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Nontrivial Solutions for a Class of Nonresonance Problems

and Applications to Nonlinear Differential Equations.

H. AMANN - E. ZEHNDER

Introduction.

In this paper we study existence problems for equations of the form

in a real Hilbert space H. Here A is a self-adjoint linear operator, and F
is a potential operator, mapping H continuously into itself. We suppose
that there exist numbers a  P, not belonging to the spectrum r(.A) of A,
such that d(A) n [a, fl] consists of at most finitely many eigenvalues of

. 

finite multiplicities. There are no restrictions whatsoever on d(A) outside
the interval [a, P]. In particular, d(A) can be unbounded above and below.

As for the nonlinearity F, we suppose that

for all u, v E H. Roughly speaking, this condition means that the non-

linearity .F can only interact with the finitely many eigenvalues of A in [a, fl].
The original problem is reduced to the study of critical points of a func-

tional f, which is neither bounded above nor below, in general. Thus standard
variational methods do not apply directly. Condition (1) implies that f
possesses a saddle point on an appropriate subspace of H. Taking advantage
of this fact, we reduce the original problem to the study of critical points
of a functional a, defined on the finite-dimensional subspace Z of H, spanned
by the finitely many eigenfunctions of A, belonging to the eigenvalues
in [a, P]. This approach has been introduced by the first author in [2].

Pervenuto alla Redazione il 30 Luglio 1979 ed in forma definitiva il 30

Agosto 1979.
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In order to study the existence of critical points of a, we suppose,
roughly speaking, that F has a derivative at infinity, F(c&#x3E;o), such that

This is a nonresonance condition at infinity, and it is shown that it implies
the validity of the Palais-Smale condition for a. In contrast to [2], where
it has been assumed that F’(co) = vIH for some v 0 or(A), we allow now
or(F’(c,o)) to be arbitrarily distributed in [a, fl]. Then, given some mild
additional hypotheses, which are satisfied in all of our applications, we de-
duce the existence of at least one solution of Au = F(u). This is achieved by
means of a generalized Morse theory in the sense of C. C. Conley [18]. This

theory has the advantage, that it does not require the critical points of the
functional a to be nondegenerate.

Then we consider the case that .F’( o ) = 0, in which situation we are

interested in the existence of nontrivial solutions of Au = F(u), which cor-
respond to nontrivial critical points of a. In order to deduce the existence

of nontrivial critical points of the functional a, we employ two different
approaches. Namely we use elementary critical point theory and, again,
the generalized Morse theory of C. C. Conley. In each case, the basic idea

is to compare the behavior near zero to its asymptotic behavior near in-
finity. Of course, each of the two approaches applies to different situations.

Our principal abstract results are contained in Section 8, namely The-
orems (8.1-) and (8.3), and in Section 9, Theorems (9.1) and (9.4).

In the second part of this paper we apply our general abstract results to
three different kinds of problems. Namely, we prove the existence of solu-
tions for certain nonlinear elliptic boundary value problems, the existence
of periodic solutions to a class of semi-linear wave equations, and the
existence of periodic solutions of Hamiltonian systems of ordinary differ-

ential equations.
In order to demonstrate the scope of our results, we now outline some of

the applications in a simple setting.
Let Q be a bounded domain in Rn with smooth boundary aQ, and con-

sider the nonlinear Dirichlet problem

where f E Cl(R, R). Moreover w e suppose that
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exists. Then, by meaning by an « eigenvalue of - Zh&#x3E; an eigenvalue of - LI,
subject to the Dirichlet boundary condition, the following result is a very
special case of Theorem (10.2).

THEOREM 1. Suppose that f’( 00) is not an eigenvalue of - LI. Then the

nonlinear Dirichlet problem (2 ) has at least one solution.

Suppose, in addition, that f(o) = O. Then the nonlinear Dirichlet problem (2)
has at least one nontrivial solution, provided there exists at least one eigenvalue À
o f - d such that either f’(O)  Â  f’( 00) or f’( 00)  À  1’(0).

The existence of solutions of nonlinear boundary value problems of the
prototype (2), where f is supposed to be asymptotically linear (or at least
linearly bounded), has been studied by numerous authors (cf. the end of
Section 10 for bibliographical remarks). In the more interesting case that
f(O) == 0, it is a common feature of all of these results, that there exists at
least one nontrivial solution, provided f ’ () « crosses at least one eigen-
value of - d if ll goes from 0 to infinity». However in each one of the

papers known to the authors, this result has only been shown under addi-
tional restrictions, either on I’, or on the eigenvalues, which are being
« crossed », or on both. In our Theorem 1 and, of course, in the much more
general Theorem (10.2), we establish for the first time this result in full
generality, without any further restrictions besides of the nonresonance

condition at infinity.
At this point it should be mentioned, that many papers on so-called

Landesman-Lazer problems suggest the validity of our general result also
in the case that there is resonance at infinity, provided we impose Landesman-
Lazer type conditions. In fact, an analysis of these « Landesman-Lazer

type proofs» shows that these additional Landesman-Lazer conditions

provide appropriate a priori bounds, y which we have deduced in our case
from the nonresonance condition. By exploiting this observation, it should
not be too difficult to replace our nonresonance condition by Landesman-
Lazer type conditions, in order to extend our results to the case that resonance
at infinity occurs. However, for simplicity and to avoid unnecessary length,
we do not consider this somewhat more general case. A similar remark
applies to our other applications. (For another interesting treatment of
the resonance case we refer to the recent paper by K. Thews [42]).

Next we give an application to a nonlinear wave equation. Namely, we
are looking for 2n-periodic classical solutions of the problem
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where f E C2(R, R) and If’($)I _&#x3E;- a &#x3E; 0 for all $ e R. Moreover, we assume

again that

exists.

It is known that the wave operator D under the above periodicity con-
ditions has a pure point spectrum, extending from 2013oo to + c)o , and that
every nonzero eigenvalue has finite multiplicity, whereas 0 is an eigenvalue
of infinite multiplicity.

The following theorem, which is a special case of Theorem (11.2), shows
again that (3) has at least one nontrivial solution if /(0) = 0 and f’($)
« crosses at least one eigenvalue of 0 if ]$] runs from zero to infinity ».
(It should be observed that, due to the monotonicity restriction If’I &#x3E; cx &#x3E; 0,
f’($) cannot cross 0.)

THEOREM 2. Suppose thect f’( 00) is not an eigenvalue of D. Then problem (3)
has at least one 2n-periodic solution.

Smppose, in addition, that f (0) = 0. Then problem (3) has at least one

qioigtriv&#x3E;ial solution if there exists an eigenvalue Â of D such that either f’ (0) 
 Â  /’(-) or /’(-)  2  f’ (0) .

For bibliographical remarks concerning the problem of the existence of

periodic solutions to the nonlinear wave equation we refer to the end of
Section 11.

We finally describe some applications of our general results to the exist-
ence problem of periodic solutions of Hamiltonian systems

where J6 E C2 (R X R2N, R) is periodic in t for some period T &#x3E; 0, and where
J E E(R2N) is the standard symplectic structure on R2N. We shall assume

THEOREM 3. Assume the Hamiltonian vectorfield is asymptotically liigear :

uniformly in t E R, for a time independent symmetric boo E C(R2N). Then the

Hamiltonian system (4) has at least one T-periodic solution, provided or(Jb.) r)
n i(2njT)Z == 0.
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We next assume, in addition, that the Hamiltonian vectorfield JJC,, has
an equilibrium point which we assume to be 0, JJe0153(t, 0) = 0. We consider
a Hamiltonian vectorfield satisfying

and

uniformly in t E R, for two symmetric and time independent b,,, b. E C(R2N).
The aim is to find T-periodic solutions of (4) which are not the trivial solu-
tion u(t) = 0. In order to describe the difference between the two linearized
Hamiltonian vectorfields at 0 and at oo, Jbo and Jboo, which will guarantee
a nontrivial T-periodic solution, we introduce in section 12 an integer,
Ind (b,, boo, í). This integer, which is a symplectic invariant, is defined for
two symmetric bo, boo E L(R2N) and a frequency í &#x3E; 0, and it involves only
the purely imaginary eigenvalues of Jbo and Jboo and their relation to the
frequency T. For instance Ind (bo, boo, z) = 0 if bo = boo, or if bo and boo
have no purely imaginary eigenvalues, while Ind (bo, boo, -r) # 0 if bo &#x3E; 0

(resp. bo  0) and boo  0 (resp. bcx» 0). A nonvanishing index gives rise
to a nontrivial T-periodic solution of (4), as is seen from the following
theorem. Here and in the following we denote by E,(R2N) the space of

symmetric linear operators on R2N.

THEOREM 4. Let Je(t, x) be periodic in t with period T &#x3E; 0, and assume

uniformly in t E R, for two time independent bo, boo E Ls(R2N). Assu1ne a(Jbo) n
n i(2n/T)Z == ø and a(Jbo) r) i(2n/T)Z == 0. If

then the Hamiltonian system (4) possesses at least one nontrivial T-periodic
solution.

CoRo£LARY. I f bo&#x3E; 0 (resp. bo  0) and boo  0 (resp. boo&#x3E; 0), the Hamil-
tonian system (4) has at least one nontrivial T-periodic solution provided
a(Jbo) n i(2njT)Z = 0 and a(Jboo) n i(2njT)Z = 0.
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The explicit computation of the integer Ind (bo, boo, z) leads to other

more delicate existence statements, which also are global in nature. In the
time independent case we find nonconstant T-periodic solutions with pre-
scribed period T for asymptotically linear Hamiltonian equations. For

example, let Je be a convex function on R2N with b,, b. &#x3E; 0. If the two

linear Hamiltonian vectorfields Jbo and Jb. are symplectically inequivalent
one finds a T-periodic solution for every T &#x3E; 0 belonging to some open
and unbounded subset of R+. As for the results and as for bibliographical
remarks we refer to Section 12.

The organization of this paper is seen from the following table of contents.

PART I: General theory

1. The basic hypotheses

2. A saddle point reduction

3. The reduced problem

4. Higher regularity

5. Asymptotic linearity

6. Estimates near infinity

7. Estimates near zero

8. General existence theorems based upon elementary critical point
theory

9. Existence theorems based upon generalized Morse theory

PART II: Applications

10. Elliptic boundary value problems

11. Periodic solutions of a semilinear wave equation

12. Periodic solutions of Hamiltonian systems.

Finally we should like to thank C. C. Conley, Madison, for helpful discus-
sions on his generalized Morse theory, , and R. Stocker, Bochum, for his
advices on problems of algebraic topology. We also like to thank J. Moser,
New York, for valuable discussions on Hamiltonian equations.
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PART ONE

GENERAL THEORY

1. - The basic hypotheses.

Throughout Part One we use without further mention the following
hypotheses and conventions.

H is a real Hilbert space with inner product (. , .) ,

and we identify H with its dual.

A: dom (A) c H --&#x3E; H is a sell-adjoint linear operator.
(A) There exist numbers a  # such that a, fJ rt 1(A), and cr(A) n (a, fl)

consists of at most finitely many eigenvalues o f f inite multiplicity.

We denote by

the eigenvalues of A in (cx, P), and by m(2,) the multiplicity of h;.

We denote the normalized potential of A by 0, that is, 0 E GI(H, R) satis-

fying 0(0) = 0 and 0’= F.
We let {E;’/Â E R} be the spectral resolution of A, and we define ortho-

gonal projections P±, P E E(H) by

respectively. Moreover, we let
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Observe that

and that Z is finite-dimensional with

(with the usual convention that the empty sum has the value 0).
Next we define self-adjoint linear operators

by

and

respectively, , where Pi denotes the orthogonal projection of H onto the

eigenspace ker (Âj- A) of Âj.
It is an immediate consequence of these definitions, that R, S, and T

are pairwise commuting, that R/X, SlY, and TIZ are injective, and that

Hence

and, consequently,

Similarly we find that
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2. - A saddle point reduction.

Formally, the equation Au = F(u) is the Euler equation of a variational

problem. To be more precise, let

Then, for u, 7&#x26; c- dom (A), the directional derivative 3q(u; h) (that is, the
«first variation)&#x3E;) of 99 at u in the direction h is given by

Hence the solutions of Au = -F(,u) correspond to the « critical points &#x3E;&#x3E; of q
and, in principle, critical points could be obtained by variational methods.
However, variational methods are difficult to apply directly, since 99 is

only defined on the dense subspace dom (A) of H. In addition, there is no
restriction on the spectrum of A outside of the interval (a, fl). Thus d(A)
can extend from - oo to + oo and, in fact, this will be the case in some of
our applications. In other words, in general the quadratic term .Au, u)
will be indefinite in the strong sense, that is, it can be positive definite and
negative definite on infinite-dimensional subspaces of H, respectively.

Assumption (.F) implies that the nonlinearity « interacts » only with
that part of the spectrum of A, which lies in (a, fl). Thus the behaviour

of cp on the reducing subspaces X and Y of A should be roughly the same
as the behavior of the quadratic form Au, u) on these subspaces. In fact,
it can be shown that cp is strictly convex on X and strictly concave on Y.
This fact can then be used to reduce the infinite-dimensional variational

problem to a finite-dimensional one, which, roughly speaking, involves

only a(A) n (a, fl).
To exhibit quite clearly the saddle point structure of the functional q,

we introduce now a new functional f, which is defined on all of H, and whose
critical points are in a one-to-one correspondence with the solutions of the

equation Au = F(u).
For this purpose we let

and we define
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Then it is not difficult to verify that (x, y, z) is a critical point of f iff

Rx + By + Tz is a solution of Au = F(u). Moreover, letting

if u(A) n (fl, 00) =1= lil, fixing fJ+ &#x3E; fl arbitrarily otherwise, and setting

it is easily verified that the maps

and

are monotone for every (y, z) E Y X Z and (x, z) E X X Z, respectively.
Thus, due to an observation of Rockafellar [37], it follows that, for every

z E Z, the map

defined by

is a-monotone, that is,

and observe that

for all (x, y, z) E X X Y X Z. Thus 1Jlz is continuous for every z E Z, and

the basic existence theorem for monotone operators (e.g. [23]) implies that
the equation
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has a unique solution (x(z), y(z)) for every z E Z. But this means precisely
that (x(z), y(z)) is the unique saddle point of the functional

Thus

is obviously continuous, it follows that

that is, the saddle point (x(z), y(z)) depends continuously on z E Z.
In fact, much more is true. Namely, due to an observation of Br6zis

and Nirenberg [14, Proposition A.5], hypothesis (F) implies the global
Lipschitz continuity of F. More precisely,

This implies easily the existence of a constant /&#x3E;0 such that

Consequently , (2.3) shows that

is globally Lipschitz continuous.
Now we define g: Z - R by
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Then it can be shown [2] that g E C1(Z, R) and that

(Observe that, in general, the map (x(.), y(-)) is not differentiable, so that
the chain rule cannot be applied.) Thus, by using the representation (2.3)
of D3 f and the global Lipschitz continuity of F and (x(-), Y(.)), it follows
that g’ is even globally Lipschitz continuous.

In the following proposition we collect the basic facts derived above.

(2.1) PROPOSITION. There exists a globally .Lipschitz continuous map

such that (x(z), y(z)) is the unique saddle point of f(’,’, z) : X X Y -7- R for
every z E Z. Thus the point (x(z), y(z)) E X X Y is characterized by the {( saddle

point inequalities )&#x3E;

as well as by the fact that (x(z), y(z)) is, 101. every z E Z, the unique point
(x, y ) E X X Y solving the system

Moreover, g has a globally Lipschitz continuous derivative g’ : Z -+ Z,
which is given by

Finally, z is a critical point of g i f f Rx(z) -[- Sy(z) + Tz is a solution of
Au = F(u).

Observe that, by the above proposition, the problem of finding solutions.
of the equation Au = F(u) is equivalent to the problem of finding critical
points of the functional g. This reduction to a finite-dimensional case has

been introduced in [2]. Proposition (2.1) is essentially a restatement of
some of the results of [2], and we refer to that paper for further details.
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It is also worthwhile to notice that, up to now, the finite-dimensionality
of Z has not been used.

(2.2) REMARK. Suppose that 27 is a topological space and

is a continuous map such that, for every 0’ E E, the function F(d,.): H -&#x3E; H
satisfies (F) (with x and P independent of a). Then, denoting by (/&#x3E;(0’,.)
the potential of F(o’,’) and defining f(u, . ) : X X Y X Z - R by

an inspection of the above proof shows that, for every (a, z) c-.E x Z, there
exists a unique saddle point (x(,Y, z), y(J, z)) of f(O’,.,., z) : X X Y -7 R, and
that (x(-, .), Y(-, .)) E O(ExZ, Xx Y). Moreover,

is globally Lipschitz continuous, uniformly with respect to a e 27.
Let

Then g(o’,’) E CI(Z, R) for every a e Z, and D2g(0’,.): Z - Z is globally
Lipschitz continuous, , uniformly with respect to or e Z. Finally, , z is a cri-
tical point of g(a, -) iff Rx(O’, z) + SY(O’, z) + Tz is a solution of the equa-
tion Au = F(O’, u), 0’ E E. F]

As an immediate corollary to Proposition (2.1) we note the following
existence and uniqueness result, already given in [2].

(2.3) THEOREM. I f O’(A) n (oc, 0, then the equation A’lt == il’(U) has
ezactly one solution.

PROOF. It suffices to observe that, in this case, Z = fol. 0

Since, by the above theorem, the case cr(JL) n (a, /?) = 0 has been com-
pletely solved, we assume henceforth that O’(A) n (a, @) =1= 0.

3. - The reduced problem.

Observe that
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and let

Then, by Proposition (2.1),

is globally Lipschitz continuous, and

(cf. (2.5) and (2.6)). Moreover, a has a globally Lipschitz continuous deriv-
ative, given by

Thus Proposition (2.1) implies that

Hence we have reduced the original problem of finding solutions to the
equation Au = F(u) to the equivalent problem of finding critical points of
the functional E Ci(Z, R).

In the following lemma we collect some properties of a, which will be
useful for finding critical points.

and

Then, by (1.2),
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for all x c- X such that Rx c- dom (A). Similarly, ,

for all y E Y with Sy E dom (A), and

Consequently,

for all (x, y, z) E X x Y x Z such that .Rx, Sy E dom (A). Now the asserted
representation of a(z) follows from the definitions of a and u(-), and from (3.3).

The equation

follows easily from (3.4), (2.7) and (1.4). By substituting (x(z), y(z)) into
the equations (2.5) and (2.6), applying JS to (2.5) and S to (2.6), and by
using (1.2) and (1.3), we find that (Rx(T-l z), Sy(T-IZ)) E X X Y is charac-
terized by the equations

for all z E Z. Thus, the last part of the assertion follows by adding the

equations (3.9) and (3.10) to (3.8). D

We include here an invariance property of the functional a, which we
will use in a later paper discussing multiplicity results.

(3.2) PROPOSITION. Let U E E(H) be a unitary operator, which commutes
with A and X, that is, AU:J U.A and Fo U == U of, respectively. Then

ao U == a.

PROOF. Since U commutes with A, the subspaces X, Y, and Z reduce U,
and U commutes with R, S, and T. Furthermore, since U commutes with P
and preserves inner products


