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An Approximate Layering Method for Multi-Dimensional
Nonlinear Parabolic Systems of a Certain Type (*).

AVRON DOUGLIS (**)

Abstract. - A new method is described of solving initial-value problems for PDE systems
of the form

in d dimensions, where d&#x3E; 1, pi &#x3E; 0. The method is an outgrowth of ideas previously
put forth by N. N. Kuznetsov [Math. Zametki, 2 (1967), pp. 401-410] and the
author [Ann. Inst. Fourier Grenoble, 22 (1972), pp. 141-227] in connection with
scalar first-order PDE’s. q’ime t starting f rom 0 is divided into short intervals
Zm={(m-I)htmh}, m = 1, 2,.... Bounded, measurable values of u =
= (Ui, ..., Un) are supposed to be prescribed at time t = 0, and the first step is to
smooth them. Then in Zl an approximate solution Vl(X, t) = vl = (vl, ..., vl) of
the first order system (E)o to which (B) reduces when the pi are replaced by zero
is obtained such that at time t = 0, vl coincides with the smoothed initial data.
Once v--’(x, t) has been constructed in the time-interval Zm-l, its terminal values
vm-I(x, (m -1 ) h) are smoothed to do duty as initial data for an approximate so-
lution of (E)o, vm(x, t), in the next following time-interval Zm . In this way, a

« layered » f unction V(h)(x, t) = vm(x, t) for (m - I)h  t  mh, m = 1, 2, ..., is built
up. If the smoothing at each step is carried out appropriately, its effects accumulate
in such a way that, for small h, u(h)(x, t) will approximate a solution of (E) at least
for a certain f inite interval of time. The derivatives of u(h) with respect to x and
their difference- quotients with respect to t will be well behaved if the fij and qi are
sufficiently smooth.

(*) This research was partially supported by National Science Foundation
Grant MCS 75-07141-A02,

(**) University of Maryland, Department of Mathematics, College Park.
Pervenuto alla Redazione il 22 Settembre 1977 ed in forma definitiva il 6 Mar-

zo 1978.

13 - Ann. Scuola Norm. Sup. Pisa 01. Sci.



194

1. - Introduction.

Summary.

In this paper, a new approach is presented to the construction of solu-
tions of multi-dimensional parabolic systems of the form

where ,ui &#x3E; 0, x = (Xl’ ..., xd), u = u(x, t) = (U,(O, t), ..., un(x, t)), and d de-
notes the d-dimensional Laplacian. Systems of equations of this kind arise
in diverse contexts, for instance in theories of chemical reactions, thermal
diffusion, population growth and diffusion, predator-prey interactions, and,
with some (not all) ,ua equal to zero, of enzyme-morphogen interaction, and
of nerve excitation.

The present study is restricted to initial-value problems, in which solu-
tions u(x, t) of (E) are demanded in time-space zones ZT = {(x, t) : 0Ty
x E Rdl of appropriate duration T under initial conditions of the form

for

(Real cartesian space of d dimensions is denoted by Rd with d &#x3E; 1.) Sub-

sequent papers will show how the methods used in these initial-value problems
can be adapted to boundary problems for (E) and can be extended to other
types of systems of equations, in general leading to convergent calculational
schemes. A treatment of the Navier-Stokes equations from this point of
view is being worked out at present jointly with E. Fabes.

We assume lij(x, t, u) and gi(x, t, u) to be sufficiently smooth and u°(x)
to be bounded and measurable on Rd. To construct functions that will ap-

proximate a solution of an initial-value problem (E), (IC), our procedure, y
in outline, is as follows:

(1) Select a suitable averaging operator (s &#x3E; 0) acting on functions
v(0153) that are bounded and continuous on Rd. For instance, Se might be re-
peated arithmetical averaging, i.e., Be = Åeb, where b is a positive integer,
and, for each x E Rd Åev(0153) is the arithmetical average of the values of v

on a d-dimensional cube of center x and edge length 2E.
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(2) Divide the half-space W++I = {(0153, t) : t&#x3E; 0, x E Rd} into thin layers

of « duration », or « thickness », h, h &#x3E; 0.

(3) Approximate the initial function u°(x) by a smooth function u*(x)
depending on h, approaching u°(x) in the sense of I’llo, as h -+ 0, and in ab-
solute value having the same bound as its limit. Then, in particular,
lu*(x) I  Mo for x c- B, where Mo = sup,,,,, luO(0153) I. Choose arbitrarily a

number M such that M &#x3E; Mo + 1.

(4) For each i = 1, ..., n determine an averaging parameter 8i by a
condition of the form 8’ Aih, in which A, is a certain constant propor-
tional to ,ut . In the first layer Zi, find a (vector) function ul(0153, t) =

(Ul(x t) ul,(x, t)) that, on the lower face of the layer, complies with
the initial conditions

and, in the interior of the layer, satisfies approximately the « layer equa-
tions »

Then in Zm, for each n = 22 31 .. , in turn, find a function um(x, t) =
=== (um(x, t), ... , u:(0153, t)) that again is an approximate solution of (E)o and
that satisfies at the bottom of the layer the initial conditions

Let mo be the largest integer, finite or infinite, for which

for

and define in the zone zmho the «layered solution », or « approximate layered
solution »,

for

Provided that, in each Z,,,, , u- satisfies the layer equation closely enough
for the purpose, U(h) will be found for small h to approximate a solution
of (E), (10).
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In more detail, our main results are as follows.

(A) A common zone ZT (T &#x3E; 0) exists in which, for sufficiently small h,
all u(h,) are defined and, in absolute value, are c M (Section 5). For certain
special types of systems (E), values of .M’ corresponding to any choice of
Tl&#x3E; 0 can be determined such that fu(h)(0153, t) 1 .M on ZT*. (An instance is
given in Section 5A.)

(B) The derivatives with respect to x of u(")(x, t) are subject to cer-
tain estimates in ZT provided that t &#x3E; 0 and that h is sufficiently small.
The derivatives of k-th order, namely, in absolute value are Gk(M, T)t-k/2
with constant a,(M, T) independent of x, t, h (Section 6). Notwithstanding
that U(h) is discontinuous across the interfaces between consecutive layers,
analogous estimates also hold for first and higher difference-quotients with
respect to t of approximate layered solutions and of their derivatives with
respect to x (Section 7). Thus, the artificial discontinuities created in the
layering method are less disordering than might be feared.

(C) Approximate layered solutions converge to a certain limit u(x, t)
as layer thickness h approaches zero. The convergence is uniform in any
subset of ZT having positive distance from the initial plane (Section 8).

(D) The limit u(x, t) is a solution of equations (E) and also satisfies
the initial conditions (IC) in a generalized sense (Section 3).

Our presentation departs from the natural order of ideas in two respects.
The central and motivating fact that the limit of layered solutions must be
a solution of (E) is the first thing proved. The discussion of averaging,
being outside the main flow of ideas in the paper, is relegated to an ap-
pendix at the end.

Remarks and short illustrations.

(1) Layering for the heat equation. The cumulative effects of the

repeated averagings performed in a layering process are a manifestation of
the central limit theorem. Only a special form of this law is involved, that
which pertains to repeated application of a type of one-dimensional averaging
operator S.. For an operator of that type, which is to act, say, on func-
tions v(x) that are bounded and continuous on the real line .R, Bev(0153) is an

integral expression,
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in which ke(E) = e-1k(E/8), where k(E) is a function on B having the fol-
lowing properties: k(E»O, fk(E) dE = 1, f$k($) d$ = 0, ms=fE2k(E)dEoo.
(The interval of integration in all cases is JR.) Thus $,.v = k. * v, the star
signifying convolution, and, therefore,

where k.() = k. * k,. * ... * ke, I k,, occurring in the convolution product j times.
The central limit theorem says that if s --&#x3E; 0 and j -+ oo in such a way that
mlj82 has a finite limit u2, then

The mechanism through which this law acts in a layering process is most
visible in connection with the heat equation

for convenience taken here in one dimension. A solution is desired in R)
satisfying the initial condition

with bounded, measurable u°(x). Select at pleasure a layer height h &#x3E; 0,
and determine the averaging parameter 8 through the condition 82 = Âh, ,
where A = 2p,/m2. In this case, the layer equation is Ut = 0 and consequently

under the convention that u°(x, 0) = u°(x) (here we can dispense with u*).
These relations imply that

and thus that

Now fixing x, Ty with T &#x3E; 0, we can easily find the limit of u(")(x, T) as h --* 0.
For each value of h, let N denote the integer for which (N - 1) h  r  Nh.
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Then

while

From the central limit theorem in the form described, we thus have

the standard representation of the solution of the problem stated.
In an entirely different connection, a somewhat similar construction for

the heat equation and, more generally, equations of the form ayat =
= (- J)k+l(a2kUlaX2k) , k = 1, 2, ..., was given in 1953 by I. J. Schoenberg
[23, pp. 203-204].

(2) Layering for scalar conservation laws. The estimates in this paper
all derive from the central limit theorem, and such estimates explode as
p -+ 0. In the scalar case (n = 1) , estimates of an entirely different kind
can be made of layered solutions u U(,,) of (E). These estimates are

uniform with respect to /z as well as h, , are passed on to U(p) = "Mh-0 u()),
and assure that a null sequence {Izkl will exist such that u(,,,,) has a limit u
as k ---&#x3E;- oo. The final limit u is a weak solution of the limit equation (E)o.
Estimates of this second kind are obtainable, for instance, with respect to
the variation of layered solutions. Exactly the same means may be used
to derive and to apply them as were given in [13] and [4] in connection with
scalar equations of first order.

History.

Existence theorems applicable to parabolic systems of type (E) in initial-
value or boundary-value problems are already available by various means.
M. I. Visik [27] uses something like Galerkin’s ideas. Ladyzhenskaya, Solon-
nikov, and Ural’ceva [15, Theorem 7.1, p. 596] prove a priori parabolic esti-
mates and appeal to the Leray-Schauder fixed-point theorem. S. D. Eidel’-

man [7], first treating linear systems by means of a fundamental solution
and its potentials, handles quasilinear systems by iteration. W. von

Wahl [28, 29] makes use of elliptic estimates and semi-groups. (We do not
mention the many papers devoted to the scalar case or abstract treatments

of evolution equations not specialized to parabolic partial differential equa-
tions.) The results arrived at in these several ways are quite general in some
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respects, but require that the initial data be smooth in one degree or another,
while boundedness and measurability suffice in the present treatment.

The subject of greatest interest in this paper is believed, however, to be
its method. The idea of using a layering process to construct solutions of
parabolic systems goes back to 1972 and was a rather natural extension of
layering methods for first-order scalar conservation laws, and for equations
of Hamilton-Jacobi type, previously developed by N. N. Kuznetsov [13, 14]
and the author [4, 5]. Ensuing work on parabolic layering schemes was
restricted for a time to one-dimensional systems (E) with hyperbolic layer
equations (E)o (see [6]), but these limitations were overcome in 1976 by
using approximate instead of exact solutions of (E)o.

Layering procedures have an obvious relation to the so-called method of
fractional steps (see, in particular, A. Pazy [21, Cor. 5.5, p. 96], J. E. Mars-
den [19], and Chorin, Hughes, MacCracken, and Marsden [2]). A computa-
tional method of fractional steps for the Navier-Stokes equations was put
forth by A. Chorin [1] in 1973. In that scheme, Euler’s equations and the
heat equation are solved numerically in alternating short intervals of time.
Marsden [20] justified Chorin’s procedure in principle by proving convergence
for a parallel construction in which Euler’s equations and the heat equation
are solved exactly in their respective layers; the question is further discussed
in [2]. Perhaps approximate layering methods will provide an entirely dif-
ferent approach to theory and calculation in this problem.

2. - Main notational conventions.

Real d-dimensional Euclidean space is denoted by Rdg a point of .Rd,
for instance, by x = (x,, ..., xd). Such a point as well as its coordinates

are referred to as spatial, a (d + -1)-st coordinate t as temporal. All points
of Rd+l considered here are confined to the half-time-space

or to « zones » or « slabs » in time-space such as

All the closed « zones 4 slabs)&#x3E;, or « layers » in the discussions to follow
will be of the type 
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these including, in particular, the consecutive layers

for any h &#x3E; 0. The half-open counterparts

of this sequence of layers also will be considered.
To a bounded, measurable function v(x) on the domain Bl is attached

the norm

to a bounded, measurable function v(x, t) on a slab Z such as ZT or Ztl.t.,
the norms

« ess sup)) stands for « essential supremum ».

For M&#x3E;O, T&#x3E; 01 otlt"7 let

where lvl = maxi lVii, and let Z(T ; 3f) = Z(O, T ; M). For a bounded,
measurable function H(x, t, v) on Z(t’, t"; M), we define

The «length » of a vector V= (fi, ... ,£), say of s components, in

general is measured by

and the norm of a vector function V(x) = (Vi(x), ..., £(z)) with bounded,
measurable components V,(x), i = is defined by
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But if V is a function of x, t, the norm considered will relate to a particular
time t or to a particular layer Z,,,,. and if a function of x, t, v to a particular
time or to a zone Z(t’, tel; M), as in the scalar case.

The d-dimensional vectors f = (fill, ..., fid) and the array f = (f 1, ..., f n)
are partial exceptions to the previous rule, for we stipulate

and

with similar understandings for their norms, which pertain again to time t
or to some zone Z(t’, t" ; M).

Partial differentiation with respect to xi will be indicated by the symbol ai
or by means of the subscript x, and partial differentiation with respect to t
by at or the subscript t. The symbol ax will refer generically to any par-
ticular a,, a’ to any particular partial differentiation of k-th order with
respect to xl , Xd, Vk v denoting the array of all partial derivatives of v
of k-th order with respect to x,, ..., xd. For an n-dimensional vector func-

tion 1’(0153) = (vl(0153), ..., vn(0153)), Va; will denote the set of derivatives Vi.Zl’
i = 17 ... I ny j = I y .. I d, and we write

Similarly for a vector function of x, t given on some layer Z,,.,..
The vectors f = (Iil, ..., fi,) and the array f = ( f l, ..., /,,) again are par-

tial exceptions to the general rules, for we define (using the summation con-
vention)

and

with

For the array of n2 d quantities fii,uk’ we set

As to g = (gl, ... , gn), we use analogously

In all cases, similar conventions are made as to norms on appropriate zones
Z(t’, tl; M).
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In general, for a function J?(g) of an s-dimensional vector q = (Ql’ ..., Qs),
H q will denote the array of partial derivatives {H,,,, ..., H,,,I. Accordingly, ,
for any s-dimensional vector r = (rl, ..., rs), by Hq r will be meant the
scalar product Hairi (summation on i) with similar notation when JT is a
vector. Consistently with this and previous conventions, by fvvae is meant
the vector (fii,f)1t; Vk,aej)i=l,....n (summation on j and k). Extending this usage,
we also shall abbreviate by av,, a system of expressions of the form

{aUkvS,X1t;}i=l,..,n, by bv, a system of the form {bi.vvi.tli=,.....n, and so forth.
If, in (scalar or vector) functions depending upon x, t, v, the argument v

is replaced by a (vector) function w(0153, t) to produce compounds such as

derivatives of the compound functions are written in such notation as the
following:

summation again being performed on repeated indices.
In this notation, equation (E)o is abbreviated as

3. - Approximate layered solutions and a characterization
of their limit as a solution of the full parabolic system.

In this section, we describe the kind of approximate layered solution
u(h)(0153, t) to be employed in this work and verify for this kind that, if lim U(h)hO

exists, then the limit satisfies the full parabolic system (E), as desired.

We begin with some remarks about the two processes that are alternated
in a layering procedure: (a) smoothing, and (b) solving the layer equations
exactly or approximately.

(a) Smoothing in our layering procedure will be performed by means
of averaging operators Ke transforming any function v(x) bounded and
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measurable on .Rd into

(When integrating over Rd, a single integration sign is used, and the limits
of integration are not indicated explicitly. Similarly when integrating over JR.)
It is assumed that

where k(s) is a one-dimensional averaging kernel such that k(s) &#x3E; 0, f k(s) ds = 1,
k(s) = k(- s). This one-dimensional kernel additionally is required to be
sectionally continuous and sectionally of class 000, and also to have certain
other properties, all of which pertain, in particular, to the kernel

of arithmetical averaging. Iterated kernels of arithmetical averaging2013i.e. , the
kernels that belong to an arithmetical average of an arithmetical average,
and so forth-as well as a Gaussian kernel

also are acceptable for use as k(s).
With reference to a given averaging operator Ke, we shall refer to s

loosely as the « averaging distance ». When layer height h &#x3E; 0 has been

fixed, an individual averaging distance

is associated with each Izi, i = n, where Ai is a constant depending
both on P,i and on the type of averaging. A vector co(x) = (mi(z), ... , oj,,(x))
will be smoothed by applying the operator Si = K,,, to its i-th component,
the smoothed vector being denoted by Sco(x) = (S1 wl(0153), ..., Snwn(0153)).

(b) Exact solutions of the layer equations are obtainable, and can
be used in layering, only in special cases, in particular, (i) in the scalar case
(n = 1), (ii) in case the layer equations are hyperbolic, and d = 1, and (iii)
in the case in which the layer equations are ordinary differential equations,
i.e., f = 0. Approximate solutions of the layer equations are more easily
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and more generally available than exact solutions and by various means,
one of which is discussed in Section 4. There, under certain requirements
as to S, and with f and g, and their partial derivatives of various orders,
assumed bounded in a region Z(z, r + r’; M) (0 c z  T + i’, M&#x3E; 0), an
approximate solution v(x, t) of the layer equations is constructed in a suffi-
ciently narrow layer ZT;r+h’ , 0 C h C z’, to the following specifications.
Given a function co(x) of class C’°, jo&#x3E;l, such that

with certain constants cj supposed to be sufficiently large, it is required
first that

Secondly, v(x, t) is to be of class Cio and to be subject to the bounds

Thirdly, again for sufficiently small h, v(x, t) must satisfy the layer equations
approximately in the sense that

where F[v] = vt -p (I(o2 t, v)),, and where the e, are constants possibly de-
pending upon M, and r is an integer &#x3E;2. Finally the derivatives of v and
of F[v] are required to satisfy certain further conditions, which are stated
in inequalities (4.28), (4.29), (4.29)* in the conclusion to Theorem 4.3. By
means of the construction of Section 4, a positive quantity h* depending
only on X and M -11m [[ is produced such that all the foregoing demands
(with j, &#x3E; 2r) are met for 0  h  h*. Without commitment to this particular
construction, these properties always will be assumed for the approximate
solutions of the layer equations considered in this paper.

In general, the given data uO(x) have to be replaced by an approxima-
tion u*(x) of class C’° for which, with sufficiently large constants Cj,

(1b) limu*(0153) = u°(x) for almost all x in B".
h-*O

(The replacement is not necessary in the case, for instance, in which S is
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Gaussian.) To obtain u*, we apply a Gaussian operator to u° or, in case S
is arithmetical, apply the iterated averaging 81- to uo.

Let M’ be any constant&#x3E; Mo + 1. The first step in layering, after the
previous adjustment of the initial data, is to find in Z., an exact or ap-
proximate solution ul(x, t) of the layer equations (E)° satisfying the initial
conditions u1(0153, 0) = Su*(x). (We could just as well define ul(x, 0) = u*(x).)
The second step is to find in Z2 an exact or approximate solution u2(x, t)
of equations (E)° such that u2(0153, h) = SUI(X, h). Continuing from layer to
layer in this way, let mo be the largest index for which a chain exists of
exact or approximate solutions u1(0153, t), ..., umo(0153, t) of equations (E)o on
Zl’ ..., 9 Z". , respectively, such that um(0153, t) is of class Cjl in Zm and that

and

for m = 19...9 M,, where uO(0153, 0) = u*(0153). Previous remarks imply that
mo&#x3E;l if h is sufficiently small; possibly mo = 00.

The um, m = ly ..., mo, are parts, which we assemble into a whole, the
« layered solution », or « approximate layered solution », U(h) defined as

By definition of mo,

From the properties attributed to approximate solutions of the layer equa-
tions and thus, in particular, to the um, U(h) will be of class C’° in each ZI.,
m = 1, ..., mo, and, if h is sufficiently small, its derivatives will be subject
to the bounds

The conditions

will hold upon the layer interfaces. Again for sufficiently small h, in each ZI. ,
u (h) will satisfy the layer equations approximately in the sense that


