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A Nonlinear Degenerate Parabolic Equation.

B. H. GILDING(*)

1. - Introduction.

In this paper we shall prove uniqueness and existence theorems for the

Cauchy problem, the first boundary value problem and a mixed Cauchy-
Dirichlet problem for the equation

in which subscripts denote partial differentiation. The functions a and b

are both assumed to be defined, real and continuous on [0, oo), with

and

To be precise, we shall study the following three problems for equation (1).
Let T be a fixed positive real number.

PROBLEM I (The Cauchy problem). To find a solution of equation (1)
in the strip

satisfying the initial condition

where uo is a given function which is defined, real, nonnegative, bounded and
continuous on (- 00, oo).

(*) Technische Hogeschool Delft, Netherlands.
Pervenuto alla Redazione il 15 Maggio 1976.
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PROBLEM II (The first boundary value problem). To f ind ac solution of
eq2catiorc (1) in the rectangle

satisfying the conditions

where uo is a given function which is defined, real, nonnegative and con-
tinuous on [- l, 1], and, T- and p+ are given functions which are defined,
real, nonnegative and continuous on [0, T] and satisfy the compatibility condi-
tions = uo(-1) and T+(O) = uo(1).

PROBLEM III. To f ind a solution of equation (1) in the half-strip

satisfying the conditions

where uo is a given function which is defined, real, nonnegative, bounded and
continuous on [0, 00), and T is a given function which is defined, real, non-
negative and continuous on [0, T] and satisfies the compatibility condition

uo(0).

When b - 0, i. e. equation (1 ) is replaced by the equation

we shall call the Problems I, II and III, Problems I’, II’ and III’, respec-
tively.

Equation (1) is nonlinear and of degenerate second order parabolic type.
At points where u &#x3E; 0 equation (1) is parabolic, but at points where u = 0
it is not. Such equations arise, for example, in the study of the flow of two
immiscible fluids in a porous medium [2, p. 511].
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It is now well established, no matter how smooth a, b and the boundary
data are, that since equation (1) degenerates, the Problems I-III need not
have classical solutions [10, 15]. It is therefore necessary to generalize the
notion of solutions of these problems. To do this we shall follow Oleinik,
Kalashnikov and Yui-Lin [15] who defined classes of weak solutions of the
Problems I’-III’ and subsequently proved existence and uniqueness theorems
within these classes. Alternative definitions of generalized solutions of the
Problems I-III have been given by other authors [3-6, 11, 12, 14, 1S-20~.

Set

DEFINITION I. A f unction u(x, t) defined on S is said to be a weak solu-
tion of Problem I if: (i) u is real, nonnegative, bounded and continuous in )3;
(ii) A(u) has a bounded generalized derivative with respect to x in S ; and (iii)
u satisfies the identity

for all cp E which vanish for large lxl and for t = T.

DEFINITION II. A function u(x, t) defined on R is said to be a weak solu-
tion of Problem II i f : (i) u is real, nonnegative and continuous in R;
(ii) u(- 1, t) == Yf-(t) and t) = for all t E [0, TI; (iii) A (u) has a

square-integrable generalized derivative with respect to x in .R; and (iv) u satis-
lies the identity

for all g E 0(-R) which vanish for lxl =1 and for t = T, and which have square-
integrable generalized first derivatives in R.

DEFINITION III. A function u(x, t) defined on H is said to be a weak solu-
tion o f Problem III if: (i) u is real, nonnegative and continuous in H;
(ii) u(O, t) = for all t E [0, T]; (iii) A(u) has a generalized derivative with
respect to x in H which is square-integrable in bounded measurable subsets of H
and bounded in sets of the form (6, oo) X (0, T], 6 E (0, 00); and (iv) u satis-
fies the identity
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for all 99 E C(H) which vanish for x = 0, for large x and for t = T, and which
have square-integrable generalized first derivatives in H.

Clearly any classical solution of Problem I, II or III is a weak solution
of that respective problem.

We shall show that if

then each of the Problems I-III has at most one weak solution. To prove
existence we shall not need condition (4). Instead, we need to assume that a’
and b’ exist and are locally Holder continuous on (0, oo) and that

and

Under this condition, with weak assumptions on the boundary data, we
shall show that each of the Problems I-III has at least one weak solution.

Thus we shall extend earlier uniqueness and existence theorems which have
been proved for the Cauchy problem for the equation

[10] to the Problems I-III.
To prove the existence of a weak solution of Problem I’, Oleinik,

Kalashnikov and Yui-Lin [15] do not need condition (5). They do impose
regularity and growth conditions on the function a which we do not require,
but, these conditions are not essential to their argument. However to prove
existence results for the Problems II’ and III’, Oleinik, Kalashnikov and
Yui-Lin suppose, in addition to the extra regularity and growth condi-
tions, y that

and

In view of the continuity of a at s = 0, (7) implies (5). Thus our condi-

tions for the existence of weak solutions of Problems II’ and III’ are less

restrictive.
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As an example of a pair of functions which do not satisfy (5), and there-
fore as an example of an equation to which our existence results do not

apply, we may take

and

By a change of variables, it is clear that our results for the Problems II
and III apply equally well in the domains (r¡1, (0, T] and (~, oo) X (0, T]
respectively, y for any r2 and q and - 00 

The paper is structured as follows. First, in section 2 we shall prove two
preparatory lemmas. Subsequently, in section 3, we prove our uniqueness
theorems. We then turn to the proof of our existence theorems. These require
some technical machinery, which we shall set up in section 4. This gives us a
clear field in which to prove our existence theorems in section 5. Here,
we also prove a result on the local regularity of weak solutions. In section 6,
we shall say how we can extract maximum principles for weak solutions
of the Problems I-III from our existence proofs. The last section is devoted
to a discussion of a necessary and suPficient condition for weak solutions of

the Problems I-III to vanish in open subsets of their domains of definition.

2. - Preparatory lemmas.

In this section we prove two preparatory results. The first one is used

in the proof of our uniqueness theorems. The second one is used, in sec-
tion 4, to set up the machinery with which we prove our existence theorems.

LEMMA 1. Given acny &#x3E; 0 there exists a constants C such that

if and only if

PROOF. Clearly to prove the lemma, it is sufficient to show that
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if and only if

Let 0  g, M. By Cauchy’s mean value theorem, there exists a
point such that

but then, by a second application of this theorem, y there exists a point
r2 E (rl , s2 ) such that

Note that 

Now if (8) holds, it follows, by letting /S2 - sll - 0 in (10), that (9)
also holds. On the other hand if (9) holds, since by Young’s inequality

for any r1, r2 E (0, M), using (10) we deduce that (8) also holds. This proves
the lemma.

LEMMA 2. Suppose that a, b E C’(O, oo). Then given any M &#x3E; 0 there

exists a f unction 6 E C2(0, M] and a positive constant C such that for all

s E (0, M]

if and only if
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PROOF. We first prove that (11) is a necessary condition for the existence
of a function 0 E C2(0, M] and a constant C satisfying (i)-(vi).

Observe that if 0(s) satisfies (i)-(vi) then so does - 0(s). So without any
loss of generality, by (i) and (ii), we shall suppose that 0"(s)  0 and

C &#x3E; 6(s) ~ l/C for s E (0, M].
By (iii) there holds

and by (v) there holds

So

Integrating this inequality from ê E (0, M) to M yields

Now, because 0"(s)  0 for SE(O, M], we deduce that

for all

and moreover that

Thus

As 8 E (0, M) is arbitrary it follows that M).

To show that (11) is a sufficient condition for the existence of a func-
tion 0 E C2(o, M] and a constant C satisfying (i)-(vi) we need only con-
struct an example.

We choose
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We calculate that for s E (o I

and

Hence

and (ii) is satisfied. Next we observe that

and

by (12), and also, since

that

for

Thus for all s E (0, if] there holds

and

It follows that if is bounded above and away from zero on (0, M] then
it is possible to choose a constant C such that not only (i), but also (iii)-(vi),
are satisfied. 

-

Plainly though, 0 is bounded below by 1 on (0, M] and since F e L’(O, M)
it is also bounded above on (0, M].
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3. - Uniqueness theorems.

We prove our uniqueness theorems for the Problems I-III in this section.
We begin with the Problem I.

THEOREM 1. If

then Problems I has at most one weak solution.

PROOF. Suppose, contrary to the statement of the theorem, that there
are two distinct solutions of Problem I, U1 and ~c2. Then we can define

toE[O, T) by

By the definition of a weak solution of Problem I there exist positive
constants .M and g such that

and

almost everywhere in S .

Moreover, U1 and u2 must satisfy the identity

for all E which vanish for large lxl and for t = T. Plainly (13)
will also hold for all 99 E 0(8) which vanish for large Ixi and for t = T, and
which have bounded generalized first derivatives in S.

Let t1 E (to, T] and define
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We also define a sequence of functions 000(- C&#x3E;o 1 00) such that:

and

It is not difficult to see that the functions rxkr¡ are admissible test

functions in (13). Thus, choosing 99 = a,i7, (13) becomes

where St = (- 00,00) x (0, t]. We shall denote the first integral on the
right hand side of (14) by h and the second one by I2.

By Young’s inequality and the definition of to,

for any 8&#x3E; 0. However, because (4) holds, by Lemma 1 there exists a con-
stant C which only depends on M such that

Hence, setting 8 = 1/(2C), we obtain

In view of the bound on and I(A(u.)),,I, if we choose a positive
constant Cl such that

sup a(.g) , y sup Ii
SE[O,ML
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we can estimate I2 by

where

From (14), (15) and (16) we derive the estimate

in which O2 is a constant which depends only on lVl and .g’.

Next we define the function

Then ?I(x, t ) == t ) - ~ (x, ti) for 0  t  tl . Substitution into (17) yields,
when To = min {to + 1/(4C), T},
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Hence,

for all t1 E (to, To] and all k. This implies by Gronwall’s lemma [13, p. 94]
that

for all t1 E (to, To] and all k. It follows E and hence, by (18),
that Consequently we derive from (18),
by use of the dominated convergence theorem, y that

for all t1 E (to, To]. A second application of Gronwall’s lemma now yields

and hence

Thus, in view of the continuity of u, and u2 , we have shown that U1- U2
in 8To. This contradicts the definition of to. We can therefore only assume
that Problem I has at most one weak solution.

To prove that if (4) holds then Problem II can have at most one weak
solution we use many ideas from the proof of the last theorem. We shall
therefore only sketch the proof.

THEOREM 2. I f (4) holds then Problem II has at most one weak solution.

PROOF. Suppose that u, and U2 are two distinct solutions of Problem II.
Then we can define T) by
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Now, it follows from (3) that u, and u, must satisfy the identity

for all E C(-R) which vanish for Ixl =1 and for t = T, and have square-
integrable generalized first derivatives in R.

Let t1 E (to, T] and define

It is not difficult to see that q is an admissible test function in (19). Setting
q = r~ in (19) gives

where Ri, = (-1, 1) X (0, t,]. However, because (4) holds and because U1
and U2 are bounded in .R, arguing as we did in the proof of Theorem 1 we
can show that there is a positive constant C such that

Thus, from (20) and (21), we have

Next we define the function
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By manipulation in (22), we deduce that

whenever t1  To = min{to + 1/(4 C), T}.
The proof of the theorem is completed similarly to the proof of Theorem 1.
By a combination of the techniques used in the proofs of Theorems 1

and 2, we can also prove a uniqueness result for weak solutions of the

Problem III. We omit the proof.

THEOREM 3. If (4) holds then Problem III has at most one weak solution.

4. - Machinery for existence.

We shall prove our existence theorems using a method due to Oleinik,
Kalashnikov and Yui-Lin [15]. Thus, we construct weak solutions of the
Problems I-III as the pointwise limit of sequences of positive classical solu-
tions of equation (1). The strategy is as follows. In this section we first

show that the requisite positive classical solutions of equation (1) exist.

Next, we find an interior smoothness estimate of them which only depends
on a number of given parameters. After this we find an L2 estimate of their
first derivative with respect to x. In the next section we shall show how,
for each of the Problems I-III, these estimates enable us to construct a
sequence of positive classical solutions of equation (1) which converges
pointwise, and guarantee that its limit function is indeed a weak solution
of the problem.

Throughout this section, we shall denote by Q the rectangle (r~l, 1}2) X (0, T],
where - 00  1}2  oo, I and by Q6 the rectangle (~1--~ ~, 1}2 - ð) X (0, T]
where 

LEMMA 3. Let E, a E (0, 1] and M E (0, oo) be fixed arbitrary real constants.
Suppose that uo(x) is a C2+«[~1, ~2] function, and, that T,(t) and P2(t) are

T] functions such that

and
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for i = 1, 2. Then if a’ and b’ exist and are locally Holder continuous on

(0, oo) there exists a unique f unction u(x, t) such that:

PROOF. Because a’ and b’ exist and are locally Holder continuous on (0, 00)
there exists a ~3 E (0, 1] and functions f, g E C" 0 (- 00, oo) such that

and

Then by [13, p. 452] there exists a y E (0, 1] and a function u(x, t) E
E which satisfies the equation

and the boundary condition (23), (24). Moreover by a straightforward ap-
plication of the maximum in Q. Hence u satisfies (1 )
as well. Thus, we have shown that there is a function u(x, t) satisfying (i),
(iii), (iv) and (v). If there were two such functions, then by retracing the
above argument, we could find two solutions of problem (23)-(25),
which is not possible [13, p. 455].

To complete the proof of the lemma it therefore remains to show that (ii)
is satisfied. Set v = A (~c) . Then v satisfies the equation

We observe that u E C2 +Y(Q) and that f, g E C1+fJ(- 00, oo) for some fl, y E (0, 1].
Thus by a series of elementary computations we can show that f(u),
(8/8tc) (f(u)) , g(u) and E By a result from the standard

theory of uniformly parabolic equations it follows that vx E C2~1(Q) [7, p. 72].
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In Lemma 3 we have established the existence of a class of positive clas-
sical solutions of equation (1) which we shall use later to construct weak
solutions of the Problems I-III. First, however, we must make some regularity
estimates of these positive classical solutions.

LEMMA 4. Let the assumptions of Lemma 3 hold and let u(x, t) be the func-
tion exhibited in Lemma 3. Suppose that

in

Then if

and

there exists a constant K which depends only on M and ð, such that

f or all (tci , t,), (X2, t2 ) E Q,, -

PROOF. We use a Bernstein-type technique.
Since (5) holds and a’ and b’ are continuous on (0, oo) it follows that

F(s) = -~-- EL1(0, M).

Thus by Lemma 2 there exists a function 0 E C2(o, .M] and a positive con-
stant 0 such that for all s E (0, M] :
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Set

Noting (i) we see that w is as smooth as A (u). Furthermore, from (1 ) we have

We differentiate this equation with respect to x and multiply through by wx .
Writing p = wx we obtain

Consider the function

in is a cut-off function such that:

If z attains a positive maximum at a point in Q, then at that point we have

and

or in other words

and

Using this in (26), we deduce that at a positive maximum of z in Q,

27 Annali della Scuola Norm. Sup. di Pisa
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So at this point, by (ii)

which by (iii)-(vi) means

Thus, by Young’s inequality

On the other hand, if z does not attain a positive maximum in Q, then z
must take its maximum value in Q on the lower boundary of Q. However
by definition

It follows from (27) and (28) that there exists a constant 01 which depends
on Eo, M and 6, but not on 8, such that

However, by (i) this implies that

Now set v(x, t) = A(u(tc, t)). Then v satisfies the equation

and v has a bound which only depends on M in Q. Moreover, from the above

(29) I v(W , t)-V(X2’ t) c 0101x1-X21 for all (Xl’ t), (X2, t) E Q4a .

It follows from [8] that there exists a constant O2 which depends on C1 C,


