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One Attempt to the K3 Modular Function - II.

HIRONORI SHIGA

§ 0. In the previous paper ([9], we quote it as the part I ) the author
pointed out that the Picard’s modular function (see [1]) coincides with the
one for a certain family of elliptic K3 surfaces with 2 complex parameters.
The elliptic modular function is characterized as a function which gives
the moduli of elliptic curves. And already there are various extensions of
the theory of the elliptic modular function. Perhaps one fruitfull extension
is the one for the Abelian varieties. And the Abelian variety seems to be a
natural extension of the concept of the elliptic curve. But the author
thinks that the K3 surface is another extension. Then he tried to find a

new modular function of several variables by considering a family of K3
surfaces. The part I was the first experiment for this supposition. In this

paper we study several types of elliptic .g3 surfaces and the period mapping
for them. And we show that the period is given as a ratio of two solutions
of Appell’s hypergeometric equation .F’1.

We proceed our consideration as the following. We study the elliptic K3
surface X with following properties (see [3] for the general theory of the
elliptic surface and [4], [5] for the .g3 surface):

(i) .X has a holomorphic section,

(ii) the functional invariant f is the constant function 0,

(iii) X has five singular fibres.

By a JOK3 surface we mean an elliptic K3 surface with the properties (i)
and (ii).

In § 1 we find a representing equation (1-5) for a JOK3 surface with
maximum number of singular fibres. Next we show that there are 9 types
of JO.K3 surfaces with the property (iii) (Proposition 1-4). It will be called a

surface of class (j). Any JOK3 surface has an automorphism o of order

Pervenuto alla Redazione il 31 Gennaio 1980.
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three which preserves all fibres. Let ll be a domain in P2 defined by($ =
= [$1, 2 , 3]; i =1= j, 0 for i =1= j}, where [$1 , 1 $2, $.1] is a homogeneous coor-
dinate on P2. A surface 8; of class (j) is determined by a point $ on A. We
denote it by Sj($). There uniquely exists a holomorphic 2-form T on Sj($),
up to constant factors, because 8; is a .K3 surface. We determine this form
in Proposition 1-5.

In § 2 we construct a basis system r = {Ol, ..., 022} of H2(Sj($), Z)
and a basis system I* = {G,, ..., G22} of H2(Sj($), Q) with OiGj = ðij (Pro-
position 2-3). Among themC7, ..., C22 and G7, ..., G22 are given as divisors.
The intersection matrix A. = (Gi Gj )1 si, sg is determined in Diagram 4.

In § 3 we consider a period integral

for a surface 8;($). Because C,, ..., C,, are algebraic cycles, we have q;(8) = 0
for i = 7,..., 22. And it occurs a relation (3 -4) among ?IIL 7 - - - 7 716 - Con-

sequently the period mapping 0 = [,q, y ..., q,, ] reduces to a mapping from A
to P2. The image Ø(A) is contained in a domain Dj (j = 1, ..., 9), where 92, j
is determined by Diagram 6 and (3-6). The domain Qj is biholomorphically
equivalent to a hyperball (Proposition 3-1).

And we define a monodromy covering domain A over A at the biginning
of this section. Then 0 becomes injective on A (Proposition 3-2).

In § 4 we consider the monodromy of q,($). And we determine the

Appell’s hypergeometric function .I’1 which coincides with ni(03BE) (Proposi-
tion 4-1).

In § 5 we study the behavior of 0 on the hyperplane H ij = ($; = $; ;
i =1= j, i = 1, 2, 3 and j = 0, 1, 2,3} in P2. And we point out the domain Ao
to which the mapping 0 can be extended. As a consequence of this inves-
tigation we know that 0 induces a biholomorphic equivalence between
A = P2 and (S?jlG)*, where G indicates the discontinuous group induced
from the monodromy and (Q¡/G)* is the Baily-Borel compactification of

4ll; jG, for i = 1, 2, 3, 4 (Proposition 5-2).
The author obtained the results in the part. I and in this paper by

refering the esthetic principle « gonkadori » which is found in the medieval

Japanese anthology.

1. - Representing equation.

[1]. In the part I (Proposition 2-1) we already showed the necessary
and sufficient condition that an elliptic surface of basic type, namely a
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surface with a holomorphic section and without a multiple singular fibre,
should become a g3 surface. According to Pjateckii-0160apiro and Safare-
vic ([5], Corollary 2 to Theorem 1) a JO-K3 surface (X, a, L1) has no multiple
singular fibre. Then it becomes of basic type. Hence we have 11 = P and

z( x) = 24, where Z indicates the Euler characteristic. WTe employ following
notations:

11: a compact Riemann surface with genus p,

f: a meromorphic function on L1,

$1, ..., 03BEr : points on L1 such that f # 0, 1, oo on L1’ = L1 - ($1 , ..., 03BEr
(if f - constant we choose arbitrary points $1 , ... , 03BEr),

’ : a fixed point on L1’,

{hlll---2h2.v}: a canonical generator system of ni(4, 8’),
gi: a closed arc with terminal point 8’ which goes around 03BEi in the

positive sense.

Then we obtain a generator system (hi , ... , h2’P’ gl , ..., gr} of 1l1(L1’, 03BE’ )
with only one relation

Let cv be a multivalued analytic function on 4’ defined by the equality
joco = f (if f - 0, 1 we set m - exp (fni) and i, respectively), where j in-
dicates the elliptic modular function. Let a)($’) be a certain branch of (0
at 03BE’. We denote by hiw(03BE’) and giw(03BE’) respectively the values of a) ob-
tained by the continuation of to($) along hi and gi. These are given by
modular transformations Sht and 8g,, respectively. Let S(hi) and s(gi) be
matrices in SL(2, Z) which induce Sh, and S,,,, respectively, and suppose
that these matrices give a representation of xi(4’, $’) into SL(2, Z).

This representation is a homological invariant ,D belonging to f. It

follows a theorem due to Kodaira ([4], Theorem 10.2).
THEOREM. Let us consider the situation mentioned above. There exists

uniquely, as a fibre surface, an elliptic surface (X, n, 4) of basic type with
the given functional invariant f and the homological invariant §. And its

singular fibres are situated over 81, ... , $r .

By a critical point we mean a point $; such that x-1(8;) is a singular
fibre.

Here we show that the homological invariant is uniquely determined
by the types of singular fibres in our situation. In case of f == 0 the matrix
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S(hi) (8(gi)) is one of the following 6 types ([4], § 9):

All matrices in (1-1) are commutative each other, then we obtain an ex-
plicit condition that {S(h,)7 S(Ui)} gives a homological invariant belonging
tof==0:

Let * be such a homological invariant. And let (X, n, J) be an elliptic
surface of basic type with given f == 0 and § as mentioned in the above
Theorem. There is a one to one correspondence between the matrices $(,i)
and the types of singular fibres n-1(8,) as the following:

By a JO singular fibre we mean a singular fibre listed in (1-3). Con-

sequently we obtain the following.

PROPOSITION 1-1. When we choose JO singular fibres a-3L(qi) (i = 1, ..., r)
so that the corresponding matrices S(e,) satis f y the relation (1-2), then there exists
uniquely an elliptic surface of basic type with f - 0 which has the appointed
type of singular fibre over each $, .

REMARK 1-1. We can obtain a similar conclusion for the case f -
- constant.

REMARK 1-2. Let {YI, Y2} be a basis system of G = Z) with
the properties

where co indicates the Abelian differential on n-i($’). And let Mi be a

monodromy transformation of G induced from the arc gi. Then the matrix
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in (1-3) corresponding to n-1(03BEi) represents .111i with respect to {YI7’Y21-
Such a basis {Yl, Y21 will be called canonical.

Let C be a JO singular fibre and let Si (i = 0, 1, ..., 5) be the corre-
sponding matrix. Then we have

Next we consider r JO singular fibres (7iy ... , Cr, and let Sil’ ... , Sir be cor-
responding matrices. Assume that we have . 

’ r

Because of (1-4) it follows Sil ... Sir = S12 = E. According to Proposition 2-1
in the part I and Proposition 1-1 we have the following.

PROPOSITION 1-2. Let us appoint finite points 81, ..., $, on P and the
types of JO singular fibres for each $i so that the total sum of their Euler charac-
teristics is equal to 24, then there exists uniquely a JOK3 surface with these

singular fibres.

REMARK 1-3. According to this proposition and the relation (1-4) we
know that a JOK3 surface has at most 12 singular fibres, and in the maxi-
mum case any singular fibre is of type II.

[2]. Let us consider the following variety X with 12 different parameters
i (i 

. 

= 1, ..., 12): .

where [1’}o, (!1’ 1’}2] and [q§ , q§ , q§] are homogeneous coordinate systems on P2,
and we identify two points ([1’}o, 1’}1, 1’}2]’ u) and ( [q§ , q§ , q§], u’ ) by the
condition

1

if we use an affine coordinate (u, v = 771/?Io, W = n2 /no), we obtain an
affine representation of X:
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Let x be a projection mapping from X to the u-sphere P. And let us
consider a fibre surface (X, ny P). It is easily shown that X is nonsingular
and n-’(u) is a nonsingular elliptic curve with the invariant 0 for every u
except $i (i = 1, ..., 12). And also we can see that n-1(8;) is a rational

curve with one cusp singularity at [1}0, 1}1, 1}2] = [0, 1, 0], namely it is a

singular fibre of type II. Then the total sum of the Euler characteristics

of x-i($;) is equal to 24. By Proposition 2-1 in the part I we obtain that
(Xy y, P) is a K3 surface.

The curve L = {1}1 = 1]2 = 0) = 1 = 2 == 0} gives a holomorphic sec-
tion. Moreover we can show that the form cp = w-2 duadv in (1-6) gives a
holomorphic 2-form on X. Thus we obtain:

PROPOSITION 1-3. The nonsingular variety X defined by (1-5) gives a

representation of a JOK3 surface with maximum number of singular f ibres.
Its unique holomorphic 2-form is given by T = w2 duadv using the au f f ine
representation (1-6).

REMARK 1-4. Let us consider the above surface (1-5). And suppose
that critical points $i,,, ..., $i A; coincide with a point $,,. Then the mono-

dromy matrix for the arc go with respect to a canonical basis {Y1’ Î’2} in
Remark 1-2 is given by Sk . Let q be an integer with q - k (mod 6) and
o  q  6. Because 81 is of order 6, we have 8§J = 8f. By the correspond-
ence (1-3) we know that the fibre x-i($o) has to correspond to SQ..

[3]. Next we consider a JOK3 surface with 5 singular fibres Ci, ..., C5 .
Such a surface will be called of type F. According to Proposition 2-1 in
the part I we have

In the part I we already studied a certain class of surfaces of type F,
namely the surface with 4 singular fibres of type IV and one singular fibre
of type IV*. We denote such a combination of singular fibres by 4IV’ + IV*.

PROPOSITION 1-4. l’liere are nine classes of the surface of type If:

PROOF. If we consider the relation (1-4) and (1-7), we obtain the above 9
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combinations by an elementary calculation. By Proposition 1-2 there ex-
ists a surface with such a combination of singular fibres. q.e.d.

By a surface of class (j) ( j = 1, ..., 9) we mean the j-th surface in Pro-
position 1-4. Let us consider the following affine variety V with 5 different
parameters $, i (i = 1, ..., 5) :

where we assume that the values vi satisfy the condition

Let S be a minimal nonsingular model of V, and let a be a projection
mapping from S to the u-sphere P. Then the fibre surface (8, 71:, P) is an
elliptic surface with five singular fibres over u --- 81, ..., $s, and its func-
tional invariant f is equal to 0. Because of Remark 1-4 and the relation

(1-4) we have y(S) = 24. This surface has a holomorphic section ..L =

- fv = w = 0}. By Proposition 2-1 in the part I we obtain that (S, i, P)
is a .K3 surface, hence it is a surface of type F.

Let us consider the 2-form 99 = w-2 duadv. It is holomorphic on the
regular fibre. Then we investigate its behavior on the singular fibre. Let p
be a projection mapping from V to the u-sphere. It is easy to see that

p-l(Ei) is nonsingular on the affine part, and is holomorphic there. If

we set v’ = l /v and w’ = ww, then we obtain a representation of V:

From this representation we can see that p-l(03BEi) has various types of
singularities depending on vi .

We have normal forms of the isolated singularity on p-’(03BEi) as Diagram 1.
These are rational double singularities. Then every curve which occurs

as a consequence of the resolution of the singularity has the selfintersec-
tion number - 2. Already we know that is holomorphic at any non-
singular point on V. It does not occur that a meromorphic form has its
pole only along exceptional curves of second kind. Hence q; is holomorphic
on S.

REMARK 1-5. If zve have vi = 6, the fibre p-1(03BEi) has a singularity
x2 + y3 + zll = 0 at infinity. This is a simply elliptic singularity of type.R,,.
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Diagram 1

Then it occurs a nonsingular elliptic curve E from this singularity. The

form 99 has its pole along E, and we have n-i($;) = E.
From the above consideration we have the following.

PROPOSITION 1-5. We have a representation of a surface of type F as the
minimal nonsingular model of the variety V defined by (1-8) and (1-9). And
its holomorphic 2-form 99 is given by w-2 duadv.

2. - Homology basis.

[1]. Let us consider a JOK3 surface (S, n, P). Let f$,, $1 , ..., I $ool
be the totality of the critical points. And we assume that $o = 0 and
= oo. Let Zi (i = 0,1, ... , r) be an arc connecting $; and oo so that does
not intersect any other lj.

we employ the following notations:

,J: the base Riemann surface P,

03BE’ : a fixed point on L10,

fy,, y,l: a canonical basis of .gx(C, Z).

Let gi (i = 0, 1, ..., r, oo) be the closed arc defined in § 1 [1] so that

any gi (i = 0, 1, ..., r) does not intersect for i # j and that g-1 intersects
Zo, ... , Zr in this order. And let ai (i = 1, ..., r) be an oriented arc which
starts from 0 and goes to $, without intersecting any 1, (j =1= i).
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Let g be an element of a, (,d 1, 1) so that it induces a trivial monodromy
of H1(C, Z). If we make a continuation of a 1-cycle y on C along g, we
obtain a 2-cycle on S. We denote this 2-cycle by g X y, and g will be called
a base acrc of g X y We define the orientation of g X y as the ordered pair of
the orientation of g and the one of y.

[2]. Let us consider a JOK3 surface (S, 7r, P) with 12 singular fibres
olr-’($i) (i = 0, 1, ..., oo). We set

The intersection matrix if = (GiGj),:,j;5,, is given as the following:

This is examined by the same method developped in the part I § 3.
Here we note that EGi = 0 (i = 1, ... , 20 ) is obtained by the direct

observation of Gi constructed by use of the representation (1-6). By an

elementary calculation we obtain that if is invertible. We have b2 = 22
for a .K3 surface. Hence {Gl, ..., G,,21 gives a basis system of H2(S, Q).
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Because the fibre space (n-1(L1o), n, Llo) is trivial, we can determine a
canonical basis {YI(U), Y2(U)} of. any fibre n-1(u) over a point u of 40 by
making a continuation of {Yl’ Î’2}. Let us consider the representation (1-6).
We can regard a general fibre a-’(u) as a three sheeted covering Riemann
surface over v-sphere, and its ramified points are situated over v = 0 and
v = :t {3, where

We can realize {YI, Y2} as the cycles obtained by arcs connecting two
ramified points over fl and - #. Consequently y,,(u) and Y2(U) tend to the
infinite point as u tends to a critical point 03BEi . Hence we obtain a 2-cycle
on S as the continuation of a 1-cycle y(u) along a2. We denote it by oe,xy.

We set

where we define the orientation of C, (i = 1, ... , 20 ) as same as for G j . It

is easily shown from the construction that we have

Let G be an arbitrary element of H2(S, Z) and set ri = GGi. It follows

from (2-3) that

This implicates G = ’fIOl + ... + r22 C22’ Thus we have the following.

PROPOSITION 2-1. The system (Ci, ... , C22} defined by (2-2) gives a basis
system of H2(S, Z). And the system {GI, ..., G22} defined by (2-1 ) gives a basis
system of H2(S, Q). And these two systems are dual each other, namely we
have the relation (2-3).

[3]. Here we consider a surface (S, n, P) of type F. By a fractional
linear transformation we arrange the singular fibres so that they are situated
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as Diagram 2.

Diagram 2

For the moment we fix the parameters I = [El, E2, E3] so that we have

And we assume that tz (i = 0, 1, 2, 3) is given as a line segment. We
define 2-cycles GI, Gs, 05 on 8 as Diagram 3.

Diagram 3
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We can easily show that they are certainly 2-cycles, because we already
know the monodromy transformation of H1(C, Z) induced from gi (Re-
mark 1-4). We set

where g indicates the base arc of G2i-l.
Next we construct algebraic cycles on S. There are 14 components of

singular fibres which does not intersect the holomorphic section L. We
denote them by G7, ..., G2o, and set G21 = L, G22 = C.

By the construction we can show that we have

Let A be the intersection matrix (au) = (GiGj),,i,116 induced from
Gi, G6’ And let B be the one (bij) = (Gi+6Gj+6)1i,i16 induced from
G7, ... , G22 . We can determine B by considering the geometric figure of
the JO singular fibres.

REMARK 2-1. The matrix B is a direct sum of several minor intersection

matrices each of them is the one induced from a J’0 singular fibre or the
one induced from G2, and G22. But we must note that we excluded one

simple component from each singular fibre to get G7, ..., G2o .
As a consequence we obtain that B is invertible for any class (j) ( j =

= 1, ..., 9). According to the same method developped in the part I § 3
we can calculate the matrices A = Aj for the surface of class (j) (j =

19..o 9) as Diagram 4.
We can see that any Aj is invertible. Let M be the full size intersec-

tion matrix (GiGj), ;5 i, j;5 22 From (2-6) we obtain a direct sum decom-

position M = A (B B. Consequently we know that M is invertible. Then

we obtain a basis system {Gt, ..., I G12} of H2 (SI Q) for a surface of type .F’

with fixed parameters by (2-4).
Now we regard [03BE1’ 03BE2’ 03BE3] as a point on P2. And we use the fol-

lowing notations:

His = (I + 03BE1, 03BE2’ 1 $31 ; 03BE1 = 03BEj}, where I # I f or i =1, 2, 3 and y =
= 0, 1, 2, 3,

A= P2 -{the union of all 7?,J,
A = the universal covering of A,
p : the natural projection from A to A,
S,($): a surface of class (j) determined by parameters$ = [$111 $2 03BE3]

on A,



169

Diagram 4

where

We can determine a trivial fibre space ,F j over Ã with a fibre S;(() =
Sj($) for p(!) = 03BE. Using the trivialization of 9, we obtain a continua-
tion of the cycle Gi. Hence we get a basis system of H2(Sj(!), Q).

REMARK 2-2. The algebraic cycles GII ...,022 are invariant when the
continuation is performed.

From the above argument we obtain the following.

PROPOSITION 2-3. Let G;(I) (i = 1, ..., 6) be the 2-cycle on Sj(!) obtained
by a continuation of Gi. Then F* (f) = {G1(!), ..., G6(!), G7, ..., G22} gives a
basis system of H2(Sj(!), Q). And the intersection matrix Aj of Gl(!), ..., G6(!)
is given by Diagram 4. And algebraic cycles G7 ..., G22 are orthogonal to

G1(!), ..., G6(!).
Next we construct a basis system T = {Ciy ..., 1 C22} of H2(S, Z) which

is dual to r*. Here again we consider a surface S of type F determined

by fixed parameters $ with (2-4).


