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Diffusion on Viscous Fluids.

Existence and Asymptotic Properties of Solutions.

H. BEIRÃO DA VEIGA

Summary. - In this paper we consider the motion of a continuous medium consisting
of two components, for example, water and a dissolved salt, with a diffusion effect
obeying Fick’s law. We denote by v, w, e, ~c, ,u, A the mean-volume velocity, mean-
mass velocity, density, pressure, viscosity and diffusion constant, respectively. By
using Fick’s law we eliminate w from the equations and we obtain ( 1.1 ), where p
is the modified pressure; see section 1 and re f erences [2], [4], [5], [6]. The initial

boundary conditions are given by equation ( 1.2) . Kazhikhov and Smagulov [5], [6]
consider equation ( 1.1 ) for a small diffusion coefficient A. More precisely they assume
that condition (1.3) holds, and they omit the A2 term in equation (1.1)1. Under these

conditions they prove the existence of a unique local solution f or the 3-dimensional
motion (in the two-dimensional case, solutions are global). In our paper we consider
the f ull equation ( 1.1 ), without assumption ( 1.3), and prove: (i) the existence

of a (unique) local solution; (ii) the existence of a global solution in time for small
initial velocities and external forces, and for initial densities that are almost constant;
(iii) the exponential decay (when t - -~- oo) of the solution (e. v) to the equilibrium
solution ( ~o", 0), if f --- 0. See Theorem A, section 1.

Main notations.

S2: an open bounded set in R3, locally situated on one side of
its boundary 7~ a regular (say C4) manifold.

n = n(x): I unit outward normal to 1~’.

11 , (, ) : norm and scalar product in _L2(.Q).

Pervenuto alla Redazione il 27 Dicembre 1982.
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Hk : Sobolev space Hk,2(Q) with norm

where

Further,

closure of in H1(Q).

norm in 

Hilbert spaces of vector v = (vl, v2, V3) such that 

(i = 1, 2, 3 ) respectively. Corresponding nota-
tion is used for other spaces of vector fields. Norms are defined

in the natural way, and denoted by the symbols used for
the scalar fields.

Let us introduce the following functional spaces (see for instance [7],
[8], [12] for their properties):

H and V are the closures of 9J in L2(Q) and respectively. More-

over L2 = H + G, where G --- p e H1(,S~)~. Denoting by P the ortho-
gonal projection of L2 onto H, we define the operator A « - P L1 on

D(A) V. One has

The norms are equivalent in are equivalent
in HN and are equivalent in D(A). We define 
the norms Ilvllv, are equivalent in V.
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Banach space of strongly measurable functions defined in
]0, T[ with values in (a Banach space) X, for which

Banach space of X-vector valued continuous functions on

[0, T] endowed with the usual norm ·

viscosity (a positive constant).

diffusion coefficient (a positive constant).

mean-volume velocity. Initial m.v. velocity.

density of the mixture. Initial density. Further

We assume that m &#x3E; 0.

pressure. Modified pressure

external mass-force.

We denote positive constants depending at most
on ,S~ and on the parameters It, 1, m, M, ~. It is easy to derive, at any stage
of the proofs, the explicit dependence of the constants on the parameters.

For convenience we sometimes denote different constants by the same
symbol c. Otherwise, we utilize the symbols c, ck, kEN.

1. - Main results.

In this paper we consider the motion of a viscous fluid consisting of
two components, for instance, saturated salt water and water. The equa-

tions of the model are obtained, for example, in [2], [4], [5], [6]. Let us

give a brief sketch. Let ~2 be the characteristic densities (constants)
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of the two components, v(’)(t, x) and V (2) (t, x) their velocities and e(t, x),
d(t, x) the mass and volume concentration of the first fluid. We define the

(1 - d ) 2 , and the mean-volume and mean-mass ve-
locities v w -- (1 - )(2) w = ev(1) + (1 - e)V(2). Then the equations of
motion are given by

On the other hand, Fick’s diffusion law (see [2]) gives w == v - 
By eliminating of w in the preceeding equation one gets, after some cal-
culations,

We want to solve system (1.1) in QT = ]0, Here p is the modified
pressure. We add to system (1.1) the following initial boundary-value con-
ditions

The first two conditions mean that there is no flux through the boundary.
In [5], [6] Kazhikhov and Smagulov consider the simplified system

obtained from ( 1.1 ) 1 by omitting the term containing 12. Moreover they
assume that

Under these conditions Kazhikhov and Smagulov state the existence
of a local solution in time (global in the two dimensional case).
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In our paper we take into account the full equation (1.1) and omit the
condition (1.3). For this more general case we prove: (i) the existence of a
(unique) local solution for arbitrary initial data and external force field;
(ii) the existence of a unique global strong solution for small initial data
and external force field. Moreover, if f = 0, the solution (py v ) decays ex-
ponentially to the equilibrium solution (e, 0). More precisely we prove the
following result:

Moreower, there exist positive constants k1, k2, ka depending at most on

Q, p, it and on the mean density ê(l) such that if

and

then the solution is global in time. If f = 0 the solution (e, v) decays ex-
potentially to the equilibrium solution (ê, 0), i.e.

for every t ~ 0.

Theorem A also holds for coefficients p, 2 regularly dependent on ~, v,
provided they are strictly positive and bounded in a neighborhood of the
range of values of the initial data (2o(x), vo(x). This generalization can be
done without any difficulty. Moreover, with standard techniques, one can
prove that the solutions have more regularity (up to C°°) if the data are

sufficiently regular and the usual compatibility conditions hold.
Local existence in the general case (i.e. with the Â2 term, and without

(1.3)) was proved in the inviscid case by Beirao da Veiga, Serapioni, and
Valli in [1]. A similar result, in the viscous case and for ,S~ = lEg3, was
proved by Secchi [11]. For another kind of approach (concerning Grafh’s
model) see [10].

(1) Or, equivalently, depending on the total amount of mass
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2. - The linearized equations.

We start by proving the following theorem:

THEOREM 2.1. Let e(t, x) be a measurable function satisfying

and let F E .L2(0, T; H) and v,, c- V. Then there exists a (unique) strong solu-
tion v of problem

PROOF. Let us write equation (2.2) in the equivalent form

For brevity let us put

From well known results (see [9], Vol. I, chap. I: theorem 3.1 with

Y = H, X = D(A), j = 0; and (2.42) proposition 2.1) it follows that

X -&#x3E; C(0, T; V).
We start by proving the apriori bound (2.3); an essential device is

to introduce a parameter so in order to conveniently balance the esti-

mates. In H take the inner product of (2.4) with Dtv -f- 8,,Av, 80 &#x3E; 0. Since
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one gets

By using the inequalities

Now fix (4M2)-lm,u and integral equation (2.6) on (0, T). This

gives the apriori bound (2.3).
Define «left hand side of equation (2.3) », M- L2(o, T; H) X V

and II(F, hand side of (2.3) ».
We solve (2.4) by the continuity method. Define (1 - ce)( + ae,

a E [0, 1]. Clearly (lex verifies condition (2.1), for any a. Define (1 - a)T
+ aT, where

Finally consider problem (2.2) with e replaced by eex’ i.e. problem Tav = (F,
vo). Denote by y the set of values oc E [0, 1] for which that problem is solv-
able in 3C for every pair (F, vo) E y. Clearly 0 E y, because for this value
of the parameter equation (2.6) becomes the linearized Navier-Stokes equa-
tion. Let us verify that y is open and closed.

y is open. Let ao E y and denote by G(F, va) --- v the solution v of prob-
lem From (2.3) one gets GEL(’H, X) (2), with 
Equation = (F, can be written in the form

Since equation ( 2.7 ) is solvable for [ s [
 (by a Neumann expansion).

y is closed. Let and let Vn be the solution of T an vn
- (F, vo) . From (2 .3 ) one has Since 3C is an Hilbert space,

(~) The Banach space of linear continuous operators from 1J into with norm

11 .
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there exists a subsequence weakly in 3C. From 

one has Tvv -~ Tv, Tv weakly in 9j. Hence --~ T.ov7 i.e. Taov
=(~~o). N 

Let us now return to problem (1.1). Define

For convenience we will use in the sequel the translation

Recall that ~ is a given constant. To solve problem (1.1), (1.2) in our
functional framework is equivalent to finding v E .L2(o, T ; D(A)), v’E L2(0,
T ; H) and a’E L2(0, T; Hi) such that

where and == - ê E are given. Note that from the

above conditions on 0’ it follows 
We solve (2.10) by considering the linearized problem

and by proving the existence of a fixed point (~, v) = ((2, v) for the map

(~, v) ~ (~o, v) defined by (2.11).
In order to get a sufficiently strong estimate for the linearized equa-

tion (2.11 )3 we take in account the particular form of the data v.vë. As
for estimate (2.3) we will introduce a balance parameter e &#x3E; 0.
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for every positive e satisfying

where e1 is the constant in (2.16)..gere e1, e2, e3 are positive constants depending
only on Q.

PROOF. The existence of a solution a in the required space follows from
standard techniques using the apriori bound (2.12) or using [9], vol. II,
chap. 4, theorem 5.2, with 2Q= HI. Let us prove (2.12).

By applying of the operator L1 to both sides of (2,ll )~, then multiplying
by 4J, and finally integrating over Q, one gets 
V J(y) = 0. Note that L1a - v. Va) = 0 on Hence

Using Sobolev’s embedding theorem L6 and Hölder’s inequality
we obtain

A utilization of o leads to

Hence for 8 satisfying (2.13) one has
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where the constants c depend only on Q. This proves inequality (2.12).
Recall that 

REMARK. One could also consider the linearized equation 
instead of ( 2 .11 ) 3 ; then estimate (2.17) holds with 5 replaced

by 0’ and without the term In this case the solution o of the

linearized problem satisfies the maximum principle (which doesn’t hold for
the solution of (2.11 )3). However, the linearization (2.11 )3 seems to be more
in keeping with the linearization (2.11)1. Besides, the maximum principle
will be recovered for the solution of the full nonlinear problem ( 2 .10 ) 3 .

3. - The nonlinear problem. Local existence.

We will not take care of the explicit dependence of contants m,

M ; some of the constants c, ck, depend on these fixed quantities. In order

to simplify the equations, we denote by K2, ... constants depending
on the norms of the initial data I/vol/v and 

In this section we solve (2.10) by proving the existence of a fixed point
v) = (~, v) for system (2.11). Define

where e4==¡,t[min (p, M, (see (3.2) below) and 
Here f == E(D) is a positive constant such that

Note that for every 6 E ~2 one has in QT

We now evaluate the L2 norm of F == F(e, v). By using Sobolev’s em-
beding theorem and U61der’s inequality one easily gets
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Consequently

Hence, by using (2.3), it follows that the solution v of (2.11)1, (2.11)2
verifies

On the other hand, from (2.12 ), 7

Now we fix ê &#x3E; 0 such that Finally, by choosing T &#x3E; 0

sufficiently small, it follows that v e e J{,2. The estimate for fol-

lows by using equation (2.11)3 and (3.1). The estimate for the sup norm

of a - Jo in QT is proved as follows. Clearly y

On the other hand where c5

depends only on SZ; recall that Consequently

Hence, by choosing (if necessary) a smaller value for T, one gets 11 or
O(DT)  m/2.

Now we utilize Schauder’s fixed point theorem. Clearly Jt - Jt1 X Jt2
is a convex, compact set in Z~(0, T ; T ; .L2). Let us denote by 0
the map ~) == (e, v), defined by (2.11). Since c X, it is sufficient
to prove is continuous in the L2 topology. If in

L2(QT), en - j in .L2(QT), it then follows by compactness arguments that
;~,, --&#x3E;;~ weakly in L2(0, T ; H2) and in Hi(0, T; L2), and ve weakly
in E2(0, T ; H2) and in H~(0y T ; L2). In particular en is a bounded sequence
in T; (3), for suitable positive El, £2’ a. Hence

uniformly in QT. Moreover, vn and ven are bounded in T ; Hi)

(3) a-Holder continuous functions in QT.
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and in Hi(0 , T ; Hl) respectively. Hence and V(n - V~ strongly in
the 14 topology. It follows from (2.8) that .Z~( ~n , vn ) -a .F’ ( ~, v) as a distribu-
tion in QT. Consequently F((~, ©~) -F((, 13) weakly in L2(QT) because

F(ën, vn) is a bounded sequence in this space. Analogously, 
strongly in L2(QT). It follows from the linear equations (2.1) that 

and en -¿. e in L2(QT) and .L2(QT) respectively. Hence (P is continuous.
This finishes the proof of the existence of a local solution. Uniqueness will
be proved in section 5.

4. - Global solutions. Asymptotic behavior.

In this section the constants ck depend at most on Q and on the quan-
tities p, 2 and ( i.e. on the total amount of mass IQlé. We assume that

where e6= is a positive constant, such that for all

Hence ~/2~m~~~3~/2. Let (e, v) be a solution of ( 1.1 ) . From
(2.6) for so= and from (3.3) one gets

where c depends only ~. On the other hand, from (2.17) for

s = (2c9)-1~,, one obtains

From (4.2) and (4.3) it follows easily that

In particular, since and one has
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Then holds for every t E [0, + oo[ provided

In fact, if it must be, from (4.4), that

Let us now prove the last assertion in theorem A. Under the hypothesis
(4.5)1 it follows from (4.4) that

This proves (1.6)..

5. - Uniqueness.

We prove that the solution (e, v ) of problem (1.1) is unique in the class
for which existence was proved; see theorem A. We remark that more
careful calculations lead to uniqueness in a larger class. 

-

Let (e, v), (~O, v) be two solutions of problem (1.1), (1.2) and puta = v - v,
q = e - j. By subtracting the equations (2.10)i written for (e, v ) and ( ~, v )

respectively, and by taking the inner product with u in H one gets

By using we show that

On the other hand, by subtracting equations ( 2 .10 ) 3 written for (e, v )
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and for (~, v) respectively, and by taking the inner product with 4q in
Z~(~) one gets

By adding (5.1) and (5.2) it follows that

where 0,(t) is a real integrable function on [0, T].
On the other hand, by using Sobolev’s embedding theorems and Hölder’s

inequality (and also + the reader easily verifies that given
8 &#x3E; 0 there exists an integrable real function 62(t) (dependent v, v
and such that

From ~), (5.3) and (5.4) it follows that

Uniqueness follows now from Gronwall’s lemma and from
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