-functions with « Grossencharakter ».

Let .g be an imaginary quadratic field of discriminant k, and f an integral
ideal in K. A complex valued, completely multiplicative function y(a)
defined on the integral ideals a E K is a « Grossencharakter » if = 0

whenever a and f have a common factor; and if there exists a fixed, positive
rational integer a such that

for any integer a E K. The ideal f is called the conductor of 1p, and if there

is no smaller conductor f1lf, then is said to be primitive. The Hecke .L-func-
tion (with primitive y)
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where the sum goes over all integral ideals a e K with norm N(a) satisfies the
functional equation [10]

In the case of an elliptic curve with complex multiplication, Deuring [5]
has proved.

THEOREM 2. Let E be an elliptic curve over Q with complex multiplication,
so that K ~· End(.E’) 0 Q is an imaginary quadratic field. Then L(s) =
= for some primitive  Grössencharakter)} of K.

Assume .E has complex multiplication by 1/- k. By comparing Euler
products (here yk is a real primitive character mod k)

where llx,,l =1 by the Riemann hypothesis for curves, and p is a suitable

prime ideal of K = dividing the rational prime p, it follows from
Theorem 2 that

if and only if Furthermore, the fact that Joel == 1 implies that the
integer a defining the «Grossencharakter )&#x3E; must be equal to one. Since

LE(s) is real for real values of s, we get from (5) that in the case of complex
multiplication satisfies the functional equation (4) with N = kN(f),
it being clear from this discussion that N is divisible only by primes p 111.

From now on let E’ and X satisfy the conditions of Theorem 1. The

twisted series
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is again a Hecke series with « Grðssencharakter)} having conductor (d) f.
The function X) satisfies the functional equation

with the same sign as in (4). This is in accordance with Weil’s principle [23].
Consequently, y the function

satisfies the functional equation

We shall make essential use of the fact that if L(l, X) is too small, then
x(p) _ -1 for most primes p « d, so that X(n) behaves like Liouville’s

function ~1(n). If

then it is clear from (7) that

Now, write

and note that if ~(p) == 20131 for all primes p then G(s) == 1. So we expect
G(s) to be near to 1 if z) is «small ». We also note that if

then

LEMMA 1. For n  x, the n-th coefficient in the Dirichlet series expansion
for agrees with the n-th coe f f icient in the Dirichlet series expansion of
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G(s, z&#x3E;q~2s&#x3E; where G(s) = and

is majorized by (1(8)L(s, X)l~(2s) )2.

LEMMA 2. If LE(s) = E.,,(s, V) as in Theorem (2), then

where Xk is a real, primitive, Dirichlet character (mod k)

PROOF. Upon comparing (6) and (7), we get

The Lemma now follows from (10) on noting that

Q.E.D.

3. - Zeta functions of quadratic fields.

Let

In order to estimate sums of the type
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it will be necessary to obtain an asymptotic expansion for C(s) L(s, X), the
Dedekind zeta function of 

LEMMA 3. Let «, be real numbers with « &#x3E; 0 and 4«y - ~2 = L1 &#x3E; 0.

Then for any x &#x3E; 0

where the sum goes over rational integers m, n with n 0 0 ; and ~6 ~ ~ 1 and
0  O  1 are real numbers.

PROOF. The argument is due to Iseki [14]. S(x) is equal to the number
of solutions of

which is equivalent to

Therefore,

THEOREM 3. Let d &#x3E; 4 and X(-l) = -1. Then lor 8 = a + it, 

where the sum goes over the set of reduced forms am2 + bmn + en2 of dis-
criminant - d. (That is to say - a C b c a C c or 
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PROOF. Again following Iseki [14]

where b, is equal to half the number of solutions of

Now,

But S(u) = 0 for u  d/4a since there are no solutions to

(2am + bn) 2 +  d.

Therefore, by Lemma (3)

where the last integral is regular for a&#x3E; -1 and bounded by

The Theorem is obtained by summing over all (a, b, c) and using the fact
that a  1/d/3 for a reduced form. Q.E.D.

An analogous Theorem for the zeta function of a real quadratic field
does not seem to be in the literature. We, therefore, give complete details
for what appears to be a new technique. The ideas go back to Hecke [11].

Let C be an ideal class in F = Q( vd), and let l~p(8, C) denote the zeta
function of the class. If b E C-1, then the correspondence
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is a bijection between ideals a E 0 and principal ideals (~,) with A E b.

Two numbers ~,1 and Å2 define the same principal ideal if and only if

Å1 = eÂ2 for some unit 8 of U == 1± 8"), where U is the multiplicative group
of units of F, generated by and 1, the fundamental unit. Hence

and in view of the well known correspondence between ideal classes and

binary quadratic forms (see [12]), we can choose

for rational integers m, n.
Since,

it follows that

where 21 &#x3E; 0 is arbitrary.
In (11) make the transformation 99 --- &#x3E;- el’ and sum over all classes. Then

where

41 - Annati delta Scuola Norm. Sup. di Pisa
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and

The Epstein zeta function occurring in (12) can be expressed

Since &#x3E; 1 and 0 &#x3E; &#x3E; -1 (so that co is reduced) it can be

expanded into a continued fraction 00 = [0, bi, b2, ..., where the bar
denotes the primitive period. The corresponding complete quotients

form again a periodic sequence, where for all v &#x3E; 0, c~ ~ 0, £01) is reduced.

Letting

denote the v-th convergent to w, it follows that for

that

as long as g~ ~ l.
Now, f (z, s ) is invariant under the unimodular transformation
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Therefore

The condition (13), y subject to cp ~ 1, can be expressed

Letting =1, = I for n &#x3E; 0, it is easy to see that

and after making the transformation

it follows that

for

Now, let

Also, let M denote the least integer n for which

Choosing q = in (12), we get

where in the interval we take z* = z.
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Using the results of § 3 of [9]

where the new form (a’, b’, c’) satisfies

and is uniquely determined by Moreover by formula (14) of [9]

and every form satisfying (18) with can be obtained by such
a transformation.

Now,

which implies for

and therefore by equation (17) of [9] we must have ~VI = [k, 2]. This

insures that there will be no repetitions among the forms (a’, b’, c’)
associated to the transformations (16) in the range It now fol-

lows from (12), (16) and (19) that

THEOREM 4. Zet d &#x3E; 1, x(-1) _ + 1 and a* _ + 1/cp) ~ ~ where

la’l = ]] for Then lor 8 = and (1) 1
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where the outer sum goes over the set of reduced, inequivalent forms (a, b, c)
o f discriminant d.

PROOF. In equation (20)

Let ~2 C ... be the real numbers represented by the form (cx*, f3*, y*)
and r’IJ the exact number of solutions of

Now, ~,1 ~ d/a* since there are no solutions to

By use of Lemma (3) it follows that

where the last integral is regular for a &#x3E; 2 and bounded by

LEMMA 4. For d &#x3E; 4,

PROOF. As in the proof of Lemma (1) of [9[, every ideal a of i

can be uniquely represented in the form



638

u, a are positive integers such that

Consequently, y since N(a) = u2 a

where 2* goes over all a, b satisfying (*), and therefore

When x(-1 ) _ -1, each solution of (*) with corresponds to
a reduced form. Hence

by Dirichlet’s class number formula (1).
In the case that x(-1 ) _ -f -1, every form (a, b, c) satisfying (*) is

equivalent to a reduced form (ocy fl, y ) with

It now follows from (21) and Lemma (3) of [9] that

and by equation (17) of [9]

Hence, by Dirichlet’s class number formula (1), we get

Q’E.D.
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LEMMA 5. Let d &#x3E; 4 and X(-l) = -1. Then f or 0  10y  x a,nd

0e1~10

PROOF. If and 

It follows that

Substituting the expression for X) as given in Theorem 3, the
above integral is trasformed into a sum of 3 integrals. These are calculated

as follows. I

after shifting the line of integration to a == 2013 ~ and using

after shifting the line of integration to a = 1 2 - s with 0  8  1110.
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The extra term arises from the simple pole at s = 2 .

LEMMA 6. Let d &#x3E; 1 and x(-1 ) _ -~ 1. 

PROOF. For c &#x3E; 0, let

As a Mellin transform

Now, for and 

Hence,

It follows that
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Now, substitute the expression for C(s)L(s, X) as given in Theorem (4). The

resulting integrals are calculated as follows.

Here, we have used Dirichlet’s class number formula (1) in conjunction
with the fact that for each of the h forms (a, b, c)

The second integral is

after shifting the line of integration to a = 1 - 8 with 0  s  1/10. Finally,

Here, we have shifted the line of integration to a =1 and used the bound
for I given in Theorem 4 together with the upper bound a* ~ ~ Vd.

Combining these last three estimates
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Hence,

LEMMA 7. Let x &#x3E; d &#x3E; I -%/d acnd 10  y  I A/i. Then

PROOF. For x &#x3E; d 

By Lemma (4), (5), (6) and the simple bound

we get for any 0  s  1/10

The Lemma follows on choosing

Q.E.D.

LEMMA 8. Let x  d and 10  y  min (I Then


