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Nontrivial Solutions for a Class of Nonresonance Problems

and Applications to Nonlinear Differential Equations.

H. AMANN - E. ZEHNDER

Introduction.

In this paper we study existence problems for equations of the form

in a real Hilbert space H. Here A is a self-adjoint linear operator, and F
is a potential operator, mapping H continuously into itself. We suppose
that there exist numbers a  P, not belonging to the spectrum r(.A) of A,
such that d(A) n [a, fl] consists of at most finitely many eigenvalues of

. 

finite multiplicities. There are no restrictions whatsoever on d(A) outside
the interval [a, P]. In particular, d(A) can be unbounded above and below.

As for the nonlinearity F, we suppose that

for all u, v E H. Roughly speaking, this condition means that the non-

linearity .F can only interact with the finitely many eigenvalues of A in [a, fl].
The original problem is reduced to the study of critical points of a func-

tional f, which is neither bounded above nor below, in general. Thus standard
variational methods do not apply directly. Condition (1) implies that f
possesses a saddle point on an appropriate subspace of H. Taking advantage
of this fact, we reduce the original problem to the study of critical points
of a functional a, defined on the finite-dimensional subspace Z of H, spanned
by the finitely many eigenfunctions of A, belonging to the eigenvalues
in [a, P]. This approach has been introduced by the first author in [2].

Pervenuto alla Redazione il 30 Luglio 1979 ed in forma definitiva il 30

Agosto 1979.
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In order to study the existence of critical points of a, we suppose,
roughly speaking, that F has a derivative at infinity, F(c&#x3E;o), such that

This is a nonresonance condition at infinity, and it is shown that it implies
the validity of the Palais-Smale condition for a. In contrast to [2], where
it has been assumed that F’(co) = vIH for some v 0 or(A), we allow now
or(F’(c,o)) to be arbitrarily distributed in [a, fl]. Then, given some mild
additional hypotheses, which are satisfied in all of our applications, we de-
duce the existence of at least one solution of Au = F(u). This is achieved by
means of a generalized Morse theory in the sense of C. C. Conley [18]. This

theory has the advantage, that it does not require the critical points of the
functional a to be nondegenerate.

Then we consider the case that .F’( o ) = 0, in which situation we are

interested in the existence of nontrivial solutions of Au = F(u), which cor-
respond to nontrivial critical points of a. In order to deduce the existence

of nontrivial critical points of the functional a, we employ two different
approaches. Namely we use elementary critical point theory and, again,
the generalized Morse theory of C. C. Conley. In each case, the basic idea

is to compare the behavior near zero to its asymptotic behavior near in-
finity. Of course, each of the two approaches applies to different situations.

Our principal abstract results are contained in Section 8, namely The-
orems (8.1-) and (8.3), and in Section 9, Theorems (9.1) and (9.4).

In the second part of this paper we apply our general abstract results to
three different kinds of problems. Namely, we prove the existence of solu-
tions for certain nonlinear elliptic boundary value problems, the existence
of periodic solutions to a class of semi-linear wave equations, and the
existence of periodic solutions of Hamiltonian systems of ordinary differ-

ential equations.
In order to demonstrate the scope of our results, we now outline some of

the applications in a simple setting.
Let Q be a bounded domain in Rn with smooth boundary aQ, and con-

sider the nonlinear Dirichlet problem

where f E Cl(R, R). Moreover w e suppose that
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exists. Then, by meaning by an « eigenvalue of - Zh&#x3E; an eigenvalue of - LI,
subject to the Dirichlet boundary condition, the following result is a very
special case of Theorem (10.2).

THEOREM 1. Suppose that f’( 00) is not an eigenvalue of - LI. Then the

nonlinear Dirichlet problem (2 ) has at least one solution.

Suppose, in addition, that f(o) = O. Then the nonlinear Dirichlet problem (2)
has at least one nontrivial solution, provided there exists at least one eigenvalue À
o f - d such that either f’(O)  Â  f’( 00) or f’( 00)  À  1’(0).

The existence of solutions of nonlinear boundary value problems of the
prototype (2), where f is supposed to be asymptotically linear (or at least
linearly bounded), has been studied by numerous authors (cf. the end of
Section 10 for bibliographical remarks). In the more interesting case that
f(O) == 0, it is a common feature of all of these results, that there exists at
least one nontrivial solution, provided f ’ () « crosses at least one eigen-
value of - d if ll goes from 0 to infinity». However in each one of the

papers known to the authors, this result has only been shown under addi-
tional restrictions, either on I’, or on the eigenvalues, which are being
« crossed », or on both. In our Theorem 1 and, of course, in the much more
general Theorem (10.2), we establish for the first time this result in full
generality, without any further restrictions besides of the nonresonance

condition at infinity.
At this point it should be mentioned, that many papers on so-called

Landesman-Lazer problems suggest the validity of our general result also
in the case that there is resonance at infinity, provided we impose Landesman-
Lazer type conditions. In fact, an analysis of these « Landesman-Lazer

type proofs» shows that these additional Landesman-Lazer conditions

provide appropriate a priori bounds, y which we have deduced in our case
from the nonresonance condition. By exploiting this observation, it should
not be too difficult to replace our nonresonance condition by Landesman-
Lazer type conditions, in order to extend our results to the case that resonance
at infinity occurs. However, for simplicity and to avoid unnecessary length,
we do not consider this somewhat more general case. A similar remark
applies to our other applications. (For another interesting treatment of
the resonance case we refer to the recent paper by K. Thews [42]).

Next we give an application to a nonlinear wave equation. Namely, we
are looking for 2n-periodic classical solutions of the problem
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where f E C2(R, R) and If’($)I _&#x3E;- a &#x3E; 0 for all $ e R. Moreover, we assume

again that

exists.

It is known that the wave operator D under the above periodicity con-
ditions has a pure point spectrum, extending from 2013oo to + c)o , and that
every nonzero eigenvalue has finite multiplicity, whereas 0 is an eigenvalue
of infinite multiplicity.

The following theorem, which is a special case of Theorem (11.2), shows
again that (3) has at least one nontrivial solution if /(0) = 0 and f’($)
« crosses at least one eigenvalue of 0 if ]$] runs from zero to infinity ».
(It should be observed that, due to the monotonicity restriction If’I &#x3E; cx &#x3E; 0,
f’($) cannot cross 0.)

THEOREM 2. Suppose thect f’( 00) is not an eigenvalue of D. Then problem (3)
has at least one 2n-periodic solution.

Smppose, in addition, that f (0) = 0. Then problem (3) has at least one

qioigtriv&#x3E;ial solution if there exists an eigenvalue Â of D such that either f’ (0) 
 Â  /’(-) or /’(-)  2  f’ (0) .

For bibliographical remarks concerning the problem of the existence of

periodic solutions to the nonlinear wave equation we refer to the end of
Section 11.

We finally describe some applications of our general results to the exist-
ence problem of periodic solutions of Hamiltonian systems

where J6 E C2 (R X R2N, R) is periodic in t for some period T &#x3E; 0, and where
J E E(R2N) is the standard symplectic structure on R2N. We shall assume

THEOREM 3. Assume the Hamiltonian vectorfield is asymptotically liigear :

uniformly in t E R, for a time independent symmetric boo E C(R2N). Then the

Hamiltonian system (4) has at least one T-periodic solution, provided or(Jb.) r)
n i(2njT)Z == 0.
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We next assume, in addition, that the Hamiltonian vectorfield JJC,, has
an equilibrium point which we assume to be 0, JJe0153(t, 0) = 0. We consider
a Hamiltonian vectorfield satisfying

and

uniformly in t E R, for two symmetric and time independent b,,, b. E C(R2N).
The aim is to find T-periodic solutions of (4) which are not the trivial solu-
tion u(t) = 0. In order to describe the difference between the two linearized
Hamiltonian vectorfields at 0 and at oo, Jbo and Jboo, which will guarantee
a nontrivial T-periodic solution, we introduce in section 12 an integer,
Ind (b,, boo, í). This integer, which is a symplectic invariant, is defined for
two symmetric bo, boo E L(R2N) and a frequency í &#x3E; 0, and it involves only
the purely imaginary eigenvalues of Jbo and Jboo and their relation to the
frequency T. For instance Ind (bo, boo, z) = 0 if bo = boo, or if bo and boo
have no purely imaginary eigenvalues, while Ind (bo, boo, -r) # 0 if bo &#x3E; 0

(resp. bo  0) and boo  0 (resp. bcx» 0). A nonvanishing index gives rise
to a nontrivial T-periodic solution of (4), as is seen from the following
theorem. Here and in the following we denote by E,(R2N) the space of

symmetric linear operators on R2N.

THEOREM 4. Let Je(t, x) be periodic in t with period T &#x3E; 0, and assume

uniformly in t E R, for two time independent bo, boo E Ls(R2N). Assu1ne a(Jbo) n
n i(2n/T)Z == ø and a(Jbo) r) i(2n/T)Z == 0. If

then the Hamiltonian system (4) possesses at least one nontrivial T-periodic
solution.

CoRo£LARY. I f bo&#x3E; 0 (resp. bo  0) and boo  0 (resp. boo&#x3E; 0), the Hamil-
tonian system (4) has at least one nontrivial T-periodic solution provided
a(Jbo) n i(2njT)Z = 0 and a(Jboo) n i(2njT)Z = 0.
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The explicit computation of the integer Ind (bo, boo, z) leads to other

more delicate existence statements, which also are global in nature. In the
time independent case we find nonconstant T-periodic solutions with pre-
scribed period T for asymptotically linear Hamiltonian equations. For

example, let Je be a convex function on R2N with b,, b. &#x3E; 0. If the two

linear Hamiltonian vectorfields Jbo and Jb. are symplectically inequivalent
one finds a T-periodic solution for every T &#x3E; 0 belonging to some open
and unbounded subset of R+. As for the results and as for bibliographical
remarks we refer to Section 12.

The organization of this paper is seen from the following table of contents.

PART I: General theory

1. The basic hypotheses

2. A saddle point reduction

3. The reduced problem

4. Higher regularity

5. Asymptotic linearity

6. Estimates near infinity

7. Estimates near zero

8. General existence theorems based upon elementary critical point
theory

9. Existence theorems based upon generalized Morse theory

PART II: Applications

10. Elliptic boundary value problems

11. Periodic solutions of a semilinear wave equation

12. Periodic solutions of Hamiltonian systems.

Finally we should like to thank C. C. Conley, Madison, for helpful discus-
sions on his generalized Morse theory, , and R. Stocker, Bochum, for his
advices on problems of algebraic topology. We also like to thank J. Moser,
New York, for valuable discussions on Hamiltonian equations.
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PART ONE

GENERAL THEORY

1. - The basic hypotheses.

Throughout Part One we use without further mention the following
hypotheses and conventions.

H is a real Hilbert space with inner product (. , .) ,

and we identify H with its dual.

A: dom (A) c H --&#x3E; H is a sell-adjoint linear operator.
(A) There exist numbers a  # such that a, fJ rt 1(A), and cr(A) n (a, fl)

consists of at most finitely many eigenvalues o f f inite multiplicity.

We denote by

the eigenvalues of A in (cx, P), and by m(2,) the multiplicity of h;.

We denote the normalized potential of A by 0, that is, 0 E GI(H, R) satis-

fying 0(0) = 0 and 0’= F.
We let {E;’/Â E R} be the spectral resolution of A, and we define ortho-

gonal projections P±, P E E(H) by

respectively. Moreover, we let
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Observe that

and that Z is finite-dimensional with

(with the usual convention that the empty sum has the value 0).
Next we define self-adjoint linear operators

by

and

respectively, , where Pi denotes the orthogonal projection of H onto the

eigenspace ker (Âj- A) of Âj.
It is an immediate consequence of these definitions, that R, S, and T

are pairwise commuting, that R/X, SlY, and TIZ are injective, and that

Hence

and, consequently,

Similarly we find that
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2. - A saddle point reduction.

Formally, the equation Au = F(u) is the Euler equation of a variational

problem. To be more precise, let

Then, for u, 7&#x26; c- dom (A), the directional derivative 3q(u; h) (that is, the
«first variation)&#x3E;) of 99 at u in the direction h is given by

Hence the solutions of Au = -F(,u) correspond to the « critical points &#x3E;&#x3E; of q
and, in principle, critical points could be obtained by variational methods.
However, variational methods are difficult to apply directly, since 99 is

only defined on the dense subspace dom (A) of H. In addition, there is no
restriction on the spectrum of A outside of the interval (a, fl). Thus d(A)
can extend from - oo to + oo and, in fact, this will be the case in some of
our applications. In other words, in general the quadratic term .Au, u)
will be indefinite in the strong sense, that is, it can be positive definite and
negative definite on infinite-dimensional subspaces of H, respectively.

Assumption (.F) implies that the nonlinearity « interacts » only with
that part of the spectrum of A, which lies in (a, fl). Thus the behaviour

of cp on the reducing subspaces X and Y of A should be roughly the same
as the behavior of the quadratic form Au, u) on these subspaces. In fact,
it can be shown that cp is strictly convex on X and strictly concave on Y.
This fact can then be used to reduce the infinite-dimensional variational

problem to a finite-dimensional one, which, roughly speaking, involves

only a(A) n (a, fl).
To exhibit quite clearly the saddle point structure of the functional q,

we introduce now a new functional f, which is defined on all of H, and whose
critical points are in a one-to-one correspondence with the solutions of the

equation Au = F(u).
For this purpose we let

and we define
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Then it is not difficult to verify that (x, y, z) is a critical point of f iff

Rx + By + Tz is a solution of Au = F(u). Moreover, letting

if u(A) n (fl, 00) =1= lil, fixing fJ+ &#x3E; fl arbitrarily otherwise, and setting

it is easily verified that the maps

and

are monotone for every (y, z) E Y X Z and (x, z) E X X Z, respectively.
Thus, due to an observation of Rockafellar [37], it follows that, for every

z E Z, the map

defined by

is a-monotone, that is,

and observe that

for all (x, y, z) E X X Y X Z. Thus 1Jlz is continuous for every z E Z, and

the basic existence theorem for monotone operators (e.g. [23]) implies that
the equation
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has a unique solution (x(z), y(z)) for every z E Z. But this means precisely
that (x(z), y(z)) is the unique saddle point of the functional

Thus

is obviously continuous, it follows that

that is, the saddle point (x(z), y(z)) depends continuously on z E Z.
In fact, much more is true. Namely, due to an observation of Br6zis

and Nirenberg [14, Proposition A.5], hypothesis (F) implies the global
Lipschitz continuity of F. More precisely,

This implies easily the existence of a constant /&#x3E;0 such that

Consequently , (2.3) shows that

is globally Lipschitz continuous.
Now we define g: Z - R by
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Then it can be shown [2] that g E C1(Z, R) and that

(Observe that, in general, the map (x(.), y(-)) is not differentiable, so that
the chain rule cannot be applied.) Thus, by using the representation (2.3)
of D3 f and the global Lipschitz continuity of F and (x(-), Y(.)), it follows
that g’ is even globally Lipschitz continuous.

In the following proposition we collect the basic facts derived above.

(2.1) PROPOSITION. There exists a globally .Lipschitz continuous map

such that (x(z), y(z)) is the unique saddle point of f(’,’, z) : X X Y -7- R for
every z E Z. Thus the point (x(z), y(z)) E X X Y is characterized by the {( saddle

point inequalities )&#x3E;

as well as by the fact that (x(z), y(z)) is, 101. every z E Z, the unique point
(x, y ) E X X Y solving the system

Moreover, g has a globally Lipschitz continuous derivative g’ : Z -+ Z,
which is given by

Finally, z is a critical point of g i f f Rx(z) -[- Sy(z) + Tz is a solution of
Au = F(u).

Observe that, by the above proposition, the problem of finding solutions.
of the equation Au = F(u) is equivalent to the problem of finding critical
points of the functional g. This reduction to a finite-dimensional case has

been introduced in [2]. Proposition (2.1) is essentially a restatement of
some of the results of [2], and we refer to that paper for further details.
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It is also worthwhile to notice that, up to now, the finite-dimensionality
of Z has not been used.

(2.2) REMARK. Suppose that 27 is a topological space and

is a continuous map such that, for every 0’ E E, the function F(d,.): H -&#x3E; H
satisfies (F) (with x and P independent of a). Then, denoting by (/&#x3E;(0’,.)
the potential of F(o’,’) and defining f(u, . ) : X X Y X Z - R by

an inspection of the above proof shows that, for every (a, z) c-.E x Z, there
exists a unique saddle point (x(,Y, z), y(J, z)) of f(O’,.,., z) : X X Y -7 R, and
that (x(-, .), Y(-, .)) E O(ExZ, Xx Y). Moreover,

is globally Lipschitz continuous, uniformly with respect to a e 27.
Let

Then g(o’,’) E CI(Z, R) for every a e Z, and D2g(0’,.): Z - Z is globally
Lipschitz continuous, , uniformly with respect to or e Z. Finally, , z is a cri-
tical point of g(a, -) iff Rx(O’, z) + SY(O’, z) + Tz is a solution of the equa-
tion Au = F(O’, u), 0’ E E. F]

As an immediate corollary to Proposition (2.1) we note the following
existence and uniqueness result, already given in [2].

(2.3) THEOREM. I f O’(A) n (oc, 0, then the equation A’lt == il’(U) has
ezactly one solution.

PROOF. It suffices to observe that, in this case, Z = fol. 0

Since, by the above theorem, the case cr(JL) n (a, /?) = 0 has been com-
pletely solved, we assume henceforth that O’(A) n (a, @) =1= 0.

3. - The reduced problem.

Observe that
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and let

Then, by Proposition (2.1),

is globally Lipschitz continuous, and

(cf. (2.5) and (2.6)). Moreover, a has a globally Lipschitz continuous deriv-
ative, given by

Thus Proposition (2.1) implies that

Hence we have reduced the original problem of finding solutions to the
equation Au = F(u) to the equivalent problem of finding critical points of
the functional E Ci(Z, R).

In the following lemma we collect some properties of a, which will be
useful for finding critical points.

and

Then, by (1.2),
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for all x c- X such that Rx c- dom (A). Similarly, ,

for all y E Y with Sy E dom (A), and

Consequently,

for all (x, y, z) E X x Y x Z such that .Rx, Sy E dom (A). Now the asserted
representation of a(z) follows from the definitions of a and u(-), and from (3.3).

The equation

follows easily from (3.4), (2.7) and (1.4). By substituting (x(z), y(z)) into
the equations (2.5) and (2.6), applying JS to (2.5) and S to (2.6), and by
using (1.2) and (1.3), we find that (Rx(T-l z), Sy(T-IZ)) E X X Y is charac-
terized by the equations

for all z E Z. Thus, the last part of the assertion follows by adding the

equations (3.9) and (3.10) to (3.8). D

We include here an invariance property of the functional a, which we
will use in a later paper discussing multiplicity results.

(3.2) PROPOSITION. Let U E E(H) be a unitary operator, which commutes
with A and X, that is, AU:J U.A and Fo U == U of, respectively. Then

ao U == a.

PROOF. Since U commutes with A, the subspaces X, Y, and Z reduce U,
and U commutes with R, S, and T. Furthermore, since U commutes with P
and preserves inner products
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for all u E H. Thus, by the definition of f,

Since the inequalities (2.4) characterize the saddle point (x(z), y(z)), it fol-

lows that

for all (x, y ) E X X Y. Hence, TI being unitary, ,

for all (x, y) E X X Y. Thus, by (3.11),

for all (x, y) E X X Y, which, by the uniqueness of the saddle point, implies

Consequently,

and

for all z E Z. Now, since U commutes with T’B the assertion follows from
the definition of a. D

4. - Higher regularity.

For an analysis of the critical points of a E CI(Z, R) it is desirable to

know that a E C2(Z, R). This can easily be achieved by assuming that
.F E C’(H, H). However, in all of our applications H will be an 1,-space
and .F a substitution operator. But then it is well known (e.g. [5]), that,
in general, F E C’(H, J?) iff F is an affine map. Thus it is not reasonable

to assume that .F E 01(H, H). However we may well assume that .F has a
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symmetric Gateaux derivative

which, of course, will not be continuous on H, in general.
By differentiating formally the middle term in (3.6), we find that the

resulting expression involves I" only at points of the form u(z). In general,
these points will belong to a proper subspace B of H, carrying a stronger
topology than H, such that F’ may well be continuous on .E. Since this

is in fact the case in our applications, we shall analyse this situation more
thoroughly in this section.

First we prove the following characterization of u(z) - z.

(4.1) PROPOSITION. For each z E Z, the equation

has a unique solution v(z), and

PROOF. Let

and recall that (R0153(T-lz), Sy(T-lz)) E X X Y is characterized by the equa-
tions (3.9) and (3.10). From this fact the assertion follows easily. D

We introduce now the following regularity hypothe.-is (R), where we write
V Yo- W if V and Ware Banach spaces and V is continuously imbedded in W,
that is, V is a vector subspace of Wand the natural injection is continuous.

Clearly, Z being finite-dimensional, Z 4- E iff Z c E. Moreover, Z - E
and (iii) imply u(-) c C(Z, B).

It should be observed that (.R) is satisfied (with E = H), if F E 01(H, H).
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Moreover in certain applications it may be possible to avoid the relatively
complicated looking condition (jR) by a judicious choice of the underlying
function spaces. However, we are interested in a general abstract theory
which is applicable to a wide variety of problems without redoing the same
arguments over and over again. For this reason we have to introduce con-

dition (.R) .

(4.2) LEMJBiA. If (.R) is satisfied, then

Then it is an easy consequence of the representations (2.2) and the linearity
of the operators R, S, and T, that

has a Gateaux derivative

which, using matrix notation, is explicitely given by

Thus, /z being positive, one deduces easily that D,M(, z) has a bounded
inverse

Let (z) :== (x(z), y(z)) denote the saddle point, which (cf. Section 2)
is characterized by the equation
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Moreover let

and observe that, due to formula (4.5), B(z) depends only through u(Tz)
on z E Z. Thus condition (.R) implies that

Let z E Z be fixed, and let B with

be arbitrary. Moreover, let

Then (4.7) and the mean value theorem, imply

for all h E Z. Since, by (4.5) and (4.6), M’($(z), z) depends only through
u(Tz) on z, the regularity hypothesis (jR) implies easily that the map

is continuous, uniformly with respect to t E [0, 1]. Consequently, , since

q(0) = 0, there exists a number 6 &#x3E; 0 such that

as soon as 11, E Z satisfies 11 h 11  6. Thus
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we deduce from (4.9) and (4.10) that

that is, liq (h) 11  y 11 h 11, and therefore, that

for all hE Z satisfying 11 h 11  6. By the definition of q (h), this proves that
$(-) is differentiable at z and that

Finally, since (R) and (4.6) imply

it follows from (4.8) and (4.11) that $’( .) E C(Z, E).

More precisely, v’(z) =: u’(z) - IZ is, for each z E Z, the unique element B
in C(Z, X EÐ Y) satisfying im (B) c dom (A) and the equation

PROOF. It is an obvious consequence of Lemma (4.2) that u(.) E C1(Z, H)
and that (cf. (3.2))

Moreover, (4.5), (4.6), and (4.11) imply that (x’(z), y’(z)) is the unique ele-
ment in C(Z, X X Y) satisfying

and
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for every z e Z. Hence, by applying B to the first and S to the second of
these equations, and by using (1.1) and (1.4), it follows that

and that

that is,

for all z E Z. Now the assertion follows easily. 0

Observe that the following lemma is not just a consequence of the chain
rule, since, in general, there is no chain rule for Gateaux differentiable maps.

(4.4) LEMMA. I f (JR) is satisfied, then

PROOF. By Corollary (4.3), F’(u(z))u’(z) is well defined and belongs to
E(Z, H). Let z E Z be fixed, and let

Then, by the mean value theorem,

for all hEZ. Thus, since, by (.R), w(.)EO(Z,E) and F’IE c- O(E, E(H)),
we find that FOU(.)EOl(Z,H) and that (Fou)’(z)=F’(u(z))u’(z). F-1

After these preparations we can now prove the following fundamental
regularity result.

(4.5) PROPOSITION. I f (B) is satisfied, then ac E C2(Z, R), and
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PROOF. It follows immediately from AIZ E E(Z) and Lemmas (3.1) and
(4.4), that a C C2 (Z, R) and a"(z) === A IZ - PF’{u(z))u’(z). Finally, (4.12)
implies now the second representation of a"(z). D

(4.6) REMARK. Let C(H) be the Banach space of all k-linear symmetric
continuous operators from the k-fold product of H into H. Denote by (R)k,
k&#x3E; 2, the following regularity hypothesis:

Then it folloyvs from the above proofs by means of easy induction arguments
that (x(.), y(.)) e Ck(Z, .LY X Y), that u(.) e Ck(Z, H), that Fou( .) e Ck(Z, H),
and that a e Ck+l(Z, R). D

5. - Asymptotic linearity.

Consider the following hypothesis concerning the asymptotic behavior
of F near infinity.

Clearly, the condition that 0 0 a(A - B,,.) is kind of a « nonresonance » con-

dition at infinity. Moreover, since Boo is bounded and symmetric, A - Boo
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is self-adjoint (e.g. [27, Theorem V.4.3]). Hence

and the restriction

is equivalent to the condition

Recall that F is said to be asyT1ptotically linear, if there exists an oper-
ator F’(oo) E £(H) such that

Then F’( 00) is uniquely determined and called the derivative of F at in f in2ty.

(5.I) LEMMA. Suppose that 2i is asymptotically linear, F’( 00) is symmetric,
and 0 q O’(A - F’( 00)). Then (Foo) is satisfied, and yoo&#x3E; 0 can be chosen ar-

bitrarily small.

PROOF. We have to prove the assertion that a(F’( 00)) c [«, fl].
Observe that Hypothesis (F) implies

which, by the symmetry of F’(oc), implies O’(F’( 00)) c [,x, P]. D

In the remainder of this section we deduce some simple, but important
consequences of hypothesis (F.).
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PROOF. It follows from (5.2), that v &#x3E; 0. Since, by Lemma (3.1),

condition (F.) implies

for all z E Z. Hence the assertion follows, since, by orthogonality and (3.2),
llu(z) 11 &#x3E; llz 11 D

(5.3) COROLLARY. If (Foo) is satisfied, then a satisfies the Patais-Smate
condition, that is, every sequence (zk) in Z, for which (a(Zk)) is bounded and

a’(zk) - 0, possesses a convergent subsequence.

PROOF. The assertion is an immediate consequence of Lemma (5.2) and
the finite-dimensionality of Z. D

6. - Estimates near infinity.

In this section, using hypothesis (F.), we give qualitative estimates for
the functional a near infinity.

(6.1) LE:M:MA. Let (F (X») be satisfied. Then, for every y &#x3E; roo, there exists

a constant ð&#x3E; 0 such that

PROOF. By the mean value theorem and (F aJ,

for all u c- H. Since
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it follows that

where ð:= ð/2(Î’ - Î’oJ.
Since, by the saddle point inequality of Proposition (2,1),

and since Rx(z) E dom (A) (cf. (2.5)), we deduce from (3.7) that

for all z E Z. Now the first estimate of the assertion follows from (6.1),
the definition of a, and the fact that P-v(z) = Bx(T-1 z). A similar argu-
ment based on the second half of the saddle point inequality implies the
second estimate of the assertion. R

In the following we use the standard order relation between self-adjoint
operators, and B » 0 means that B is positive definite. In this connection

we write usually y instead of yI,,, provided no confusion seems possible.
Moreover, we let

if O’(A) n (- oo, a) =1= 0, and we fix 0153-  a arbitrarily otherwise. Similarly,#-
we let

if this set is nonempty, and #+ &#x3E; P is arbitrary otherwise.

(6.2) PROPOSITION. Let (F cxJ be satisfied.

(a) Suppose that, for some y &#x3E; yoo, there exists an operator C§ E Ls(H),..
which commutes with P and P_, such that

Then there exists a number 6 &#x3E; 0, such that
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(b) Suppose that, for some ’Ý &#x3E; yoo, there exists an operator Cll E Ls(H),
which commutes with P and P+, such that

Then there exists a number ð &#x3E; 0, such that

Hence, by the commutativity of C with P and P ,

for all Z E Z. Now the assertion follows from Lemma (6.1).

(b) This part is proved similarly. D

(6.3) REMARK. Concerning the commutativity properties of Proposi-
tion (6.2 ) , it should be observed that, due to the fact that jP-t- -P- + P+ = IH,
an operator 0 E L(H) commutes with two of the projections Pt, , P iff it

commutes with all three of them. D

7. - Estimates near zero.

Suppose, it is already known that the equation Au = F(u) has a solu-
tion uo . Then, by replacing F by n ----&#x3E; F(u + uo) - F(u,,), we can assume
that uo = 0. In this case we are interested in the existence of nontrivial

solutions.
In this section we give qualitative estimates for a near 0 E Z, which will

be the basis for proving existence theorems concerning nontrivial solutions of
Au = F(u). We’begin with the following obvious consequence of the uni-

queness of the saddle point and the definition of ac (cf. also [2, Lemma (4.3)]).
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(7.1) LEMIA. I f #(0) = 0, then a(0) == 0 and 0 is a critical point of a.

The following lemma is the analogue to Lemma (6.1).

(7.2) LEMlBJIA. Suppose that F(0) = 0, and let (R) be satisfied. Then

PROOF. The definition of a and the saddle point inequalities (2.4) imply

for all z E Z. Since 0(0) = 0 and F(O) = 0’(0) = 0, the mean value the-
orem implies

hence, applying the mean value theorem again,

for all q E H. Consequently, letting q : = P_v(z) + z, hypothesis (B) and the
fact that v(O) == 0 imply

(7.4) - Ø(P- v(z) + z) : -! (F’(O)(P- v(z) + z), P_v(z) + z&#x3E; + 0(1) I]P_v(z) + zIL 2

as z --&#x3E; 0. Thus, v(-) being globally Lipschitz continuous, the estimate (7.1)
follows from (7.3) and (7.4). The second estimate is proved similarly. D

The proof of the following important proposition is now completely
analogous to the proof of Proposition (6.2). Hence it is left to the reader.
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(7.3) PROPOSITION. Let (R) be satisfied and let F(O) = 0.

(a) Suppose that there exists an operator Co E Cs(H), which commutes
with P and P_, such that

8. - General existence theorems based upon elementary critical point theory.

Throughout this and the following section we presuppose hypothesis (F (0).

We begin with an elementary existence theorem for the equation
Au = F(u). (Observe that condition (B) is not presupposed, and recall that
a_ and /3+ are defined after Lemma (6.1).)

(8.1) THEOREM. Suppose that each one of the operators 0; E Cs(H) com-
mutes with P+ and P and that

Then the equation A2c = F(u) has at least one solution, if either

PROOF. It suffices to show that the functional a has a critical point.
Choose j7, jJ &#x3E; y. such that [A - C- + ] IZ  0 and [A - C - y] I Z &#x3E; 0, re-
spectively. Then Proposition (6.2) implies a(z) --* - oo as Ilz 11 --* oo, if (8.1)
is true, and a(z) --&#x3E; oo as IIz -&#x3E; oo, if (8.2) is true. Hence, Z being finite-
dimensional, a possesses a global maximum or a global minimum, respec-
tively. D
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For the following corollary we recall that Ål and A,, have been defined
in Section 1, and that B » 0 means that B is positive definite.

(8.2) COROLLARY. Suppose that either Boo» Ån + y. or Boo« li - ym .
Then the equation Au = F(u) is solvable.

PROOF. This follows from Theorem (8.I ) by letting 0-;’:== (Â,n + ý)IH
and C) : = (li - ’Ý)IH, where ’Yoo   Boo - An and y.  ’Ý  Â,1 - Boo. D

In the following theorem, by using again elementary critical point theory,
we prove the existence of a nontrivial solution of Au = F(u) if F(O) = 0.

(8.3) THEOREM. Suppose that F(O) = 0 and that (R) is satisfied. Let

each one of the operators C:’:, 0+ E Cs(H) commute with P + and P -, and
assume that

.respectively.
Then the equation Au = F(u) has at least one nontrivial solution, provided

,one of the following conditions is satisfied :

PROOF. By Lemma (7.1)y 0 is a critical point of a. Hence we have to

show that each of the hypotheses (i)-(iv) implies the existence of a nontrivial
critical point of a.

(i) The proof of Theorem (8.1) shows that in this case a attains its
maximum at some point zo E Z. Since (A - °ci)IZ to, there exists a non-
trivial subspace Z_ of Z such that (A - Cci)/Z- &#x3E; 0. But then Proposi-
tion (7.3.b) implies that 0 is not a local maximum of a. Hence zo =1= 0.

(ii) In this case the above arguments apply to - a.

(iii) Since (A - Co) IZ &#x3E; 0, Proposition (7.3.b) implies that a has a local
strict minimum at 0 E Z. Since there exists a number j7 &#x3E; y. such that

(A - O + ) IZ 0, Proposition (6.2.a) implies easily the existence of a

z E ZB{O} satisfying a(z) == 0. Now, since, by Corollary (5.3), the functional
.a satisfies the Palais-Smale condition, and since Z is finite-dimensional, a
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variational lemma of Ambrosetti and Rabinowitz [6, Theorem (2.1)] implies
the existence of a nontrivial critical point zo of a such that a(zo) &#x3E; 0.

(iv) In this case the arguments of the preceding paragraph apply
to - a. Fl

(8.4) COROLLARY. Suppose that F(0) = 0 and that (B) is satisfied. Then

the equations Au = F ( u) has at least one nontrivial solution, provided one of
the following conditions is satisfied:

PROOF. This follows from Theorem (8.3), if we let Cl:== y’I,, and
ct :== yg= IH, and if yo and y:’: are chosen as follows:

(8.5) REMARK. It should be observed that the above proofs contain the
additional information that there is a nontrivial critical point zo of a such
that a(zo) &#x3E; 0 if (i) or (iii) are satisfied, and a(zo)  0 if (ii) or (iv)
are true. D

Corollary (8.4) generalizes Theorem (5.3) of [2], where it had been as-
sumed that B. = [(Âk + Âk+l)f2]IH for some k E (0, 1, ..., nj with Âo:== oc_.
Although the hypotheses of Corollary (8.4) are rather simple, Theorem (8.3)
is much more flexible and better suited for our applications to Hamiltonian

systems.

9. - Existence theorems based upon generalized Morse theory.

The definiteness assumptions of Theorem (8.1) and (8.3), needed to apply
elementary critical point theory, are somewhat unnatural and rather restric-
tive. In this section we show that these hypotheses can be dropped, provided
we impose a commutativity condition for Boo.
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The proofs of this section are based upon topological tools, namely on
a generalized Morse theory for isolated invariant sets of rather general
dynamical systems, due to C. C. Conley and R. W. Easton [19], in its

general version given by C. C. Conley [18].
We begin with the following general existence theorem, which should be

compared with Theorem (8.1). (Recall that we presuppose hypothesis (.Foo)
throughout, and we emphasize the fact that we do not presuppose con-
dition (R)).

(9.1) THEOREM. Suppose that Boo commutes with P. Then the equation.
Au = F(u) has at least one solution.

PROOF. Define a continuous map [0,1] xH -+H by

Since the spectrum of Boo is contained in [oc, fl], it follows that Fa satis-
fies (F), uniformly with respect to 0’ E [0, 1]. Hence Remark (2.2) applies,
and we can define

Then (cf. Lemma (3.1)),

for all d E [0, 1] and z E Z, where

and, consequently, ,

where v &#x3E; 0 and 5oo&#x3E;0 are independent of o’e[0,l] (cf. Lemma (5.2)).
Since the vectorfield aQ( ) on Z is globally Lipschitz continuous, , it de-

fines a flow for every a E [0, 1]. Let Sr denote the set of bounded solu-

tions of the equation
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that is, S6 {z E ZI there exists a bounded orbit of (9.2) containing z}.
Then (9.1) implies the existence of a compact set -E’ c Z containing 80, in
its interior for every a c- [0, 1] (cf. [18, Section II.4.3.A]). Hence K is an

isolating neighborhood for the isolated invariant sets S(1, 0’ E [0, 1], which
are therefore related by continuation ([18, Section IV.1, Theorem (1.3)]).
Thus, by the invariance of the homotopy index [18, Section IV.1, Theorem
(1.4)], the homotopy index of Sa is independent of a E [0, 1]. For d = 0, the
vector field a’ is given by

which follows immediately from the fact that Boo and P commute. Since

0 w d(A - jBoo)y it follows that So = {0} and that 0 is a hyperbolic rest point
of the flow defined by a’. But the homotopy index of a hyperbolic rest
point is the homotopy type of a pointed sphere Lm, whose dimension, m,
equals the number of positive eigenvalues of a’ 0 (cf. [18, Section 1.4.3]).
Thus the homotopy index, h(S1), of S1 is the homotopy type [L7n], where

that is, m is the dimension of a maximal subspace Z+ of Z such that
(A - B.) IZ+ &#x3E; 0.

Suppose now that the (gradient) flow defined by z = a’(z) = ai(z) does
not have a rest point. Then Sl = 0, and the homotopy index of 81 is the
homotopy type of a pointed one-point space (cf. [18, Section 1.3.3]), which
is distinct from [E-] - (This is also true, if m = 0, since El is a pointed two-
point space.) This contradiction shows that a must have a critical point,
which implies the assertion. D

(9.2) REMARK. If we impose the stronger assumption that B. commutes
with P and P:,-_ , then we can give a simpler proof of Theorem (9.1)y based
on a recent variational lemma of P. H. Rabinowitz [34, Theorem (1.2)].
Namely, in this case, letting C- C’ B., Proposition (6.2) implies the
existence of complementary subspaces Z+ and Z_ such that

where s:,: and 6+ are appropriate positive constants. Indeed, for Z_ (resp. Z+)
we can take the subspace of Z spanned by the eigenfunctions belonging to
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the negative (resp. positive) eigenvalues of (A - B. - Y) IZ, where 7 &#x3E; y-
is sufficiently close to y.. On the basis of [34, Theorem (1.2)]y inequal-
ities (9.4) and (9.5), and the fact that a satisfies the Palais-Smale condition,
one deduces now easily the existence of a critical point of a.

However it should be remarked that the assumption, that B. commutes
with P and P+, is, of course, more restrictive than the assumption that Boo
commutes with P. In fact, in our applications to Hamiltonian systems,
we shall give examples where B,,,. commutes with P, but not with P, (cf. the
remarks following Lemma (12.3)). 0

In the following we denote, for any C E Ls(Z), by

that is, mi(C) [resp. m-(C)] is the dimension of a maximal subspace of Z
on which C is positive [resp. negative] definite. Moreover, , we let

Finally, if Ce C, (H) commutes with P, which implies that (A - 0) IZ E Ls(Z),
we write simply

Using these notations we can now prove our basic existence result for non-
trivial solutions of Au = F(u) for the case that F(O) = 0 and Boo com-
mutes with P.

(9.3) PROPOSITION. SU pp ose that Boo commutev with P, that F(O) = 0,
and that (B) is satisfied. Then the equation Au = F(u) has at least one non-
trivial solution., provided

PROOF. Let S be the set of bounded solutions of the equation

Then it has been shown in the proof of Theorem (9.1) that S possesses a
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homotopy index h(S) and that

where m : = m; (A - B.).
Since F(0) = 0, Lemma (7.1) shows that 0 is a critical point of a. Sup-

pose now that fOl is an isolated invariant set of the gradient vector field a’
in the sense of C. C. Conley [18, Chapter I, § 6.2]. Hence it possesses a

homotopy index h(O). Suppose we can show that h(0) =A h(S). Then, there
must exist a bounded solution of (9.7) not containing 0 in its closure. Con-

sequently, dealing with gradient flows, the m-limit set of the corresponding
orbit must contain a critical point of a, that is, there must exist a non-
trivial critical point of a.

Suppose now that 0 is the only critical point of a’. By a linear co-
ordinate change we can assume that a’ is of the form

where z == ($, q, I) E Z+ X Z_ X Zo with dim (Z+) = m+, dim (Z-) = m- : _
: = mi(a"(O)), dim (Zo) == ml, A:t E L(Z+) with A+ &#x3E; 0 and A-  0, and

f := (1+, /-, fo) c- C’(Z, Z) such that f(0) = 0 and f’(0) = 0. Let qi be the

flow of this vector field. Then there exists a local homeomorphism h of Z,
satisfying h ( o ) = 0, such that the transformed flow 1pt:== h°qJtoh-l has

near 0 the following normal form

where xt is an appropriate local flow near 0 E Zo. The proof of this topo-
logical normal form, which generalizes a well-known result of Hartmann

and Grobmann, is implicitely contained in a paper by K. J. Palmer [32]
(where the time-dependent case is treated. The same result has been an-

nounced in [10] and [38] for the case of a C2-vector field.)
Since the flow (9.9) is a product flow on (Z+ x Z-) x Z,, with isolated in-

variant sets SI:== 101 c Z+ x Z-and S,, : = {o} C Zo, respectively, it follows

from [18, Chapter III, 6.D] (and the fact that the homotopy index is, of

course, a topological invariant) that
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where A denotes the smash product (reduced join). Since h(Xi) is the index
of a hyperbolic rest point,

(cf. [18, Chapter 1, 4.3]). The index h(S,,)) is the homotopy type of a space hmo,
which can be obtained from a compact subset N of Zo and a closed subset
MeN by collapsing X to a point, that is, h-o= NIM (cf. [18, Chapter 111.5.1]).
Consequently (cf. [18, Chapter III.6.1] or [48, Chapter 111.2]),

Thus it remains to show that h(S) =A h(0). To see this we compute the

Alexander-Spanier cohomology H (with real coefficients) of Em and of

Em+ /Bhmo (cf. [40, Chapter 6]). It is known (cf. [18, Section IV.4.5]) that

On the other hand, it is known that Z-+Ah-’ is homeomorphic to the
m+-fold (reduced) suspension };IB(};IB... (};IBhmo) ... ) of hm (e.g. [48, Chap-
ter III.2]). Let C := hm and

where (s, x) l--+ s/Bx denotes the canonical projection E x C ---&#x3E; EA C, and
where 27 is identified with (SI, (1, 0)). Then A and B are closed subsets

of EA C such that

Moreover, A u By A, and B have the same base point. Since a closed sub-

space of a compact space is a o taut &#x3E;&#x3E; subspace relative to the Alexander-
Spanier cohomology theory [40, Theorem (6.6.2)], it follows from [40, The-
orem (6.1.13)], that we have a long exact relative Mayer-Vietoris sequence

(relative to the base points). Since A and B are contractible (modulo base

points), Hq(.A) and Hq(B) are trivial, and we obtain a short exact sequence



574

for all q c- Z. Thus Hq(C) H-Fi(IA C) and, by induction,

for all q E Z. Consequently (rccall that hmo is obtained from a compact
subset of E, -- Hmo),

=-- - I - 

if m i [m+, m+ + mOJ, which implies h(S) =1= h(O). 0

QVe should like to remark that the principal ideas of the above proof
are due to C. C. Conley.

By combining Propositions (9.3) and (7.3) we obtain now the following
general

(9.4) THFORFlV]:. Suppose that Boo commutes with P, that F(0) = 0, and
that (B) is satisfied. Then the equation Au = F(u) has at least one nontrivial
solution, provided one of the following conditions is satis f ied :

(a) There exists an operator Co E Ls(H), with commutes with P and P-,
such that

(b) There exists an operator 0: e Cs(H), which commutes with P and P+,
such that

PROOF. (a) Proposition (7.3) implies the existence of a subspace Z_
of Z of dimension mz (A - CJ’) and of a constant 8&#x3E; 0, such that

as z -&#x3E; 0 in Z-. This estimate implies easily
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Thus, by (9.11),

where the last equality follov-s from the fact that 0 0 a(A - Boo). Hence (9.6)
is satisfied, and Proposition (9.3) implies the assertion.

(b) In this case Proposition (7.3) implies the existence of a sub-

space Z+ of Z of dimension mi(A - 0+) and of a constant e &#x3E; 0, such that

as z -&#x3E; 0 in Z-. Fron-1 this estimate it follows that

Hence (9.12) implies the validity of (9.6), and the assertion folloi;s again
from Proposition (9.3). D

We add a simple corollary iiThicli will suffice for some of our applications.

(9.5) COROLLARY. Suppose that Boo == vooIH fo&#x3E;. some Voo E [a, P]. Jlore-
over, let F(O) == 0 and let (R) be satisfied. Then the equation .Au == l?(n) has
at least one nontrivial solutiorn, provided either

and

Furthernlore,
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is satisfied. Now the assertion follows from Theorem (9.4), since

and

It seems worthwhile to point out that in the proof of Proposition (9.3)
we have obtained the following topological result.

(9.6) PROPOSITION. Suppose that the vector field v E Cl(RN, RN) has 0 as
an isolated rest point. Let m+ or mO, respectively, denote the dimension of the
unstable- or center- manifold, respectively, of the rest point 0. Then, if {O} is

an isolated invariant set of x = v(x), its homotopy index h(O) is given by

’lohere };rn+ is a pointed m+-sphere and hmo is obtained from a compact index

pair (Ni, N,) in R-’ by collapsing N2 into a point (c,t. [18, Chapter III.5]).

PART TWO

APPLICATIONS

10. - Elliptic boundary value problems.

In this section we consider the semilinear elliptic boundary value

problem (BVP)

where S2 c RN is a bounded domain with smooth boundary, , 3D, lying locally
on one side of S2. Moreover we suppose that

(i) A(x, D)u:= I (-I)IaIDO’(a,,OD’u) is a strongly uniformly el-
lal, 101 - -

liptic diffcrential operator of order 2m, with real smooth coefficients.
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(ii) B(x, D) is a family of m smooth boundary operators.

(iii) (A(x, D), B(x, D)) induces a self-adjoint linear operator A in

H:= L,(92), which is bounded below.

(iv) For every pe(l, c)o), there exists a constant c &#x3E; 0 such that

for all u e w;m(Q) satisfying B(x, D)u = 0 on 3D.

(v) f E 01(Q xR, R) and sup /fç(0153, 1])/  00, where fç denotes the(s,q)eQ xR

partial derivative of f with respect to the second variable.

By a solution of (11.1) we mean a classical solution.
It is well known that the hypotheses (i)-(iv) are satisfied, for example,

if B(x, D) is the family of boundary operators describing Dirichlet boundary
conditions, , or if m == 1 and

where b E aOO(ôQ, R), v = (Vl, ..., vN) is the outer normal on ôQ, and (aij)
is the symmetric coefficient matrix of A(x, D) (cf. [23, 29]).

Standard elliptic regularity theory implies that the BVP (11.1) is equiv-
alent to the equation

in H, where F is the Nemytskii operator of f, that is,

It follows from assumption (v) that F is a continuous potential operator on H,
which is everywhere Gateaux differentiable, the derivative F’ being given by

for all u, h E H (cf. [2, Section 6]).
It is a consequence of Sobolev type imbedding theorems that A has a

compact resolvent. Thus A has a pure point spectrum consisting of eigen-
values 
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of finite multiplicities, having no finite accumulation-point. Moreover, the
eigenvalue problem Au = Zit is equivalent to the elliptic eigenvalue problem

In the followin g we let 2,,:= - 00.

(10.1) LEMMA: (a) Problem (10.2) satisfies conditions (A), (F), and (R).

(b) If th(we exist positive numbers 8 and e and an (integer k E N such that

,»al,I,9/ying ]$) &#x3E; o, then condition (F,.) with

is satisfied

PROOF: (a) Condition (v) implies the existence of constants ot  P such
that 0153f;(x, n) fJ for all (x, q) E Q x R. Since we can assume that cx, # 0 or(A)
this estimatc and the spectral properties of A imply easily the validity of
the hypotheses (A) and (JJ1).

Since Z is spanned by finitely many eigenfunctions of (10.4), which are
smooth, it is obvious that Z -&#x3E; O(Q). It follows from Proposition (4.1)
that, for each z E Z, the functions PI v(z) satisfy the equations

where u(z) = l-"+v(z) -r- P_v(z) -(- z.
It is not difficult to verify that

for all z, zo c Z (where, of course, one has to take everywhere the same sub-
script + or -, respectively). Since u(-) c- C(Z, H) and F c- C(H, H), it

follows that Pxw( . ) E C(Z, WIM(D)). Thus, by a Sobolev type imbedding
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theorem, P;j:V(’) E C(Z, Lp(Q)), hence u(.) E C(Z, Lp(Q)), for an appropri-
ately chosen p &#x3E; 2.

Since the eigenfunctions of (10.4) are smooth, it follows easily that jP_
and P, and hence P::tEC(Lq(Q)) for every qE(l,oo). Thus, by the Lp-esti-
mate (iv),

and appropriate constants a, b &#x3E; 0, it is well know that cC(L,(,Q), Lp(Q)).
Hence it follows that P:!: v(.) E C(Z, w;m(Q)), hence u(-) E C(Z, W;’m(Q)). By
repeating this bootstrapping argument a finite number of times, it follows

finally that PI v( . ) E C(Z, C(fl)).
Finally, the fact that fcC’(J-) implies easily that F’IC(,.(2-)cC(C(D), C(H)}.

Moreover it follows that condition (R) with J5’ = C(D) is satisfied.

(b) For a proof of this fact we refer to [2, Lemma (6.3)]. 1-1

After these preparations we can now prove the following general ex-
istence theorem.

(10.2) THEOREM. Let conditions (i)-(v) be sat&#x3E;isfieI and sep»ose, I% ad-
dit,ion, that there exist positii;e cortstants Band o such that

for all (s, $) E Q X R satisfying )$ ) I);: e, and some k E N (uJheJ"e Ào: == - co).
Then the semil,iJeea; elliptic BVP (10.1) has at least one solittion.

Suppose, in addition, that f(x, 0) = 0 for all x c- Q. Then the BVP (10.1)
possesses at least one ¡nontrivial solution if either

PROOF. Due to Lemma (10.1), the first assertion follows immediately
from Theorem (9.1).

It is an obvious consequence of the representation (10.3), that the in-

equalities (10.6) imply 111’(0) «Âk or 1P’(0) »Âk+l, respectively. Since, by
Lemma (10.2), Âk  Boo  Âk+l’ the second part of the assertion is a con-

sequence of Corollary (9.5). 0
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The problem of the existence of nontrivial solutions to nonlinear elliptic
boundary value problems has attracted numerous authors (cf. [1-4, 14, 15)
20, 26, 34, 41, 42]. The bibliographies of these papers should also be con-
sulted.) In order to describe the qualitative feature of the results so far
known, let us consider the simple case of the boundary value problem

where f is smooth, asymptotically linear, and f(O) = 0. (Clearly, , in almost
all of the above mentioned papers there are considered more general situa-
tions as far as the differential operator and the boundary conditions, the
regularity hypotheses for f, and the asymptotic behavior is concerned. It is

our purpose to exhibit only the qualitative features of the hypotheses.)
The best results so far known are due to K. Thews [41] and P. Hess [26].
In [41] it is shown that (10.7) has a nontrivial solution if either

for some k E N* and all $ E R. Hess [26] obtains the existence of at least
one nontrivial solution if either

for some k, 1 c N* satisfying k  1. Observe that our results imply that
neither of the restrictions ff ;: 2,+,, ff:&#x3E; Â7c-l, (10.8), or (10.9) is necessary.

Finally, concerning the case that resonance at infinity occurs, we refer
to our remarks in the Introduction about Landesman-Lazer problems.
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11. - Periodic solutions of a semilinear wave equation.

In this section we prove the existence of classical T-periodic solutions
oi the semilinear wave equation

where we impose the following assumptions:

(iii) There exist constants a  P such that either a &#x3E; 0 or P  0, and
such that

where fç denotes the partial derivative with respect to the third
variable.

Where dom (0) consists of all U E 02(D) satisfying U(O, -) = u(n,.) = 0,
u(-, 0) = u(-, T), and u,(-, 0) = u,(-, T). Then it can be shown that

A := EI*9 the adjoint of D, is self-adjoint. Moreover, A has a pure point
spectrum, given by

-and every A E J(A)%(0) is an eigenvalue of finite multiplicity, whereas 0
has infinite multiplicity. Hence we can assume that rx, P Ft O’(A).

In the following we denote by -F the Nemytskii operator of f, that is,

.and all u E H. Then condition (iii) implies that F is a continuous potential
operator on H, possessing everywhere a Gateaux derivative F’, given by
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and all u, h E H. It follows now from regularity results in [33] that the
problem of finding T-periodic classical solutions of (11.1) is equivalent to
the problem of finding solutions to the equation Au == F(tt) in H (cf. also
[2, Lemma (8.2)1).

(11.1) LE&#x3E;IMA. (a) The prroble1n Att - F(it) satisfies condition.fJ (A), (If),
and (.R) .

(b ) If thefe exist positive n1( mbers ê and e and co’ns(;c1d1:ve eigenvalues
;:  A of A such that

satisfying )$) &#x3E; (h then conclitio’n (1loo) with

is satisf ied. 

PROOF. (cc) I-Iypotheses (ii) and (iii) and the above information on a(,I-)
imply easily the validity of (A) and (li’).

We claim that condition (lt) with E:- C(fl) is true. Indccd, since Z
is being spanned by finitely many smooth eigenfunctions of A, it follows

that Z m O(tJ). Moreover, the regularity assumption upon f implies, as in
the IJrcccding section, that Fc- C(Z, C(D)). Hence it remains to show that

where P,v(z) is the unique solution of

and u(z) = P+v(z) + P-v(,-) + z (cf. Proposition (4.1)).
For this purpose we let

Then it is know (cf. [33, Formula (1.3)]), that

We assume now, for definiteness, that ker (A) c X = P-(H). Then, using
the facts that t(.) E C(Z, J?) and Fe C(H, H), (11.3) and equation (11.2)
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imply

In the following we denote by Po the orthogonal projection of j? onto
ker (A), and we let Q : = P - Po. Then equation (11.2)- is equivalent to
the system

where vo(z) : = Pov(z) and r(z) : = u(z) - vo(z) = Qv(z) + P+v(z) + z for all

z c- Z. Thus, similarly as above, (11.3) and (11.5) imply

Consequently, recalling (11.4), ,

Now (11.6) and the regularity results of [33] (cf. also [2, Lemma (8.1)])
imply that

Finally, in order to show that v,,(-) c- C(Z, C(fl)), we employ some ideas
of P. H. Rabinowitz [33].

By means of Fourier series it is easily seen that ker (A) consists of the
closure in H of the set of functions 99 of the form gg(x, t) = y(t -E- x) - y(t - x),
where y is smooth and periodic with periods 211: and T (cf. [13y 33]). Sup-
pose that fjJ E ker (A) has the representation gg(x, t) = 1p(t -)- x) - 1p(t - x)
such that

In this case, which can always be achieved by adding a suitable constant

to 1p, we let 99:1: (x, t) :== y(t + x) for all (x, t) E Q.
By means of a Fourier series development it is easily verified that

whenever f and g are 2n-periodic and square integrable, and [1][g] = 0.
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Finally, by multiplying (11.6) by - 1, if necessary, we can assume

that a &#x3E; 0.

Now let z, zo E Z be arbitrarily fixed, and let w : = vo(z) - vo(zo) E ker (A).
Moreover, let 

and observe that

Now (11.6), the positivity of w, gg&#x3E;, the assumption (iii), and the mean
value theorem imply

Consequently, by (11.10),

Since li 99 11 L(,Q) : f (Iq(w+) I + I q(w-) 1) dx dt, and since the latter integral is posi-
9

tive, if w =A 0, we obtain from (11.11) and the definition of M,



585

Consequently, , since it follows that

for all z, zo E Z. Hence (11.7) and the obvious fact that.
imply v,,(-) c- C(Z, C(D)). Consequently,

and the validity of (B) is shown.

(b) For a proof of this fact we refer again to [2, Lemma (6.3)]. El

After these preparations MTe can now prove the following general ex-
istence theorem for T-periodic solutions of (11.1).

(11.2) THEOREM. Let the assumptions (i)-(iii) be satisfied. Suppose that
1  Â are two consecutive numbers of the (discrete) set f j 2 - -r2k2 i(j, k) E N* X Z}"
and that there exist positive numbers E and e such that

for all (x, t, $) E [0, -r] X R X R satisfying )$) &#x3E; e. Then the semilinear wave-

equation (11.1) possesses at least one T-periodic solution.
Suppose, in addition, that f (x, t, 0) = 0 for all (x, t) E [0, n] X R. Then

the equation (11.1) has at least one nonzero T-periodic solution if either-

REMARK. Suppose that = 0. Then it is an easy consequence of (11.12),
condition (iii), and the mean value theorem, that a &#x3E; 0. Consequently, in_
this case only the second alternative of (11.13) is possible. A similar remark
applies if À = 0.

PROOF OF THEORIF,1%1 (11.2). The first assertion follows immediately
from Lemma (11.1) and Theorem (9.1). Since the inequalities (11.13) imply
F’(0) « or F’(O»&#x3E; À, respectively, and since, by Lemma (11.1), BooÅ,
the second part of the assertion follows, again on the basis of Lemma (11.1),
from Corollary (9.5). D

The problem of the existence of periodic solutions to the nonlinear wave

equation (11.1) has been studied by many authors under the assumption
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that f is of the form Eg(x, t, $) and c &#x3E; 0 is small (e.g. [13, 33, 43]). In addi-

tion the bibliographies of these papers should be consulted.) There are only
few papers studying the global problem (cf. [2, 13, 20, 30, 35]). Rabino-

witz [35] treats the case of superlinear nonlinearities, to which our results
are not applicable. In the other papers the case of linearly bounded non-
linearities, to which the techniques of [35] do not seem to apply, has been
treated. As far as the qualitative behavior is concerned, the best results for
the latter case are contained in [2]. Namely it has been shown that there
exists at least one nonzero T-periodic solution if, given the assumptions (i)-(iii)
and assuming for simplicity that f is independent of (x, t) and asymptotic-
ally linear, e.ither

for two consecutive eigenvalues of the wave operator. In addition, it is

always presupposed that f’( 00) is not an eigenvalue of D. (We refer to [2]
for a comparison of these results with the above mentioned work of the
other authors.) Theorem (11.2) shows that neither of the assumption
f  A and I’ &#x3E; 1 is necessary.

In a forthcoming paper [2a] we shall prove the existence of multiple
periodic solutions for a class of autonomous nonlinear wave equations.

12. - Periodic solutions of Hamiltonian systems.

In this section we consider the existence problem of periodic solutions
of Hamiltonian equations:

where the dot denotes the derivative with respect to the independent
variable t. The Hamiltonian function JC is assumed to depend periodically
on t. More precisely, , denoting a generic point of R2N = RN X RN by
.r :== fp7 q), where p, q E RN, we shall assume in the following for the func-
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tion JC: R x R2N ----&#x3E;- R:

(i) Je(t + T,’) = Je(t,.) for all t E R and some T &#x3E; 0.

(ii) Je possesses a second partial derivative Jexx with respect to x E RIN
such that Jexx E C(R X R2N, C(R2N)), and moreover

Without loss of generality we normalize the Hamiltonian function as-
suming Je(t, 0) = 0, t E R. We denote by J’ E C(R2-),

the standard symplectic structure on R2N, where IR is the identity on RN.
We then can rewrite (12.1) as

The aim is to find T-periodic solutions u c- CI(R, R211r) of (12.4).
We first formulate the problem in our abstract set up. For the remainder

of this section we let

and we consider the real Hilbert space H:== L2(O, T; R2N). We define a
linear operator

A : dom (A ) c H - H by dom (A) : = {x E Hl(O, T; R2N)/X(O) = x(T)I,

Finally F: H -7 H is defined by

The assumptions (i) and (ii) imply that .F is a continuous potential operator
on H, the potential 0 being given by
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Moreover, F possesses a symmetric Gateaux derivative .F’ on H, and

Therefore, by the mean value theorem,

provided a, # E R satisfy

that is ce)q ]2  (Kzz(t, $) q, q)  @ )q ] 2, t E [0, T], $, q G R2N, where (-,’) denotes
the Euclidean inner product in R2N. Observe that (12.6) is equivalent to

J(Rzz(t, $)) c [a, fl], Y(t, $) E [0, T] X R2N, and that condition (ii) implies the
existence of constants ce, fl G R satisfying (12.6).

Clearly, , every solution U E dom (A) of

defines (by T-periodic continuation) a (classical) T-periodic solution of the
Hamiltonian system (12.4). Conversely, , every T-periodic (classical) solu-

tion of (12.4) defines (by restriction to the interval [0, T]) a solution of (12.7).
Thus the problem of finding T-periodic solutions of the Hamiltonian

system (12.4) is equivalent to the problem of finding solutions of the equa-
tion Au =-- F(u). Observe that, for u E dom (A), the equation Ait = F(u)
is the Euler equation of the variational problem:

subject to the periodicity conditions (p(O), q(O)) = (p(T), q(T)).
The following properties of the operator A are readily verified (cf. also [2]).

(12.1) LEMMA. (i) A is sel f -adjoint, has closed range and a compact
resolvent.

(ii) or(A) = TZ, and each 2 E a(A) is an eigenvalue of multiplicity 2N.

(iii) For each 2 E O’(A), the eigenspace ker (A - A) is spanned by the

orthogonal basis
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where {ekl1 c k c 2NI is the standard basis of R2N. In particular, ker (A) == R2N, ,
that is, it consists of the constant functions.

On the basis of Lemma (12.1) and the remarks preceding it, it is now

easy to prove the following

(12.2) LEMMA. The problem Au = F(u) satisfies conditions (A), (h’),
and (.R) .

PROOF. It is obvious that conditions (A) and (F) are true, if we fix

0153, p E R""-TZ such that (12.6) is satisfied. As for condition (R) we observe
first that, due to (12.5), F’IO([O, T], R2N) E C(C([O, T], R2N), C(H)). More-

over, Lemma (12.1.iii) implies Z 4- C([07 T], R2N), where Z is the subspace
of H spanned by the finitely many eigenfunctions of A belonging to the
eigenvalues -rZ (") [a, fl]. Finally, observe that, for every 2 rt zZ and v E H,

where

This implies

Consequently, since Proposition (4.1-) implies

provided Â f/= TZ, and since v(-) c- C(Z, H), it follows that

Hence condition (B) with E == C([o, T], R2N) is satisfied. 0

In order to formulate the asymptotic behaviour of JC in the abstract
framework, we introduce some special linear operators in H. Let b E Ls(R2N)
be a symmetric matrix, then B E C(H) is defined by

The following Lemma summarizes some properties of B needed later
on. Here and in the following 0’1’)(.) denotes the point spectrum.
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(12.3) LEMMA. (i) B is symmetric and a(B) = (Jrp(B) = O’(b). The oper-
ator A - B is selfadjoint and has compact resolvent, hence a(A - B) = (Jp(A - B).

(ii) ,1, E o-(JL 2013 B) if f a(J(b + A)) n i-rZ 0 0.
#

(iii) Let a then B commutes with P : == f dE)., the orthogonal pro-
a

j ection onto the subspace Z of H, spanned by the eigenfunctions of A belonging
to the eigenvalites in [a, P].

PROOF. (i) It is obvious that JB is symmetric and a(B) = O’rp(B) = a(b).
Standard arguments (cf. [27]) and Lemma (12.1.i) imply that A - B is

self-adjoint and has compact resolvent.

(ii) From (i) we conclude that A c a(A - B) iff the equation
(A - B) u =-- Au has a nontrivial solution u E dom (A). From - Ju- bu = Au
we find u(t) = exp [tJ(b + ,1,)]u(O). Since u(O) == u(T) for u E dom (A), we
conclude that A c-,Y(A - B) iff I c- or(exp [TJ(b A)]) = exp [Tor(J(b + A))],
by the spectrtral mapping theorem. Now the assertion (ii) is obvious.

(iii) For every ), E O’(A.) == TZ, let E(2) ker (,1, - A) be the eigen-
space of ),. Then, by Lemma (12.1):

g §
(12.8) E + E Cos (At)x + - sin (At) y t c- [0, T 1, x, y c R2N
Obviously, B maps E(Â) -E- E(- A) into itself. This implies the last part of
the a,ssert.ion. D

As a technical sideremark we observe that if b E Ls(R2N) is of the form

b = Diag (a, - a), for aELs(RN), then B (ker (I - A)) c ker (- Â-A). Hence

B(X) c Y:=- P+(H) and B(Y) cX:= P_(H), provided Lx = - fl. Thus B

commutes with P, but it does not commute with P+ or P_ .
After these technical preparations we are ready to prove the following

existence statement for T-periodic solutions of the Hamiltonian system (12.4).

(12.4) THEOREM. Let Je(t, x) be periodic in t with period T &#x3E; 0. Assume
the Hamiltonian vectorfield is asymptotically linear:

unijorml.lj in t E R, fo&#x3E;. a time independent boo E Ls(R2N). Then the Hamiltonian

system

has at least one l1-pe1tiodic solution provided O’(Jboo) (") i(2n/ T) Z == #.
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Actually we prove a more general statement. Instead of requiring (12.9)
we merely make the following assumptions on the asymptotic behaviour of JCa;:
there exist two constants V. and ðoo, such that

for all (t, x) E R X R2N, where y. satisfies 0  y.  min f I A I I A E a(A - B.)};
the operator Boo E t(H) being defined as

PROOF. In view of the general assumption (12.2) we fix oc:= - fl,
p &#x3E; 0, such that oc 0 TZ and O’(boo), d(Kzr(t, $) ) c [a, P] for all (t, $) E R X R2N.
Since by assumption a(Jb.) n i(2;rlT) Z = 0y we know by Lemma (12.3. (ii)),
that 0o’(JL2013Boo). Due to (12.9 1), condition (F exJ is met. By Lemma (12.3. (iii) ),
B. commutes with P, hence, recalling Lemma (12.2), the assertion follows
immediately from Theorem (9.1). D

In the autonomous case, that is, if K is independent of t, Theorem (12.4)
is not of much interest. Indeed, in this case the first part of the following
proposition implies that, in general, possesses a critical point hence,
(12.4) has a constant solution, which is clearly T-periodic.

(12.5) PROPOSITION. Let f e C2(Rn, R), and suppose that there exists a

nonsingular matrix boo E Ls(Rn) such that

where ðoo&#x3E; 0 and 0  Î’oo  ])b§))-i are constants. Then f has at least one
critical point. Suppose, in addition, that f’(O) = o. Then f has at least one
nontrivial critical point provided

where m-(-) denotes the « negative » Morse index.

PROOF. The assertion follows easily from Theorem (9.1) and Proposi-
tion (9.3), letting H : = Rn, A : := 0, and F : = f ’ . D

In view of this Proposition we shall assume in the following that the
Hamiltonian vectorfield JX,, possesses an equilibrium point, which we
assume to be 0, hence JJea;(t, 0) = 0. We consider a Hamiltonian vector-
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field satisfying

and

uniformly in t c R, for two symmetric time independent matrices bo,
boo E Ls(R2N). Our aim now is to find T-periodic solutions of ai == JKz(t, u),
which are not the trivial solution u(t) = 0. In order to describe the dif-

ference between the two linearized systems at 0, and at oo, Jb,, and Jb.,
which will guarantee a nontrivial T-periodic solution, we shall introduce
next an integer, Ind (bo, boo, T).

For a fixed symmetric b E Ls(R2N) we define the quadratic forms QI1,
fl E R, on R2N x R2N as follows:

with z :== {x, y} cR2NxR2N . The matrix of this form is given by

observing- j == JT. With m+(’), m°( - ) and m-( - ) we denote in the fol-

lowing the positive, , the zero and the negative Morse index, respectively,
of a quadratic form or of the symmetric matrix defining it.

(12.6) LEMMA. (i) m+(Q,,,) = 2N if u &#x3E; max {x E Rlioc E a(Jb)}. (ii) As-
sume Jb has no purely imaginary eigenvalues (except possibly 0) then

m+(Q¿) = 2N for all p &#x3E; 0. If, in addition, b is inve1.tible, then m+(Q,) = 2N
f or all It&#x3E; 0, and m+(b) = N = m-(b). (iii) mO(Q,) == 0 iff ip í O’(Jb).

PROOF. If p &#x3E; 0 and sufficiently large, then m+(QÎt) = 2N, the positive
index of the form (Jx, y) in (12.10). If it decreases, the index m+(Ql,) can
change only at those values of p, for which the matrix (12.11) is singular,
that is mO(Q¿) =A 0. This happens precisely for those values of p E R, for
which ip is a purely imaginary eigenvalue of Jb. Indeed, assume z:== tx, YI E
c R2N x R2N is an eigenvector of (12.11) with eigenvalue 0. Then, since

JT--J, 7
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therefore hence

therefore + ill E O’(Jb). From these remarks the assertion is immediate. D
We now define Ind (bo, b., T) e Z for bo, b. E Ls(R2N) and for r &#x3E; 0 as

follows:

Here Q7-c (resp. Q;;) is the quadratic form (12.10) with It j-c and b := bo
(resp. b := boo). In view of Lemma (12.6) the sum is finite. The following
properties of the integer (12.12) follow immediately from the definition and
from Lemma (12.6). Observe, 0 is also considered as purely imaginary in
the next Lemma.

(12.7) LEMMA. (i) Ind (bo, boo, -r) is a symplectic invariant, that is

Ind(sTbo8, sTboo8, -r) = Ind (bo, boo, T) for all s E Sp (2N).

(ii) Ind (bo, boo, -r) = 0 if either (1) bo = boo, or (2) Jbo and Jboo have no
purely imaginary eigenvalues. 0

We are ready to prove

(12.8) THEOREM..Let Je(t, x) be periodic in t with period T &#x3E; 0. Assume :

uniformly in t E R, for two time independent symmetric bo, boo E Ls(R2N). As-

sume O’(Jboo) rl i(2njT)Z = 0 and a(Jbo) rl i(2njT)Z = 0. If

there exists at least one nontrivial T-periodic solittion of it = JJex(t, u).

In view of Lemma (12.7) the occurrence of purely imaginary eigen-
values of Jbo or Jb. is necessary in order to have Ind (bo, boo, 2;r/T) =/= 0.

PROOF. Define Bo, B. c- E(H) by Bou(t) = bou(t) and Boou(t) == boou(t),
t E [0, T], u E H. Fix oc: - - fl for fJ&#x3E; 0 sufficiently large, ot Et cr(A). By
assumption a(Jboo) (") i(2:rlT)Z = 0, hence by Lemma (12.3), 0 Et a(A - B.),
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and (F.) is satisfied. The statement follows from Proposition (9.3). Indeed,
B. and B,, commute with P by Lemma (12.3). From Proposition (4.5) and
formula (3.2) we find

Since o’(J&#x26;o) n i(2njT)Z = ø, we have 0 rt O’(A - Bo), hence mz(a"(o)) _ (
It remains to prove that

Let Â = j-r E a(A), j &#x3E; 1, with r = 2alT, and let E(A) c H be the corresponding
eigenspace. The restriction of A - Bi, i = 0, oo, onto the subspace E(- I) +
-J- E(A) cJ? defines a quadratic form. In view of (12.8) this form is given
by (12.10), with It = A and with b = b i , i = 0, oo. Therefore, by (12.12),
the definition of Ind(&#x26;o? 7 b. , t’),

The statement now follows from Proposition (9.3). D

We next compute Ind (bo, boo, z) in terms of the purely imaginary eigen-
values of Jbo and Jboo. To simplify the presentation we do not consider
the most general case, for which we refer to [2b].

Let b E Ls(R2N) be symmetric. The quadratic Hamiltonian function

defines the linear Hamiltonian vectorfield x = Jbx on R2N. Clearly, every
purely imaginary eigenvalue ia, a E R, of the infinitesimally symplectic
matrix Jb gives rise to a periodic solution of x = Jbx with period 2n/lal.
The purely imaginary eigenvalues of Jb occur in pairs ± il(Xl, (X E R, that
is, if ioc is an eigenvalue of multiplicity 1, then - ice is an eigenvalue of mul-
tiplicity l. It is well known (cf. [12]) that the eigenspace belonging to a
pair + ice of purely imaginary eigenvalues is a symplectic subspace of R2N,
the restriction of Jb onto this subspace is infinitesimally symplectic with
quadratic Hamiltonian. Let ::l: il(Xkl, k = 1, 2 7 ..., be the pairs of purely
imaginary eigenvalues of Jb counted with their multiplicities. For simpli-
city we shall assume, that on the invariant subspace which belongs to these

eigenvalues, there exists a symplectic transformation s e Sp (2r), which puts
the corresponding Hamiltonian function into the following form:
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which is a symplectic normal form. We shall rephrase this assumption as
follows: the imaginary part of Jb is symplectically diagonalizable. It is

well known that this assumption is met, if the imaginary eigenvalues are
simple, or if the restrictions of the Hamiltonian function onto the eigen-
spaces of the pairs + iak are positively or negatively definite. The sym-

plectic normal form (12.13) allows to choose the signs of the pairs + ilrxk/’
k = 11 27 ... , r in a symplectically invariant way; we call the (unordered) seto

the set of positively oriented imaginary eigenvalues of Jb. For example,
let the multiplicity of the pair ± ice, x e R, bye 3, with normal form

2

.i 2L.X (Pt -)- q’) - , L-X(p2 -)- q2), then the set of positively oriented eigen--
k 

values is lia, ioe, - icxl. For an intrinsic definition of the symplectically
invariant « orientation », induced by the symplectic structure in the set of
imaginary eigenvalues, we refer to [31a].

In the following let [S] denote the cardinality of a finite set S.

(12.9) LEMMA. Assume the imaginary part of Jb is symplectically diag-
onaZizabte, and let

be the set of positively oriented imaginai-y eigenvalues. Then:

provided iz &#x3E; 0 and fl =F l0153TeI, k = 1, 2, ..., r.
If, in addition, b is invertible, then:

PROOF. In the proof of Lemma (12.6) we have seen that, for It &#x3E; 0 and

sufficiently large, m+(Q,) = 2N, and that if p decreases, the index m+(Q/,)
can change only if i.t E cr(Jb). Let now ix, (X E .R be a simple, positively
oriented eigenvalue of Jb. Putting, by means of a symplectic transformation,
the restriction of the Hamiltonian belonging to Jb onto the eigenspace of
the pair :f: ia into its symplectic normalform (12.13), that is into

!rx(0153î + 0153;), we find for the restriction of - QJl onto these eigenspaces:
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where {X, YI c- R2 xR2 . Assume a &#x3E; 0, then the positive index of the

quadratic form (12.14) changes by + 2 if It crosses a from above. On the
other hand if a  0, then the positive index of the form changes by - 2 if ,
crosses - ot == lcxl &#x3E; 0 from above. In case the eigenvalues of the pair
:i:: ia are not simple, the restriction of QA onto the eigenspaces is a sum of
quadratic forms of the type (12.14) according to the corresponding normal-
form which by assumption does exist. The Lemma now follows. D

We are ready to express the integer Ind (bo, boo, T) in terms of the posi-
tively oriented imaginary eigenvalues of Jbo and Jb.. By means of Lem-
ma (12.9), Lemma (12.6) and Definition (12.12) we easily find:

(12.10) LEMMA. -tet bo, boo E E,(R2N) and -r &#x3E; 0. Assume the imaginary
parts of Jbo and Jb. are symplectically diagonalizable and let

and

be the sets of positively oriented imaginary eigenvalues of Jbo and Jboo. As-

sume O’(Jbo) n iíZ == 0 and O’(Jboo) n iíZ == 0. Then

In particular, Ind (bo, boo, z) =1= 0 if either (1) a° &#x3E; 0 and oc-  0, or (2) a°  0

and a°° &#x3E; 0, or (3) Jbo (resp. Jboo) has no purely imaginary eigenvalues and
the restriction of the form boo (resp. bo) onto the eigenspace of the purely imaginary
eigenvalues of Jboo (resp. Jbo) is positively or negatively definite.

(12.11) THEOREM. Let Je(t, x) be periodic in t with period T &#x3E; 0, and let
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uniformly in t E R, for two time independent symmetric bo, boo E Cs(R2N). As-

sume O’(Jbo) n i(2n/T)Z = 0 and O’(Jboo) n i(2n/T)Z = 0, and assume that Jbo
an.d Jboo are symplectically diagonalizable. If Ind (bo, boo, 2;n;/T) o 0, there

exists at least one nontrivial T-periodic solution of it = JJe:At, u). Here

Ind (bo, boo, 2n/T) is explicitely given by (12.15).

(12.12) COROLLARY 1. If the restriction of bo onto the eigenspace of the
purely imaginary eigenvalues of Jbo is positively definite (resp. negatively
definite) and if the restriction o f boo onto the eigenspace of the purely imaginary
eigenvalues of Jboo is negatively definite (resp. positively definite) then there
exists at least one nontrivial T-periodic solution of it == JJe0153(t, u) provided
O’(Jboo) r) i(2n/T)Z = 0 and O’(Jbo) r) i(2n/T)Z = 0. D

In particular, if bo &#x3E; 0 (resp. bo  0) and boo  0 (resp. boo &#x3E; 0), there
exists at least one nontrivial T-periodic solution provided the nonresonance
conditions of Corollary 1 are satisfied.

(12.13) COROLLARY 2. I f Jbo (resp. Jboo) has no purely imaginary eigen-
values, and if the restriction of boo (resp. bo) onto the eigenspace of the imaginary
eigenvalues o f Jboo (resp. Jbo) is definite, then there exists at least one nontrivial
T-periodic solution of it = JJe0153(t, u) provided J(Jbm) r) i(2n/T)Z = 0 and
a(Jbo) n i(2n/T) Z = 0.

In particular, if Jbo (resp. Jboo) has no imaginary eigenvalues and Jb.
(resp. Jbo) has only one pair + ix, a E R, of imaginary eigenvalues, which,
in addition, are simple, then there exists at least one nontrivial T-periodic
solution, provided (X 1= (21jT) Z.

In case the Hamiltonian function is independent of t, Theorem (12.8)
guarantees a nonzero (21jT)-periodic solution of it = JJCx(u), for every

frequency T for which Ind (bo, boo, -r) "* 0. The periodic solution so found
may however be a constant, u(t) : = y E R2N, y =A 0, namely if y is an equi-
librium point, that is Je0153(y) = 0. Our next aim is to find nonconstant

T-periodic solutions of the time independent Hamiltonian system with
prescribed period T. We clearly have to impose additional assumptions
on Je. We first study the case of a convex function Je, such that

for two positively definite b,,, b. c- Cs(R2N). In this case, as it is well known,
all the eigenvalues of Jb,, and Jb. are purely imaginary, fL iak, d = 0, 1 oo,
1  k  N (counted with their multiplicities), and Jbo, Jb. are symplectically
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diagonalizable. There are symplectic transformations which put -ff I (b,,x I X),
or = 0, oo into their symplectic normal forms

for 0’ = 0, 00. Assume

follows from Lemma (12
It then

(12.14) TIMOREM. Asgume Je(x) to be a convex function, such that

with bo, boo E Cs(R2N), bo &#x3E; 0, boo &#x3E; 0. Then for every 1 &#x3E; 0, such that a(Jbo) n
n iíZ = 0 and a(Jboo) 0 iíZ = 0, and such that Ind (bo, boo, z) =1= 0 there is
a non constant (2njï)-periodic solution of &#x26; = JJex(u). Here Ind (bo, boo, z)
is given by (12.17).

PROOF. Since by the convexity of Je, 0 is the only equilibrium point
of the Hamiltonian vectorfield JJex, the statement is an immediate con-
sequence of theorem (12.8). D

(12.15) COROLLARY. Let Je be convex and satisfy (12.18). Then the Hamil-
tonian system it = JJex(u) possesses at least one nonconstant (2nji)-periodic
solution for every T &#x3E; 0 satisfying one of the following conditions :

We point out, that in many of the previous statements the nonresonance
condition on bo is not necessary. This requires a more careful study of
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Ind (b,,, boo, T) and the application of Proposition (9.3) in its full generality
(cf. [2b]). We mention another consequence of Theorem (12.14). Assume
that S’°’, the set of positively oriented eigenvalues of Jb., is different

from S°, the set of positively oriented eigenvalues of Jbo ; then there is a
sequence {Tkil -rk &#x3E; 0, such that l’m zk = 0 and Ind (bo, b., -r,) 0 0. There-

fore, if the two linear Hamiltonian vectorfields Jbo and Jb. are symplec-
tically inequivalent, there is an open and unbounded set U c R, such that
it = JJC.,(u) possesses a nonconstant T-periodic solution for every T E U.
In addition, it can be shown [2b], that the integer llnd (bo, boo, r)) is a lower
bound of the number of geometrically distinct 2;r/-r-periodic solutions.

In Theorem (12.14) Je is assumed to be a convex function. We finally
present an existence statement which does not assume that the auto-

nomous Hamiltonian is convex. Instead of giving rather general conditions,
we restrict ourselves to a simple situation, and we leave it to the reader to
deduce more general results along the lines of this proof.

(12.16) PROPOSITION. Let Je(t, r) be periodic I% t with period T&#x3E; 0, and
let JC&#x3E; 0. Suppose that, fo&#x3E;. some constants a  0  p, (1( Jeaeae(t, 0153)) c roc, P],
V(t, x) E R x R2N. Assume

uniformly in t E R. Then the Hamiltonian system it == JJex;(t, u) possesses at
least one nontrivial T-periodic solution, provided T &#x3E; 27(,/ P and T f/ (27(,/ p) z.

If, in addition, JC is independent of t, then the system it = JJe;A u) pos-
sesses at least one nonconstant T-periodic solution for every T &#x3E; 0 satisfying
T &#x3E; 2;r/# and T 0 (2:r/fl) Z.

PROOF. Since Boo = #I, commutes with A and or(B.) = -rZ = G(A),
it follows that condition (F.) is satisfied and that yoo&#x3E;0 can be chosen
arbitrarily small. Since fl &#x3E; r, there exists a largest positive number j such
that 2n = i-r- Consequently, since Bo = 0, it follows that (A - BO) IZ zt 0.
On the other hand, (A - B.) IZ = (A - fl) IZ  0. Consequently, y letting
0; = Bo = 0 and C- = Boo and choosing /oo&#x3E; 0 sufficiently small, The-
orem (8.3.i) implies the existence of a nontrivial solution u of Au = F(u).

Suppose now that JC is independent of t E R and that u(t) = y E R2N
for all t E [0, T]. Then u E ker (A) and 0(it) == TJe(y). Hence, by Lemma (3.1)
and since JC&#x3E;Oy a(z) = - TJe(y) :0, which contradicts the fact that a(z) &#x3E; 0

by Remark (8.5). Now the assertion follows. 0
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The problem of finding periodic solutions of Hamiltonian equations
it = JJe0153(t, u) is an old one. Many papers are devoted to the study of periodic
solutions near an equilibrium point, say x = 0, of the (usually autonomous)
Hamiltonian vectorfield JJCX. Clearly, every purely imaginary eigenvalue-
of the linearization JJe0153x(O) gives rise to a periodic solution of the linearized
equation, and it is well known that the presence of purely imaginary eigen-
values is necessary in order to find periodic solutions near x = 0. In the

case of purely imaginary eigenvalues ± iall ... 7 ± iaN , which are non-

degenerate in the sense that, say rxkrtrxlZ, 2kN, Lyapunov established
a one parameter family of periodic solutions close to x = 0, having periods
close to 2n/cx, (cf. [28, 39]; see also [7-9]). More recently, A. Weinstein [46, 47]
removed the additional nonresonance condition. He proved for JC G C2(R2N, R),
satisfying Je(O) = 0, X’(0) = 0, and having a positive definite Hessian JC’(0),
that, for sufficiently small 8 &#x3E; 0, the energy surface X-1(8) contains at least
N periodic orbits, whose periods are close to those of the linearized

system JC’(0). Subsequently this result was generalized by J. Moser [31],
R. Bottkol [11], A. Weinstein [45], and by E. R. Faddell and P. H. Rab-
inowitz [24]. The existence proofs of these bifurcation results depend on
topological arguments. If JC is sufficiently smooth, that is, JC E Ck(R2N, R)
for k &#x3E; 3N + 2, one finds in general an abundance of periodic solutions
near a nondegenerate elliptic equilibrium point. Indeed, under finitely
many inequalities involving the coefficients of the 4-th order jet of Je at 0,
there is, in every open neighborhood of 0, a set of positive Lebesgue measure,
consisting of the closure of the set of periodic solutions in this neighborhood.
The periods of the solutions so found are however very large.

All the results described so far involve small perturbations and are, in
this respect, not global. As for more global results, P. H. Rabinowitz [36]
found on every regular energy surface, which is radially homeomorphic to
the (2N - I)-sphere, a periodic orbit. Related results for convex Hamil-

tonians are due to A. Weinstein [44], I. Ekeland [21], and I. Ekeland and
J.-P. Lasry [22].

In contrast to these existence results for periodic orbits, whose periods
are either not at all or only approximately known, we are interested in the
existence of periodic solutions whose periods are prescribed. Results in

this direction are due to Rabinowitz [36], Clarke and Ekeland [17], and
J. Coron [20]. In [36] T-periodic orbits are found (in the autonomous case)
for every T &#x3E; 0, provided grows superquadratically (like Ix 1’, x&#x3E;2)
at infinity and grows slowly near the origin. As far as the growth condi-
tion is concerned, the results of [17] are related to ours. Namely, if Je(x) 
 (k/2) IX 12 for large values of ix 1, and Je(x):&#x3E;(Kj2)lxI2 for Ix I near zero
where .K &#x3E; Ý2k, the authors derive the existence of a T-periodic orbit with
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minimal period for every T satisfying 2njK  T  V2jk, provided Je&#x3E;O
and JC is convex. The solutions in question are characterized as the solu-
tions of a specific minimization problem following an idea of F. Clarke [16].
In addition estimates for the energy levels of the solutions are given.
A related approach has been used by Coron [20].

Our results are different in nature. We assume the vectorfield to be

asymptotically linear. The comparison of the linearized systems at the
equilibrium point x = 0 and near infinity yields (in the autonomous case)
the periods T for which we find periodic orbits. Related results for special
cases are due to D. C. Clark [15a]. We do not necessarily have to assume
that the spectra of these linearized systems are separated from each other,
neither that the Hamiltonians are convex. In addition we emphasize the
fact that we can handle without difficulties the nonautonomous case, which

is not true for most of the above mentioned papers.

REFERENCES

[1] S. AHMAD - A. C. LAZER - J. L. PAUL, Elementary critical point theory and
perturbations of elliptic boundary value problems at resonance, Indiana Univ.
Math. I., 25 (1976), pp. 933-944.

[2] H. AMANN, Saddle points and multiple solutions of differential equations, Math. Z.,
169 (1979), pp. 127-166.

[2a] H. AMANN - E. ZEHNDER, Multiple periodic solutions for a class of nonlinear
autonomous wave equations, to appear in Houston J. of Math.

[2b] H. AMANN - E. ZEHNDER, Periodic solutions of asymptotically linear Hamilto-
nian equations, to appear.

[3] A. AMBROSETTI - G. MANCINI, Theorems of existence and multiplicity for non-
linear elliptic problems with noninvertible linear part, Ann. Scuola Norm. Sup.
Pisa, 5 (1978), pp. 15-28.

[4] A. AMBROSETTI - G. MANCINI, Existence and multiplicity results for nonlinear
elliptic problems with linear part at resonance. The case of the single eigenvalue,
J. Differential Equations, 28 (1978), pp. 220-245.

[5] A. AMBROSETTI - G. PRODI, Analisi non Lineare, Scuola Norm. Sup. Pisa,
1973.

[6] A. AMBROSETTI - P. H. RABINOWITZ, Dual variational methods in critical point
theory and applications, J. Functional Analysis, 14 (1973), pp. 349-381.

[7] M. BERGER, On a family of periodic solutions of Hamiltonian systems. J. Dif-

ferential Equations, 10 (1971), pp. 17-26.
[8] M. BERGER, On periodic solutions of second order Hamiltonian systems, J. Math.

Anal. Appl., 29 (1970), pp. 512-522.
[9] M. BERGER, Periodic solutions of second order dynamical systems and isoperi-

metric variational problems, Amer. J. Math., 93 (1971), pp. 1-10.
[10] D. BLACKMORE, On local normal forms for diffeomorphisms and flows, Notices

Amer. Math. Soc., (1977), A-313.



602

[11] M. BOTTKOL, Bifurcation of periodic orbits on manifolds, and Hamiltonian
systems. Thesis N.Y.U. (1978).

[12] N. BOURGOYNE - R. CUSHMAN, Normal forms for real linear Hamiltonian systems,
in Lie Groups : History, Frontiers, and Applications, vol. VII, editors : C. Martin
and R. Hermann, Math. Sci. Press, Brookline Mass., 1977, pp. 483-529.

[13] H. BREZIS - L. NIRENBERG, Forced vibrations for a nonlinear wave equation.
Comm. Pure Appl. Math., 31 (1978), pp. 1-30.

[14] H. BREZIS - L. NIRENBERG, Characterizations of the ranges of some nonlinear
operators and applications to boundary value problems, Ann. Scuola Norm.

Sup. Pisa, Ser. IV, 5 (1978), pp. 225-326.
[15] A. CASTRO - A. C. LAZER, Critical point theory and the number of solutions of

a nonlinear Dirichlet problem, Ann. Mat. pura e appl., (IV) 120 (1979), pp.113-137.
[15a] D. C. CLARK, Periodic solutions of variational systems of ordinary differential

equations, J. Differential Equations, 28 (1978), pp. 354-368.
[16] F. H. CLARKE, Periodic solutions to Hamiltonian inclusions, Preprint, Van-

couver, 1978.

[17] F. H. CLARKE - I. EKELAND, Hamiltonian trajectories having prescribed minimal
period, Cahiers de mathématiques de la Decision N. 7822, Université de
Paris IX (1978).

[18] C. C. CONLEY, Isolated invariant sets and the Morse index, CBMS Regional
Conference Series in Math., 38 (1978), AMS, Providence, R.I.

[19] C. C. CONLEY - R. W. EASTON, Isolated invariant sets and isolating blocks,
Trans. Amer. Math. Soc., 158 (1971), pp. 35-61.

[20] J. M. CORON, Résolution de l’équation Au + Bu = f où A est linéaire auto-

adjoint et B déduit d’un potential convexe, C. R. Acad. Sci. Paris Sér. A-B,
288 (1979), pp. A805-A808.

[21] I. EKELAND, Periodic solutions of Hamiltonian equations and a theorem of P.
Rabinowitz, Cahiers de Mathématiques de la Decison N. 7827, Université de
Paris IX (1978).

[22] I. EKELAND - J.-M. LASRY, Nombre de solutions périodiques des équations de
Hamilton, Preprint, Paris (1978).

[23] I. EKELAND - R. TEMAM, Analyse convexe et problèmes variationels, Dunod,
Paris (1974).

[24] E. R. FADELL - P. RABINOWITZ, Generalized cohomological index theories

for Lie group actions with an application to bifurcation questions for Hamil-
tonian systems, Invent. Math., 45 (1978), pp. 139-174.

[25] A. FRIEDMAN, Partial Differential equations, Holt, Rinehart and Winston,
Inc., New York, 1969.

[26] P. HESS, Solutions nontriviales d’un problème aux limites elliptique non linéaire,
C.R. Acad. Sci. Paris, to appear.

[27] T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, New York,
1966.

[28] A. LIAPUNOFF, Problème générale de la stabilité du mouvement, Ann. Fac. Sci.
Toulouse (2) (1907), pp. 203-474.

[29] J. L. LIONS - E. MAGENES, Non-Homogeneous Boundary Value Problems and
Applications - I, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

[30] G. MANCINI, Periodic solutions of some semilinear autonomious wave equations,
Boll. Un. Mat. Ital., (5), 15-B (1978), pp. 649-672.

[31] J. MOSER, Periodic orbits near an equilibrium and a theorem by Alan Weinstein,
Comm. Pure Appl. Math., 29 (1976), pp. 727-747.



603

[31a] J. MOSER, New aspects in the theory of stability of Hamiltonian systems, Comm.
Pure Appl. Math., 11 (1958), pp. 81-114.

[32] K. J. PALMER, Linearization near an integral manifold, J. Math. Anal. Appl.,
51 (1975), pp. 243-255.

[33] P. RABINOWITZ, Periodic solutions of nonlinear hyperbolic partial differential
equations, Comm. Pure Appl. Math., 20 (1967), pp. 145-205.

[34] P. RABINOWITZ, Some minimax theorems and applications to nonlinear par-
tial differential equations, Nonlinear Analysis, A Collection of Papers in Honor
of Erich H. Rothe, pp. 161-177, Academic Press, 1978.

[35] P. RABINOWITZ, Free vibrations for a semilinear wave equation, Comm. Pure
Appl. Math., 31 (1978), pp. 31-68.

[36] P. RABINOWITZ, Periodic solutions of Hamiltonian systems, Comm. Pure Appl.
Math., 31 (1978), pp. 157-184.

[37] R. T. ROCKAFELLAR, Monotone operators associated with saddle-functions and
minimax theorems, in Nonlinear Functional Analysis, Part I, Proc. Symp.
Pure Math., 18 (1970), pp. 241-250.

[38] A. N. SHOSHITAISHVILI, Bifurcations of topological type at singular points of
parametrized vector fields, Functional Anal. Appl., 6 (1972), pp. 169-170.

[39] C. L. SIEGEL - J. MOSER, Lectures on Celestial Mechanics, Springer-Verlag,
New York, 1971.

[40] E. H. SPANIER, Algebraic Topology, McGraw-Hill Book Co., Inc., New York,
1966.

[41] K. THEWS, A reduction method for some nonlinear Dirichlet problems, J. Non-
linear Analysis. Theory, Methods, Appl., 3 (1979), pp. 795-813.

[42] K. THEWS, Nontrivial solutions of elliptic equations at resonance, Proc. Roy.
Soc. Edinburgh, 85 A (1980), pp. 119-129.

[43] O. VEJVODA, Periodic solutions of nonlinear partial differential equations of
evolution, Proc. Symp. Diff. Eqs. Appl. at Bratislava, 1966, Acta Fac. Rerum
Natur. Univ. Comenian. Math., 17 (1967), pp. 293-300.

[44] A. WEINSTEIN, Periodic orbits for convex Hamiltonian systems, Ann. of Math.,
108 (1978), pp. 507-518.

[45] A. WEINSTEIN, Bifurcations and Hamilton’s principle, Math. Z., 159 (1978),
pp. 235-248.

[46] A. WEINSTEIN, Normal modes for nonlinear Hamiltonian systems, Invent.

Math., 20 (1973), pp. 47-57.
[47] A. WEINSTEIN, Lagrangian submanifolds and Hamiltonian systems, Ann. of

Math., 98 (1973), pp. 377-410.
[48] G. W. WHITEHEAD, Elements of Homotopy Theory, Springer-Verlag, New York,

Heidelberg, Berlin, 1978.

[49] J. WILLIAMS, On the algebraic problem concerning the normal form of a linear
dynamical system, Amer. J. Math., 58 (1936), pp. 141-163.

Universitat Zurich
Mathematisches Institut

CH 8032 Ziirich (Switzerland)

Ruhr-Universitat
Mathematisches Institut
D-4630 Bochum (Germany)


