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The ~c-Topology is Not Completable.

ADOLF MADER

1. - Introduction.

G. D’Este [5] introduced and studied an interesting and difficult func-

torial topology defined on the category of abelian groups: Let @c be the
class of all direct sums of cyclic p-groups. For each group A let 
A. ~ U E Then ’11A is a neighborhood basis at 0, a « local basis » for short,
for some topology on A which makes A into a topological group. We write
A[fILA] = for this topological group. Every homomorphism f : A - B
is then a continuous map f : A[ Q] -- B[ O]. In the terminology of Boyer-
Mader [2], is a discrete class and A -+ A[ QQ ], f - f is the corresponding
minimal functorial topology. This minimal functorial topology as well as
the associated topology on an individual group is called the (@,,-topology.
Every group has a (Hausdorff ) completion .1 and if the completion
topology of 1. is the (D,-topology then A is called completable.; if every A
is completable then the @c-topology is completable. A crucial result in [5],
Theorem 1.4, states that the (D,-topology is indeed completable. In this

note we disprove this claim. This is achieved by noting that separable 
projective p-groups are either @,complete or not completable. We then
construct such groups which are @c’mcomplete as well as some which are
(D,-complete. Unfortunately, the error invalidates most of D’Este’s results,
and as it stands very little is known about the (Dc’topology.

In Section 2 we summarize what is known about the (D,-topology.
Section 3 contains our examples.

All groups in this paper are abelian. The notation is standard and fol-

lows Fuchs [6]. The background on linear functorial topologies can be
found in Mader [9]. Unless indicated otherwise a topological group carries
the -topology. A denotes the (D,-completion of A, and A the p-adic

Pervenuto alla Redazione il 23 Novembre 1982 ed in forma definitiva il 10 Set-

tembre 1983.
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completion. The explicit construction of the completion of a group with
linear topology can be found in [6; Vol. I, pp. 68/69] as well as the definition
of the appropriate topology which is called the completion topology. Suppose
T is a functorial topology so that, for every abelian group A, we obtain
the topological group with A as the underlying group. Every subgroup
of A then has two topologies: its own functorial topology and the topology
induced by the topology of TA. The subgroup is called T-concordant if

these two topologies coincide. Maps are written on the right.
I owe thanks to Ray Mines with whom I began studying the paper of

G. D’Este and who first noted the likely errors.

3. - Properties of the (@,,-topology.

Most of the results in this section are due to D’Este [5]. We indicate
how the results follow from the general considerations of Mader [9].

The first observation follows from the fact that the class QC is closed
under arbitrary direct sums ([9; 3.21 and 4.1c]).

(2.1) In particular, ([5; 2.1]) any direct sum o f @c-
complete groups is (1),,-complete. 0

The following fact is true for any minimal functorial topology and fol-
lows from [9; 3.21 and 4.1c].

(2.2) ([5; Lemma 1.3]). A direct summand of a EBc-complete group is EBc-
complete. C7

The next result essentially follows from the fact that an extension of a
direct sum of cyclic groups by a bounded group is a direct sum of cyclic
groups ([6; 18.3]).

(2.3) ([5; Lemma 2.3]). If B is a subgroup of A such that AIB is a bounded
p-group then B is a EBc-concordant open and hence closed subgroup of A.
Thus A is if and only if B is D

It is helpful to compare the EBc-topology with better understood topo-
logies. If A/ U is a bounded p-group then A/ U E EBc. Hence the p-adic
topology is weaker than the @c-topolcgy. On the other hand it is easy

to see that each subgroup U with A/ U E @e is closed in the p-adic topology.
Hence [9; 4.11 ] applies:
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(2.4) The natural map A, where A denotes the p-adic completion of A,
is injective. C1

If A is a p-group and U is a large subgroup of A then A/U E G), by
[6 ; 67.4]. Hence the large subgroup or inductive topology is weaker than
the EBc-topology. It is well-known ([3; 3.9] or [4; 2.8]) that the completion
of a p-group A in the large subgroup topology is its torsion-completion A,
i.e. the maximal torsion subgroup of A. Also the p-adic topology is weaker
than the large subgroup topology. Hence there are natural maps h - h - A.
The following fact now follows from (2.4).

(2.5) ( [5 ; Lemma 1.2]). For a p-group A the is naturally
imbedded in the torsion-completion A. In particular, 1. is again p-primary. 13

If A is purely imbedded in A then A is also the torsion completion of
and by (2.5) we have (A" )" imbedded in A. Thus, if 1. were purely
imbedded in A then (A v ) v and all transfinitely iterated (D,-completions
would be contained in A and hence the chain of iterated completions would
have to become stationary. It will be shown below that for minimal fune-

torial topologies in general, the chain of iterated completions of a group A.
becomes stationary if and only if it is constant, i.e. A is completable.

This is D’Este’s idea. It fails because I need not be pure in A, and
the error is made in the middle of page 244 by equating two distinct imbed-
dings in A .

(2.6) ITERATED COMPLFTIONS. Let T be a minimal functorial topology on
the category of abelian groups. Let LA be the completion of TA as an abstract
group and let A -&#x3E; LA be the natural map. For simplicity assume that
TA is Hausdorff. Define LOA = A, LIA = LA, E01: LIA: so, = 8A
and let Eti : LIA ---~ LiA : Eii =1. Suppose L"A and maps 
have been defined for satisfying .- e,,,v for  2.

If , -1 exists let LAA =L(LA-IA) and if A is ac limit or-

4inalwt LIA and In any case
let = 1. Then, clearly, each is injective and = eav for a ~ ~ ~ y.
Furthermore, if some with a  {3 is bijective then A is completable, and if
-so the whole chain of iterated completions is constant.

PROOF. Suppose is bijective for ~.  fl. Then 

is bijective, i.e. TLAA is complete. We identify all .L"A, «  I, with their
images in By [9 ; 5.7 ] L2A = LAEBK1. Suppose that K,,, a  ,u  ~,,
has been found such that LfX A = LA Q and for  p. If
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p -1 exists then LIJ A =L(LIJ-1A) == L2A(£)LKa=LA 0153 (.~1 ~ -LK,,) and we
let K = If p is a limit ordinal then = U LOt A = .I;A’ 

O U Ka and we let K = U Hence, by induction, _-__ LA EÐ ’ 

and TLA is complete as a direct summand of a complete group. 0

Megibben [10] called a p-group A thick if implies that D’ con-

tains a large subgroup of A.

(2.7) ( [5 ; 1.1 ] ). A p-group A is thick if and only if the on A

coincides with the large subgroup topology. The completion of a thick group
A is its torsion-completion A and every thick group is 

PROOF. It has been mentioned earlier that A is the completion of A
in the large subgroup topology. Since A /A is divisible, it is tBc-indiscrete and
it follows from the completability criterion of Mines-Oxford (see [9 ; 5.10 ( 6 ) ] )
that A is completable. 0

The next result follows immediately from (2.7) and ( 2 .1 ) .

(2.8) ([5; 2.2 ] ). Direct sums of torsion-complete p-groups are 0

A little more can be asserted.

(2.9) I f A is the direct sum of thick groups Ai a then ~. = i and A is

completable although usually not thick.

PROOF, A = and li = A $ since A i is thick. Completability fol-
lows ,....., EÐ A ¡/A. is divisible. If A = QQ a A i and if A is thick then
A = (I)iJi. By [6 ; 71.3] there is m such that pmA a = 0 for almost all i.

Hence A is usually not thick. C7

(2.10 ) REMARK. We just sho2ved : If A = EÐiAi is thick then, for some positive
integer m, p-A = 0 for almost all i. C7

There is also a large class of groups for which the EBc-topology coincides
with the p-adic topology. This is trivially the case for torsion-free groups
of finite p-rank ( = dim A /pA ) .

(2.11) The of a direct sum of torsion-free groups of finite
rank is the free p-adic module with the same p-rank. Such a group is EBc-
completable. CI



583

More interesting examples are provided by the theory of Howard [7].
If a group .A. is of second category in its p-adic topology then every reduced
p-primary epimorphic image of A is bounded hence the p-adic topology
and the (i),,-topology on .. coincide. Examples of second category groups
are the p-adically complete groups, but ([7; 4.3]) there are others as well,
a situation very much reminiscent of thick groups. In [8; 4.6] it was shown
that every reduced p-primary epimorphic image of a group K is bounded
if and only if IT is not the union of an ascending sequence of p-adically
nowhere dense subgroups. Thus such groups are (D,-completable and their
completions are just the p-adic completions.

3. - Groups which are .not completable.

It appears to be rather difficult to determine the @c-completions in
general. As far as completability is concerned pw+"-projective p-groups are
particularly simple since they are either complete or not completable as we
will show first. Recall that a pco+"-projective group is an extension of an
elementary p-group by a direct sum of cyclic p-groups (*). Thus a 

projective group contains an open subgroup which is elementary. This fact

is exploited in the first lemma.

(3.1) LEMMA. Let A be a separable p-group having a s’Ubsocle T with AfT eEt1c.
Then .A./.d. ~ TOIT where T~’ is both the topological closure of T in A and the
completion of T q,ahen T has the topology induced by the of A.
Hence I/A 18 p-bounded and A is completable if and only if A is complete.

PROOF. We have ([9; 4.5]) the following commutative diagram with
exact rows:

A diagram chase yields TIIT. Thus itA is p-elementary. By the
Completability Criterion [9; 5.10 (6)] A is completable if and only if l./A
is p-divisible, i.e. if and only if 1 = A. 0

(*) R. NUNKE, Purity and 8ubjunctors of the identity, Topic8 in Abelian Groups,
Scott, Foresman &#x26; Co, Chicago, 1963, pp. 121-171.
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The problem is now reduced to deciding whether or not T is complete
with the induced topology. In general it is neither clear what this induced
topology might look like nor what the completion is. Fortunately, a method
due to Benabdallall-Irwin [1 ] permits to construct a group A such that the
induced topology on T is the topology induced by the p-adic topology on
A, and this case can be handled.

We first need a special case of a theorem by Benabdallah-Irwin [1; The-
orem 2 . 2 ] .

(3.2) LEMMA. If G is a p-group and K a pure subgroup of G such that
then K is a direct summand of G.

Starting with any p-group G the method of Benabdallah-Irwin

Ll; pp. 326-327] yields a pw+l-projective group A whose properties are
related to those of G~.

(3.3) CONSTRUCTION. Let G be a given p-gruop. -Let =EÐ e G}
where g~ ~ g&#x3E;, and let E : ~ -~ G : gs = g. It is well-known that K = Ker 8
is pure in G~. Put A = Then is a subsocle of A

Hence A is pW+-1projective. Furthermore
by 3.2, if and only if GEEBc.

In the following we always refer to this situation placing stronger and
stronger conditions on G.

(3.4) Let G be separable. Then A is separable.

PROOF. G separable implies that ~’ is p-adically closed in Ox. So is 
and hence ..K~ [p ] = K r1 ~ [p ]. Thus A = is separable. C1

(3.5) Let G be pure-complete. Then for any subsocle S with 
there exists a pure subgroup L containing K with L[p] = S.

PROOF. Since and G is pure-complete there is a pure subgroup
.M’ of G with iV [p] = See Let .L = Then .L is pure in G and con-
tains -If. It is easily checked that L [p] = S. 0

(3.6) Let G be If and then

Õ = L EB M with L[p] = Sand M bounded.

PROOF. By [6; 74.2] G is pure-complete. Hence, by (3.5) and (3.2).
there exist groups Land M such that G = LEe M, KL and E[p] = S,
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Now Grov and If G is torsion-complete then so is M

and hence .D~ is bounded. If G is not torsion-complete then by [6 ; 74.6]
either L¡K or 1V1 is bounded. But cannot be unbounded in view
of [6; 74.6]. 0

(3.7) Let G be quasi-complete. The topology induced on T = O[p1¡K[p] by
the of A = G/g [ p ] has the local basis + K[p])¡K[p]:

Thus the and the p-adic topology on A induce the same
topology on T.

PROOF. It is clear that each + is open in T. Sup-
pose U is an open subgroup of A[ 0~]. Then so is U r1 T and hence there
exists a subgroup ~S of 0 such that U f1 T and O¡SE(£)c. By (3.6)
there exists n such that (pnG) [p ] c S hence

We now relate the topological group T to the socle of G.

(3.8) For any group G, the groups G[p] and T _ ~ [p]/I~[p] are isomorphic
as topological groups with topologies induced by the p-adic topologies on G

respectively.

PROOF. Clearly e: G induces an isomorphism s: T---&#x3E;- G[p] with

(3.9) THEOREM. Let G be quasi-complete, the standard

pure-projective resolution of G and A = Then A is a separable
group and A[ is complete if and only if G is torsion-complete.

PROOF. By the construction (3.3) we have that A is p(o+’-projective,
and A is separable by (3.4). Since G is quasi-complete the p-adic and the

(D,-topologies on A induce the same topology on T = by (3.7).
By (3.1), A is complete if and only if T is complete. But T and G[p] are

isomorphic topological groups by (3.8) where G[p] has the topology induced
by the p-adic topology on G. By [6; 70.6] G[p] is complete if and only if
G is torsion-complete. Thus A is complete if and only if G is torsion-

complete. 0

(3.10) COROLLARY. The is not completable.
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PROOF. There exist quasi-complete groups which are not torsion-complete
([6], Vol. II, p. 48). Results (3.9) and (3.1) complete the proof. 0

Thus a poj+’-Projective group may or may not be complete. The class

of (1),-complete group is smaller than it appeared in [5], and many of the
theorems of [5] now became open questions, e.g. are (D,-complete p-groups
determined by their valuated socles ~
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