J. MOSSINO
J. M. RAKOTOSON

Isoperimetric inequalities in parabolic equations

<http://www.numdam.org/item?id=ASNSP_1986_4_13_1_51_0>

© Scuola Normale Superiore, Pisa, 1986, tous droits réservés.
Isoperimetric Inequalities in Parabolic Equations.

J. MOSSINO - J. M. RAKOTOSON

0. - Introduction.

Consider the parabolic equation

\[
\begin{aligned}
\frac{\partial u}{\partial t} + H_t(u) + cu &= f & \text{in } Q = (0, T) \times \Omega, \\
u &= 0 & \text{on } \Sigma = (0, T) \times \partial \Omega, \\
u(0, \cdot) &= u_0 & \text{for } t = 0,
\end{aligned}
\]

where \(\Omega \) is a bounded regular domain in \(\mathbb{R}^n \) \((N \geq 1) \),

\[H_t(u) = - \sum_{i,j=1}^{N} \frac{\partial}{\partial x_j} a_{ij}(t, x) \frac{\partial u}{\partial x_i}, \]

\(a_{ij} \) satisfy the uniform ellipticity condition (with constant one)

\[\sum_{i,j=1}^{N} a_{ij}(t, x) \xi_i \xi_j \geq |\xi|^2, \quad \forall \xi \in \mathbb{R}^n; \]

c, \(u_0 \) and \(f \) are non-negative functions; their regularity will be precised later on.

Consider also the equation

\[
\begin{aligned}
\frac{\partial U}{\partial t} - AU &= f & \text{in } \bar{Q} = (0, T) \times \bar{\Omega}, \\
U &= 0 & \text{on } \bar{\Sigma} = (0, T) \times \partial \bar{\Omega}, \\
U(0, \cdot) &= u_0,
\end{aligned}
\]

Pervenuto alla Redazione il 29 Ottobre 1984.
where Ω is the ball of \mathbb{R}^n, centered at the origin, which has the same measure as Ω, and u_a (resp. $f(t, \cdot)$) is the rearrangement of u_0 (resp. $f(t, \cdot)$) in Ω, which decreases along the radii. This rearrangement is defined as follows.

If v is a real measurable (1) function defined in Ω, the decreasing rearrangement of v is defined in $\Omega^\circ = [0, |\Omega|]$, by

$$v_a(s) = \inf \left\{ \theta \in \mathbb{R}, |v > \theta| \leq s \right\}$$

where $|v > \theta| = \text{meas} \left\{ x \in \Omega, v(x) > \theta \right\}$ (for any measurable set E, we denote $|E|$ its measure). The spherical rearrangement of v in Ω, which decreases along the radii is

$$\Omega(x) = v_a(\alpha_n|x|^n), \quad \text{for} \ x \in \Omega,$$

where α_n is the measure of the unit ball of \mathbb{R}^n. If v is defined in $(0, T) \times \Omega$, and is measurable with respect to the space variable x of Ω, we consider its rearrangement with respect to x:

$$v_a(t, s) = (v(t, \cdot))_a(s) = \inf \left\{ \theta \in \mathbb{R}, |v(t, \cdot) > \theta| \leq s \right\},$$

$$\Omega(t, x) = v_a(t, \alpha_n|x|^n).$$

C. Bandle [2] proved that every strong solution u of problems (1) satisfies

$$\forall t \in [0, T], \forall s \in \Omega^\circ, \quad \int_0^s u_a(t, \sigma) \, d\sigma \leq \int_0^s U_a(t, \sigma) \, d\sigma,$$

which leads to

$$\forall t \in [0, T], \forall \tau \in [1, \infty], \quad \|u(t, \cdot)\|_{L^\tau(\Omega)} \leq \|U(t, \cdot)\|_{L^\tau(\Omega)}.$$

J. L. Vasquez [9] obtained the same result, if u is a weak solution of a degenerate parabolic equation, the equation of porous media:

$$\begin{cases}
\frac{\partial u}{\partial t} = \Delta \varphi(u) & \text{in} \ Q = (0, \infty) \times \mathbb{R}^n, \\
u(0, \cdot) = u_0 & \text{for} \ t = 0,
\end{cases}$$

where $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ is increasing and continuous, $\varphi(0) = 0$. He used the (1) In the whole paper, we consider the Lebesgue measure.
In this paper, we give a direct proof of (6), (7), valid for every weak solution of problems (1) (see Section 2).

Our method relies on the calculation of the directional derivative of the mapping \(u \to u^* \), that is \(v_{u^*} = \lim_{\lambda \to 0} \frac{(u + \lambda v)_{u^*} - u_{u^*}}{\lambda} \). This calculation was made first by J. Mossino and R. Temam [6], with a direction \(v \) in \(L^p(\Omega) \).

In the first section, we extend their result to functions \(v \) in \(L^p(\Omega) \) \((1 \leq p \leq +\infty)\). Moreover we prove that, if \(u \) belongs to \(H^1(0, T; L^p(\Omega)) \), then \(u^* \) belongs to \(H^1(0, T; L^p(\Omega^*)) \) and

\[
\frac{\partial u^*}{\partial t} = \left(\frac{\partial u}{\partial t} \right)_{u^*}.
\]

Besides, \((\partial u/\partial t)(t, \cdot)\) is shown to be constant on every set where \(u(t, \cdot) \) is constant. The last formula is a crucial point in Section 2.

1. Directional derivative of the rearrangement mapping.

In this Section 1, we assume that \(\Omega \) is a measurable subset of \(\mathbb{R}^N \) \((|\Omega| < \infty, N \geq 1)\). For the sake of completeness, we first recall some properties of rearrangements (see the proofs in [7] for example), and a result of [6].

1.1. Properties of rearrangements.

Let \(u \) be a measurable function: \(\Omega \to \mathbb{R} \) and \(u^* \) be its increasing rearrangement, defined by (2) and

\[
(1.1) \quad u^* = -(-u)^*.
\]

An essential property of rearrangement is that \(u \) and \(u^* \) are equi-measurable:

\[
\forall \theta \in \mathbb{R}, \quad |u < \theta| = \text{meas} \{x \in \Omega, u(x) < \theta\} = |u^* < \theta|,
\]

which implies

\[
(1.2) \quad \int_{\Omega} F(u) \, dx = \int_{\Omega^*} F(u^*) \, ds,
\]

for every Borel measurable \(F: \mathbb{R} \to \mathbb{R}^+ \). Here are some other properties of the increasing rearrangement mapping.
(a) If \(u_1, u_2 \) are two measurable functions such that \(u_1 \leq u_2 \) almost everywhere, then \(u_1^* \leq u_2^* \) everywhere.

(b) For all constants \(C \), \((u + C)^* = u^* + C \).

(c) More generally, if \(\varphi \) is an increasing function from \(\mathbb{R} \) into \(\mathbb{R} \), then \(\varphi(u)^* = \varphi(u^*) \) almost everywhere.

(d) The mapping \(u \to u^* \) applies \(L^p(\Omega) \) into \(L^{p^*}(\Omega^*) \) (1 \(\leq p \leq \infty \)). It is contracting and norm-preserving.

(e) If \(u \) is in \(L^p(\Omega) \), \(v \) in \(L^{p'}(\Omega)(1/p + 1/p' = 1) \), then

\[
\int_{\Omega} uv \, dx \leq \int_{\Omega} u^* v^* \, dx = \left(\int_{\Omega} u^* v^* \, dx \right).
\]

This inequality is due to Hardy and Littlewood.

We shall use a slight extension of (d):

Lemma 1.1. Let \(u: \Omega \to \mathbb{R} \) be measurable, \(v \) in \(L^p(\Omega) \) (1 \(\leq p \leq \infty \)). Then \((u + v)^* - u^* \) belongs to \(L^{p^*}(\Omega^*) \) and

\[
\|(u + v)^* - u^*\|_{L^{p^*}(\Omega^*)} \leq \|v\|_{L^p(\Omega)}.
\]

This lemma was proved in [7]. For convenience, we reproduce the proof here.

(i) If \(p = \infty \), we have

\[
u - \|v\|_{L^\infty(\Omega)} \leq u + v \leq u + \|v\|_{L^\infty(\Omega)}, \quad \text{a.e.}
\]

By properties (a) and (b) above,

\[
u^* - \|v\|_{L^\infty(\Omega)} \leq (u + v)^* \leq u^* + \|v\|_{L^\infty(\Omega)},
\]

that is

\[
\|(u + v)^* - u^*\|_{L^{\infty}(\Omega^*)} \leq \|v\|_{L^\infty(\Omega)}.
\]

(ii) If \(p < \infty \), we use the truncation

\[
f_n(t) = \begin{cases}
- n & \text{if } t \leq - n, \\
 t & \text{if } - n \leq t \leq n, \\
 n & \text{if } t \geq n.
\end{cases}
\]
Then $f_n(u)$ and $f_n(u + v)$ are in $L^\infty(\Omega)$. By (c) and (d), $(f_n(u))^* = f_n(u^*)$, $(f_n(u + v))^* = f_n((u + v)^*)$, these functions are in $L^\infty(\Omega^*)$, and

$$
\|f_n((u + v)^*) - f_n(u^*)\|_{L^p(\Omega^*)} = \|(f_n(u + v))^* - (f_n(u))^*\|_{L^p(\Omega^*)} \leq \|f_n(u + v) - f_n(u)\|_{L^p(\Omega)} \leq \|v\|_{L^p(\Omega)}
$$

(as f_n is contracting). Then, using Fatou lemma,

$$
\|v\|_{L^p(\Omega)} \geq \limsup_{n \to \infty} \int_{\Omega^*} |f_n((u + v)^*) - f_n(u^*)|^p \, ds
$$

and

$$
\int_{\Omega^*} \liminf_{n \to \infty} |f_n((u + v)^*) - f_n(u^*)|^p \, ds
$$

$$
= \int_{\Omega^*} |(u + v)^* - u^*|^p \, ds.
$$

1.2. Directional derivative of the rearrangement mapping. Relative rearrangement.

First, we shall recall a result due to J. Mossino and R. Temam [6].

Consider a couple of functions (u, v), $u : \Omega \to \mathbb{R}$ is measurable, v is in $L^p(\Omega)$ $(1 \leq p \leq \infty)$, and a parameter $\lambda > 0$. By Lemma 1.1, $(u + \lambda v)^* - u^*$ belongs to $L^p(\Omega^*)$, and we can define

$$
(1.4) \quad \varphi_\lambda(s) = \int_0^s \frac{(u + \lambda v)^* - u^*}{\lambda} \, ds.
$$

Thus, $d\varphi_\lambda/ds = ((u + \lambda v)^* - u^*)/\lambda$. By Lemma 1.1,

$$
(1.5) \quad \left\|\frac{d\varphi_\lambda}{ds}\right\|_{L^p(\Omega^*)} \leq \|v\|_{L^p(\Omega)}.
$$

We are going to show that $d\varphi_\lambda/ds$ tends (in the sense of distributions) to dv/ds, where

$$
(1.6) \quad \varphi(s) = \begin{cases}
\int_{u < u^*(s)} v \, dx & \text{if } |u = u^*(s)| = 0, \\
\int_{u < u^*(s)} v \, dx + \int_0^{1 - |u < u^*(s)|} (v|_{\Omega^*}) \, d\sigma, & \text{otherwise},
\end{cases}
$$

-
is the restriction of \(v \) to \(P(s) = \{ u = u^*(s) \} \). The following was proved in [6].

THEOREM 1.1. If \(u \) is a measurable function from \(\Omega \) into \(\mathbb{R} \), \(v \) is in \(L^\infty(\Omega) \), then \(w \) is lipschitz,

\[
\left\| \frac{dw}{ds} \right\|_{L^\infty(\Omega)} \leq \| v \|_{L^\infty(\Omega)},
\]

and, when \(\lambda \) decreases to zero,

1. \(w_\lambda \to w \) in \(C^0([0, |\Omega|]) \) that is uniformly;
2. \(\frac{dw_\lambda}{ds} = \frac{(u + \lambda v)^* - u^*}{\lambda} \to \frac{dw}{ds} \) in \(L^\infty(\Omega^*) \) weak *.

\(\square \)

We shall extend Theorem 1.1 to functions \(v \) in \(L^p(\Omega) \) (\(1 \leq p \leq \infty \)).

THEOREM 1.1 bis. Let \(u, v \) be two measurable functions from \(\Omega \) into \(\mathbb{R} \), \(v \) in \(L^p(\Omega) \) (\(1 \leq p \leq \infty \)). Then \(w \) belongs to \(W^{1,p}(\Omega^*) \),

\[
\left\| \frac{dw}{ds} \right\|_{L^p(\Omega^*)} \leq \| v \|_{L^p(\Omega)},
\]

and, when \(\lambda \) decreases to zero

1. \(w_\lambda \to w \) in \(C^0([0, |\Omega|]) \);
2. \(\frac{dw_\lambda}{ds} = \frac{(u + \lambda v)^* - u^*}{\lambda} \to \frac{dw}{ds} \) in the sense of distributions:

\[
\forall \varphi \in \mathcal{D}(\Omega^*) , \quad \int_{\Omega^*} \frac{dw_\lambda}{ds} \varphi \, ds \to \int_{\Omega^*} \frac{dw}{ds} \varphi \, ds.
\]

(In particular, \(dw_\lambda/ds \to dw/ds \) in \(L^p(\Omega^*) \)-weak if \(1 < p < \infty \), in \(L^\infty(\Omega^*) \)-weak * if \(p = \infty \)).

\(\square \)

Proof. Consider \(v_n \) in \(L^p(\Omega) \); \(w_{\lambda,n}, w_n \) are associated to \((u, v_n) \) as in (1.4), (1.6). We have

\[
|w_\lambda(s) - w(s)| \leq |w_\lambda(s) - w_{\lambda,n}(s)| + |w_{\lambda,n}(s) - w_n(s)| + |w_n(s) - w(s)|.
\]

By Lemma 1.1,

\[
|w_{\lambda,n}(s) - w_\lambda(s)| = \left| \int_0^s \frac{(u + \lambda v_n)^* - (u + \lambda v)^*}{\lambda} \, d\sigma \right| \leq \| v_n - v \|_{L^p(\Omega)},
\]
and, clearly,
\[|w_n(s) - w(s)| \leq \|v_n - v\|_{L^p(\Omega)} . \]

Then
\[\sup_s |w_n(s) - w(s)| \leq \sup_s |w_{\lambda,n}(s) - w_n(s)| + 2\|v_n - v\|_{L^p(\Omega)} . \]

By Theorem 1.1. (i), \(w_{\lambda,n}\) tends to \(w_n\) in \(C^0([0,1],[0,1])\). When \(\lambda\) decreases to zero,
\[\lim_{\lambda \downarrow 0} \sup_s |w_\lambda(s) - w(s)| \leq 2\|v_n - v\|_{L^p(\Omega)} . \]

We deduce (i). Evidently (ii) follows, as, with \(\varphi\) in \(\mathcal{D}(\Omega^*)\),
\[\int_{\Omega^*} \frac{dw_\lambda}{ds} \varphi \, ds = -\int_{\Omega^*} \frac{d\varphi}{ds} \, ds \rightarrow -\int_{\Omega^*} \frac{d\varphi}{ds} \, ds \quad \text{(by (i))} \]
\[= \int_{\Omega^*} \frac{d\varphi}{ds} \varphi \, ds . \]

Now, we shall prove that \(\frac{d\varphi}{ds}\) is in \(L^p(\Omega^*)\), and satisfies (1.7). Taking again \(\varphi\) in \(\mathcal{D}(\Omega^*)\), we have by (1.5)
\[\left| \int_{\Omega^*} \frac{d\varphi}{ds} \, ds \right| = \left| \int_{\Omega^*} \frac{d\varphi}{ds} \, ds \right| \leq \|\varphi\|_{L^p(\Omega)} \|\varphi\|_{L^p(\Omega^*)} . \]

\((1/p + 1/p' = 1)\). From (i), it follows
\[\left| \int_{\Omega^*} \frac{d\varphi}{ds} \, ds \right| \leq \|\varphi\|_{L^p(\Omega)} \|\varphi\|_{L^p(\Omega^*)} . \]

If \(p > 1\), \(L^p(\Omega^*)\) is the dual of \(L^p(\Omega^*)\), and we get immediately (1.7). In any case \((p \geq 1)\), we can use the following argument. Let \(v_n\) be a sequence in \(L^p(\Omega)\). As previously, one can prove that
\[(1.8) \quad \left\| \frac{dw_m}{ds} - \frac{dw_n}{ds} \right\|_{L^p(\Omega^*)} \leq \|v_m - v_n\|_{L^p(\Omega)} , \]

for any \(p > 1\), and, consequently, (passing to the limit) for \(p \geq 1\). Now consider \(v_1, v_2\) in \(L^p(\Omega)\) \((p \geq 1)\), \(v_n\) \((i = 1, 2)\) in \(L^p(\Omega)\), \(v_n \to v_i\) in \(L^p(\Omega)\); \(w_1, w_{\lambda,n}\) are associated to \((u, v_i)\) and \((u, v_{\lambda,n})\) respectively as in (1.6). By (1.8),
\(\frac{dw_n}{ds} \) is a Cauchy sequence in \(L^p(\Omega^*) \). As \(|w_n(s) - w_i(s)| \leq \| v_n - v_i \|_{L^p(\Omega)} \), \(w_n \) tends to \(w \), in \(C^0([0, 1], [\Omega]) \), \(\frac{dw_n}{ds} \to \frac{dw}{ds} \) in \(L^p(\Omega^*) \), and, by passing to the limit in

\[
\left\| \frac{dw_n}{ds} - \frac{dw}{ds} \right\|_{L^p(\Omega^*)} \leq \| v_n - v_i \|_{L^p(\Omega)},
\]

we get

(1.9) \[
\left\| \frac{dw_1}{ds} - \frac{dw_2}{ds} \right\|_{L^p(\Omega^*)} \leq \| v_1 - v_2 \|_{L^p(\Omega)}.
\]

With \(v_1 = v \), \(v_2 = 0 \), we get evidently (1.7). □

Relative rearrangement.

Definition. According to J. Mossino and R. Temam [6] the function \(\frac{dw}{ds} \) is called the rearrangement of \(v \) with respect to \(u \), and is denoted by \(v^*_u \).

The usual rearrangement of a function is also the rearrangement of this function with respect to a constant \((u^*_c = u^*) \) or with respect to itself \((u^*_u = u^*) \). More generally, if a Borel function \(F: \mathbb{R} \to \mathbb{R} \), and a measurable function \(u: \Omega \to \mathbb{R} \), are such that \(F(u) \) is in \(L^p(\Omega) \), then \(F(u^*) \) is in \(L^p(\Omega^*) \) (by (1.2)) and \((F(u))^*_u = F(u^*) \). In fact \((F(u))^*_u = dw/\sqrt{s} \), with

\[
w(s) = \begin{cases} \int_{\alpha} F(u) \, dx & \text{if } |u - u^*(s)| = 0, \\
\int_{\alpha} F(u) \, dx + \int_0^{s-s_\alpha} (F(u)|_{P_s})^* \, d\sigma & \text{otherwise},
\end{cases}
\]

with \(\alpha = u^*(s), P_s = \{u = \alpha\}, |P_s| \neq 0, s_\alpha = |u - \alpha|, \)

\[
= \begin{cases} \int_0^s F(u^*) \, d\sigma & \text{if } |u = u^*(s)| = 0, \\
\int_0^{s_s} F(u^*) \, ds + F(\alpha)(s - s_\alpha) = \int_0^s F(u^*) \, d\sigma & \text{otherwise}
\end{cases}
\]

(by (1.2))

\[
= \int_0^s F(u^*) \, d\sigma.
\]
However, generally, \(v^*_u \) is not an increasing function, the property of equi-
measurability and properties (c), (e) above, for the usual rearrangement, do
not seem to have their analogue for the rearrangement of a function with
respect to another one. But we have, if \(v \) is in \(L^p(\Omega) \) (1 \(\leq p \leq \infty \)), \(u: \Omega \to \mathbb{R} \) is measurable

\[
(a') \quad v_1 \leq v_2 \text{ a.e. implies } (v_1)_u^* \leq (v_2)_u^* \text{ a.e.}
\]

In fact, with \(\varphi \) in \(\mathcal{D}(\Omega^*) \), \(\varphi \geq 0 \),

\[
\int_{\Omega^*} [(v_2)_u^* - (v_1)_u^*] \varphi \, ds = \lim_{\lambda \downarrow 0} \int_{\Omega^*} \varphi \frac{(u + \lambda v_2)_u^* - (u + \lambda v_1)_u^*}{\lambda} \, ds \geq 0
\]

by property (a).

\[(b') \text{ For all constants } C, (v + C)_u^* = v_u^* + C.\]

In fact, with \(\varphi \) in \(\mathcal{D}(\Omega^*) \),

\[
\int_{\Omega^*} (v + C)_u^* \varphi \, ds = \lim_{\lambda \downarrow 0} \int_{\Omega^*} \varphi \frac{(u + \lambda (v + C))_u^* - u_u^*}{\lambda} \, ds
\]

\[
= \lim_{\lambda \downarrow 0} \int_{\Omega^*} \varphi \frac{(u + \lambda v)_u^* - u_u^*}{\lambda} \, ds + \int C \varphi \, ds
\]

(by property (b))

\[
= \int_{\Omega^*} (v_u^* + C) \varphi \, ds.
\]

\[(d') \text{ If } u: \Omega \to \mathbb{R} \text{ is measurable, the mapping } v \to v_u^* \text{ is a contraction from } L^p(\Omega) \text{ into } L^p(\Omega^*) \text{ (1 \(\leq p \leq \infty \)) as we have seen in (1.9).}\]

\[(f') \text{ Besides, the mapping } v \to v_u^* (L^1(\Omega) \to L^1(\Omega^*)) \text{ preserves the integral:}
\]

\[
\int_{\Omega^*} v_u^* \, ds = \int_{\Omega^*} \frac{dw}{ds} \, ds = w(|\Omega|) - w(0) = w(|\Omega|) = \int_{\Omega} v \, dx. \quad \square
\]

One can also define another rearrangement \(v_{*u} \) which is relative to the
directional derivative of the mapping \(u \to u_u^* \) (the decreasing rearrangement
of \(u \)):

\[
v_{*u} = \frac{dw}{ds} = \lim_{\lambda \downarrow 0} \frac{dw_\lambda}{ds}
\]
(the limit is taken in the sense of distributions),
\[
\frac{du_1}{ds} = \frac{(u + \lambda v)_* - u}{\lambda} = -\frac{(-u - \lambda v)_* + (-u)_*}{\lambda}
\]
(by (1.1)). Thus
\[
v_* = (-v)_*.
\]

1.3. Symmetrization of a family of functions.

In this Section, \(u: [0, T] \times \Omega \to \mathbb{R}\) will be a function defined everywhere in \([0, T]\), and almost everywhere in \(\Omega \subset \mathbb{R}^d\). For all \(t\) in \([0, T]\), we denote by \(u(t): \Omega \to \mathbb{R}\), the function \(u(t)(x) = u(t, x)\). (For a fixed \(t\), if no confusion is possible, we shall sometimes write \(u\) instead of \(u(t)\).) We assume that \(u(t)\) is measurable for every \(t\) in \([0, T]\). Then, we can define the function \(u^*: [0, T] \times \Omega^* \to \mathbb{R}\), the increasing rearrangement of \(u\) with respect to the \(x\) variable in \(\Omega\), that is:

\[
\forall t \in [0, T], \forall s \in \Omega^*, \quad u^*(t, s) = (u(t))^*(s) = u^*(t)(s).
\]

We consider now another real function \(v\) defined almost everywhere in \(Q = (0, T) \times \Omega\), such that, for almost every \(t\) in \((0, T)\), \(v(t)\) is in \(L^p(\Omega)\) \((1 \leq p \leq +\infty)\). Then, we can define as in Section 1.2, \((v(t))_{\text{w}(\cdot, t^*)}\), which is in \(L^p(\Omega^*)\)

\[
\|v(t)\|_{L^p(\Omega)} \leq \|v(t)\|_{L^p(\Omega^*)}.
\]

We denote by \(v^*_u\) the function defined almost everywhere in \(Q^* = (0, T) \times \Omega^*\) by

\[
\forall t \in (0, T), \forall s \in \Omega^*, \quad v^*_u(t, s) = (v(t))_{\text{w}(\cdot, t^*)}(s).
\]

The aim of this Section 1.3 is to study the regularity of \(u^*\) with respect to \(t\) (assuming a certain regularity of \(u\) with respect to \(t\)), and to compute \(\partial u^*/\partial t\). We have

Theorem 1.2. If \(u\) belongs to \(H^1(0, T; L^p(\Omega))\) \((1 \leq p \leq \infty)\), then \(u^*\) belongs to \(H^1(0, T; L^p(\Omega^*))\), and

\[
\|u^*\|_{H^1(0, T; L^p(\Omega^*))} \leq \|u\|_{H^1(0, T; L^p(\Omega))}.
\]

Moreover

\[
\frac{\partial u^*}{\partial t} = \left(\frac{\partial u}{\partial t}\right)^* = \frac{\partial u}{\partial s} \quad \text{(in the sense of distributions)}
\]
where

\[
(w(t), s) = \begin{cases}
\int \frac{\partial u}{\partial t} \, dx & \text{if } |u(t) = u(t)^*(s)| = 0, \\
\int_{u(t) < u(t)^*(s)} \frac{\partial u}{\partial t} \, dx + \int_{u(t) < u(t)^*(s)} \left(\frac{\partial u}{\partial t} \bigg|_{u(t) = u(t)^*(s)} \right) \, d\sigma & \text{otherwise.}
\end{cases}
\]

(1.16)

Proof. As \(\|u(t)^*\|_{L^p(\Omega^*)} = \|u(t)\|_{L^p(\Omega)} \) (by (1.2)), we have

\[
\|w^*\|_{L^p(0, t; L^p(\Omega^*))} = \|u\|_{L^p(0, t; L^p(\Omega))}.
\]

Besides, by (1.12), (1.13)

\[
\left\| \left(\frac{\partial u}{\partial t} \right)^*(t) \right\|_{L^p(\Omega^*)} \leq \left\| \frac{\partial u}{\partial t} (t) \right\|_{L^p(\Omega)},
\]

\[
\left\| \left(\frac{\partial u}{\partial t} \right)^* \right\|_{L^p(0, t; L^p(\Omega^*))} \leq \left\| \frac{\partial u}{\partial t} \right\|_{L^p(0, t; L^p(\Omega))}.
\]

Thus, we have only to prove (1.15), (1.16). Our proof uses the following lemma (see its proof in the Appendix).

Lemma 1.2. Let \(u \) be in \(H^1(0, T; L^p(\Omega)) \) \((1 \leq p \leq \infty) \),

\[
r_h = \frac{u(t + h) - u(t)}{h} \frac{\partial u}{\partial t}.
\]

Consider a fixed number \(\varepsilon > 0 \). When \(h \) tends to zero, \(r_h \) tends to zero in \(L^p(\Omega_\varepsilon) \), with \(\alpha = \min(p, 2) \), \(Q_\varepsilon = (\varepsilon, T - \varepsilon) \times \Omega \).

Let \(\varphi \) be in \(\mathcal{D}(Q^\varepsilon) \), and let \(\varepsilon > 0 \) be such that the support of \(\varphi \) is included into \(Q^\varepsilon_\varepsilon = (\varepsilon, T - \varepsilon) \times \Omega^\varepsilon \). Consider \(0 < h < \varepsilon \). We have

\[
\int_{\Omega} \frac{u(t + h) - u(t)}{h} \varphi(t) \, ds \, dt = \int_{\Omega} \frac{(u + h(\partial u/\partial t))^* - u^*}{h} \varphi \, ds \, dt
\]

\[
+ \int_{\Omega} \frac{(u + h(\partial u/\partial t + r_h))^* - (u + h(\partial u/\partial t))^*}{h} \varphi \, ds \, dt.
\]
The first integral in the right hand side is \(\int_0^T A_h(t) \, dt \), where

\[
a.e. \ t, \quad A_h(t) = \int_{\Omega^*} \left(\frac{u(t) + h(\partial u / \partial t)(t))}{h} - u(t) \right) \varphi(t) \, ds \quad \text{as} \quad (h \to 0^+) \int_{\Omega^*} \left(\frac{\partial u}{\partial t} \right)_u^* \varphi(t) \, ds
\]

(by Theorem 1.1 bis), and

\[
|A_h(t)| \leq \left\| \frac{\partial u}{\partial t} \right\|_{L^p(\Omega)} \| \varphi(t) \|_{L^{p'}(\Omega^*)},
\]

with \(1/p + 1/p' = 1 \) (by property \((d')\) above). Using Lebesgue theorem

\[
\int_0^T A_h(t) \, dt \xrightarrow{(h \to 0^+)} \int_{\Omega^*} \left(\frac{\partial u}{\partial t} \right)_u^* \varphi \, ds \, dt.
\]

The other integral is majorized by

\[
\int_{-\varepsilon}^{T-\varepsilon} \left\| r_h(t) \right\|_{L^p(\Omega)} \| \varphi(t) \|_{L^{p'}(\Omega^*)} \, dt
\]

with \(\alpha = \min \{ p, 2 \} \), \((1/\alpha + 1/\alpha' = 1) \)

\[
\leq \left\| r_h \right\|_{L^p(\Omega)} \| \varphi \|_{L^{p'}(\Omega^*)},
\]

which tends to zero with \(h \), by Lemma 1.2. Thus

\[
\int_{\Omega^*} \left(\frac{u(t + h)}{h} - u(t) \right) \varphi(t) \, ds \, dt \xrightarrow{(h \to 0^+)} \int_{\Omega^*} \left(\frac{\partial u}{\partial t} \right)_u^* \varphi \, ds \, dt.
\]

But, classically,

\[
\int_{\Omega^*} \left(\frac{u(t + h) - u(t)}{h} \right) \varphi(t) \, ds \, dt \to \int_{\Omega^*} u^* \frac{\partial \varphi}{\partial t} \, ds \, dt.
\]

We conclude that, in the sense of distributions,

\[
\frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right)_u^* \quad \square
\]
A direct consequence of Theorem 1.2 is the following

Proposition. Assume u belongs to $H^1(0, T; L^1(\Omega))$. Then, for almost every t in $(0, T)$, $\partial u/\partial t(t, \cdot)$ is constant (almost everywhere) on any set where $u(t, \cdot)$ is constant (almost everywhere).

Proof. If, in the proof of Theorem 1.2, we consider $h < 0$, we get

$$A_h(t) = \int_{\Omega} \left(u(t) + h(\partial u/\partial t)(t) \right)^* u(t)^* \varphi(t) \, ds$$

$$= - \int_{\Omega} \left(u(t) + \frac{(- h)(\partial u/\partial t)}{- h} \right)^* u(t)^* \varphi(t) \, ds,$$

which tends to $- \int_{\Omega} (\partial u/\partial t)^* u(t)^* \varphi(t) \, ds$. Thus, one has, in the sense of distributions,

$$\frac{\partial u^*}{\partial t} = \left(\frac{\partial u^*}{\partial t} \right)_u = - \left(\frac{\partial u^*}{\partial t} \right)_u \quad \left(= \left(\frac{\partial u}{\partial t} \right)^{\ast - u} \text{ by (1.10)} \right),$$

and

$$\left(\frac{\partial u^*}{\partial t} \right)_u = \frac{\partial w}{\partial s} \quad (w \text{ defined in (1.16)}), \quad - \left(\frac{\partial u^*}{\partial t} \right)_u = \frac{\partial w'}{\partial s},$$

with

$$w'(t, s) = \begin{cases} \int_{u(t) < u(t)^*(s)} \frac{\partial u}{\partial t} \, dx & \text{if } |u(t) - u(t)^*(s)| = 0, \\ \int_{u(t) < u(t)^*(s)} \frac{\partial u}{\partial t} \, dx + \int_0^{s-|u(t) - u(t)^*(s)|} \left(- \frac{\partial u}{\partial t} \right)_{u(t) - u(t)^*(s)} \, d\sigma, & \text{otherwise}. \end{cases}$$

The last integral is also

$$\int_0^{s-|u(t) - u(t)^*(s)|} \left(\frac{\partial u}{\partial t} \right)_{u(t) - u(t)^*(s)} \, d\sigma \quad \text{(by (1.1))}.$$

Now, fix t in $(0, T)$, such that $\partial w/\partial s = \partial w'/\partial s$ (in $L^1(\Omega^*)$) (this is true for almost every t in $(0, T)$), and consider a flat region of $u(t)\colon P_\theta(t) = \{u(t) = \theta\}$, $|P_\theta(t)| \neq 0$. Set $s_\theta = |u(t) < \theta|$, $s'_\theta = |u(t) \leq \theta|$. As $w(t, 0) = 0 = w'(t, 0)$, one has

$$w(t, s) = \int_0^s \frac{\partial w}{\partial s} (t, \sigma) \, d\sigma = \int_0^s \frac{\partial w'}{\partial s} (t, \sigma) \, d\sigma = w'(t, s),$$
for all s in Q^*. Moreover, for all s in $[s_0, s'_0]$, one has, by definition of w and w',

$$\frac{\partial w}{\partial s}(t, s) = \left(\frac{\partial u}{\partial t} \bigg|_{P_0(t)} \right)^* (s - s_0)$$

$$= \frac{\partial w'}{\partial s}(t, s) = \left(\frac{\partial u}{\partial t} \bigg|_{P_0(t)} \right)^* (s - s_0).$$

In particular,

$$\left(\frac{\partial u}{\partial t} \bigg|_{P_0(t)} \right)^* (0) = \sup_{P_0(t)} \inf_{P_0(t)} \frac{\partial u}{\partial t},$$

that is $(\partial u/\partial t)(t, \cdot)$ is constant almost everywhere on $P_0(t)$. \square

We shall give now the application to parabolic equations.

2. - Isoperimetric inequalities for linear parabolic equations.

Let us consider first the parabolic equation

$$\begin{cases} \frac{\partial u}{\partial t} + \mathcal{A}_t(u) + cu = f & \text{in } Q = (0, T) \times \Omega, \\ u = 0 & \text{on } \Sigma = (0, T) \times \partial \Omega, \\ u(0, \cdot) = u_0 & \text{in } \Omega, \end{cases}$$

(2.1)

where Ω is a bounded regular open set in \mathbb{R}^n,

$$\mathcal{A}_t(u) = - \sum_{i,j=1}^N a_{ij}(t, x) \frac{\partial^2 u}{\partial x_i \partial x_j}.$$

We denote by $A(= A(t, x))$ the matrix $(a_{ij}(t, x))$, as well as the bilinear form on \mathbb{R}^n associated with A, and we assume that A satisfies the uniform (with respect to (t, x)) ellipticity condition:

$$A(\xi, \xi) = \sum_{i,j=1}^N a_{ij}(t, x) \xi_i \xi_j \geq \|\xi\|^2, \quad \forall \xi \in \mathbb{R}^n.$$
Furthermore, we assume that the data satisfy:

- \(c, f, u_0 \) are non-negative functions; \(c, a_{ij} \) are in \(L^\infty(Q) \);
- \(\partial a_{ij}/\partial t \) are continuous in \(\overline{Q} \), \(f \) is in \(L^1(Q) \), and \(u_0 \) is in \(H^1_0(\Omega) \).

Then, the solution \(u \) is in \(L^\infty(0, T; H^1_0(\Omega)) \), \(\partial u/\partial t \) is in \(L^1(Q) \) (see [5], pp. 113-114, and [4] if \(a_{ij} \neq a_{ji} \)).

Let us introduce the problem

\[
\begin{aligned}
\begin{cases}
\frac{\partial U}{\partial t} - AU = f & \text{in } \overline{Q} = (0, T) \times \Omega, \\
U = 0 & \text{on } \Sigma = (0, T) \times \partial \Omega, \\
U(0, \cdot) = u_0 & \text{in } \Omega,
\end{cases}
\end{aligned}
\]

Where \(\overline{Q}, f, u_0 \) are as in the Introduction.

We are going to compare the solution \(u \) of (2.1) with the solution \(U \) of (2.1). More precisely, we have

Theorem 2.1. With the assumptions above,

\[
\forall t \in [0, T], \quad \forall s \in \overline{Q}^*, \quad \int_0^s u_*(t, \sigma) \, d\sigma \leq \int_0^s U_*(t, \sigma) \, d\sigma \leq \int_0^s g(t, \sigma) \, d\sigma
\]

where \(g(t, s) = \int_0^s f_*(\tau, s) \, d\tau + (u_0)_*(s) \). We deduce

\[
\forall t \in [0, T], \forall \tau \in [1, \infty],
\|u(t, \cdot, \tau)\|_{L^2(\Omega)} \leq \|U(t, \cdot, \tau)\|_{L^2(\Omega)} \leq \|g(t, \cdot)\|_{L^2(\Omega)}(\leq \infty),
\]

Proof. For a fixed \(t \in [0, T] \), we denote for convenience \(u = u(t) \), \(f = f(t) \). We argue as for the elliptic problem (see [8], [7]). By the maximum principle, we have \(u \geq 0 \). For any \(\theta > 0 \), we get from (2.1),

\[
\int_{\Omega} A(\nabla u, \nabla (u - \theta)_+) \, dx = \int_{\Omega} \left(f - cu \frac{\partial u}{\partial t} \right) (u - \theta)_+ \, dx.
\]

Thus, as in [8], [7], a simple derivation gives:

\[
\frac{d}{d\theta} \int_{u > 0} A(\nabla u, \nabla u) \, dx = \int_{u > \theta} \left(f - cu \frac{\partial u}{\partial t} \right) \, dx.
\]
The uniform ellipticity condition and the Cauchy-Schwartz inequality lead to
\[
\left[- \frac{d}{d\theta} \int_{u > \theta} |\nabla u| \, dx \right]^2 \leq \mu'(\theta) \frac{d}{d\theta} \int_{u > \theta} A(\nabla u, \nabla u) \, dx
\]
where \(\mu(\theta) = |u > \theta|\), and, by (2.5),
\[
(2.6) \quad \left[- \frac{d}{d\theta} \int_{u > \theta} |\nabla u| \, dx \right]^2 \leq - \mu'(\theta) \int_{u > \theta} \left(f - cu - \frac{\partial u}{\partial t} \right) \, dx.
\]
Using a result of Fleming-Rishel, and the isoperimetric inequality for the perimeter in the sense of De Giorgi, we find
\[
(2.7) \quad N^x \sigma^x_{\epsilon} \mu(\theta)^{1-x/|x|} \leq - \frac{d}{d\theta} \int_{u > \theta} |\nabla u| \, dx.
\]
Hence, combining (2.6), (2.7),
\[
(2.8) \quad N^x \sigma^x_{\epsilon} \mu(\theta)^{1-x/|x|} \leq - \mu'(\theta) \int_{u > \theta} \left(f - cu - \frac{\partial u}{\partial t} \right) \, dx.
\]
By the inequality (1.3) of Hardy-Littlewood,
\[
(2.9) \quad \int_{u > \theta} (f - cu) \, dx \leq \int_{u > \theta} f \, dx \leq \int_{u > \theta} f_{\mu(\theta)} \, ds = F(t, \mu(\theta))
\]
if we set
\[
(2.10) \quad F(t, \sigma) = \int_{0}^{\sigma} f_{0}(t, \sigma) \, d\sigma.
\]
For almost every \(\theta\), \(|u = \theta| = 0\), and \(u_{\ast}(\mu(\theta)) = \theta\) because \(u_{\ast}\) is continuous in \([0, |Q|]\) (as \(u\) is in \(H_{0}^{1}(Q)\), \(u\) non-negative, then \(\psi\) is in \(H_{0}^{1}(Q)\), see [7], for example). By Theorem 1.2
\[
\int_{u > \theta} \frac{\partial u}{\partial t} \, dx = \int_{u > u_{\ast}(\mu(\theta))} \frac{\partial u}{\partial t} \, dx = w(t, \mu(\theta)),
\]
with
\[w(t, s) = \int_{u(0) > u(0,t(\theta))} \frac{\partial w}{\partial t} \, dx \quad \text{if } |u(t) - u(t)_*(\theta)| = 0, \]
\[\frac{\partial w}{\partial s} = \left(\frac{\partial u}{\partial t} \right)_{u_*} = \frac{\partial u_*}{\partial t}. \]

Thus
\[\int_{u > 0} \frac{\partial u}{\partial t} \, dx = \int_0^\mu(t) \frac{\partial u_*}{\partial t} \, ds = \frac{\partial k}{\partial t}(t, \mu(\theta)) \]
if we set
\[(2.11) \quad k(t, s) = \int_0^s u_*(t, \sigma) \, d\sigma \]
\[\text{(as } (\partial k/\partial t)(t, s) = \int_0^s (\partial u_*/\partial t)(t, \sigma) \, d\sigma). \]

Thus
\[(2.12) \quad \int_{u > 0} \frac{\partial u}{\partial t} \, dx = \frac{\partial k}{\partial t}(t, \mu(\theta)), \quad \text{a.e. } \theta > 0. \]

From (2.8), (2.9), (2.12), we get
\[(2.13) \quad 1 \leq -N^{-2} \sigma^2 \mu(\theta) \mu(\theta) \left[F(t, \mu(\theta)) - \frac{\partial k}{\partial t}(t, \mu(\theta)) \right] \mu'(\theta). \]

As \(F(t, \cdot) - \partial k/\partial t(t, \cdot) \) is continuous in \(\tilde{Q}^* \), then, the function \(H(t, \cdot) \) defined in \(Q^* \) by
\[H(t, s) = s^{(2/N)-2} \left[F(t, s) - \frac{\partial k}{\partial t}(t, s) \right] \]
is continuous in \(]0, |\Omega|] \). By integrating (2.13), we get, for any \(0 \leq \theta \leq \theta' \),
\[(2.14) \quad \theta' - \theta \leq -N^{-2} \sigma^2 \mu(\theta) \int_{\mu(\theta)}^{\mu'(\theta)} s^{(2/N)-2} \left[F(t, s) - \frac{\partial k}{\partial t}(t, s) \right] \, ds. \]

Thus, as in [7], one has for almost every \(s \) in \(\Omega^* \),
\[(2.15) \quad 0 \leq -\frac{\partial k}{\partial s} = -\frac{d}{ds} \left(u(t)_s \right) \leq N^{-2} \sigma^2 s^{(2/N)-2} \left[F(t, s) - \frac{\partial k}{\partial t}(t, s) \right]. \]
Hence, \(k \) satisfies
\[
\begin{align*}
\frac{\partial k}{\partial t} - N^2 \alpha_3^{2/3} s^{2-(2/3)} \frac{\partial^2 k}{\partial s^2} &\leq F \quad \text{a.e. in } Q^* = (0, T) \times \Omega^*, \\
k(t, 0) & = 0, \quad \frac{\partial k}{\partial s}(t, |\Omega|) = 0, \quad \forall t \in [0, T], \\
k(0, s) & = \int_0^s (u_0)_* \, d\sigma = k_0(s), \quad \forall s \in \bar{\Omega}^*.
\end{align*}
\]
\((2.16) \)

Let \(K(t, s) = \int_0^s U_*(t, \sigma) \, d\sigma \), where \(U \) is the solution of \((2.1) \). We are going to show that the equality is achieved in \((2.16) \) for \(K \) instead of \(k \).

By the maximum principle, \(U(t, \cdot) \) decreases along the radii in \(\Omega \), and \((2.1) \) can be written
\[
\frac{\partial U_*}{\partial t} - N^2 \alpha_3^{2/3} s^{2-(2/3)} \frac{\partial U_*}{\partial s} = f_* \quad \text{in } \Omega^*.
\]
By integrating between 0 and \(s \), using the fact that \(s^{2-(2/3)}(\partial U_*/\partial s) = O(s) \) when \(s \) tends to zero (see the remark below) we obtain
\[
\frac{\partial K}{\partial t} - N^2 \alpha_3^{2/3} s^{2-(2/3)} \frac{\partial^2 k}{\partial s^2} = F \quad \text{in } Q^*.
\]

Remark 2.1. Using Cauchy-Schwartz inequality in the first line of \((2.16) \), we get
\[
0 \leq -s^{2-(2/3)} \frac{\partial U_*}{\partial s} \leq N^{-2} \alpha_3^{2/3} s^{1/2} \left[\|f(t)\|_{L^2(\Omega)} + \|\frac{\partial U_*}{\partial t} (t)\|_{L^2(\Omega)} \right]. \quad \Box
\]

Now, setting \(\chi = k - K \),
\[
\begin{align*}
\frac{\partial \chi}{\partial t} - N^2 \alpha_3^{2/3} s^{2-(2/3)} \frac{\partial^2 \chi}{\partial s^2} &\leq 0 \quad \text{a.e. in } Q^*, \\
\chi(t, 0) & = 0, \quad \frac{\partial \chi}{\partial s}(t, |\Omega|) = 0, \quad \forall t \in [0, T], \\
\chi(0, s) & = 0, \quad \forall s \in \bar{\Omega}^*.
\end{align*}
\]
\((2.17) \)

The first inequality in \((2.2) \) will result from a maximum principle for \(\chi \):
LEMMA 2.1. Let \(\chi(t, s) = (k - K)(t, s) = \frac{d}{s} (u_0 - U_0)(t, \sigma) \, d\sigma \). One has \(\chi \leq 0 \) everywhere in \(\bar{Q}^* \).

PROOF OF LEMMA 2.1. Multiplying the inequality in (2.17) by \(s^{(2/N) - 2} \chi_+ \), we get

\[
(2.18) \quad s^{(2/N) - 2} \frac{\partial \chi}{\partial t} \chi_+ \leq N^2 a^{2/N} \frac{\partial \chi}{\partial s} \chi_+ \quad \text{a.e. in } Q^*.
\]

For fixed \(t \), we shall denote \(u, \chi, \ldots \), for simplicity, instead of \(u(t), \chi(t) \ldots \). We shall also denote by \([\] \) a function of \(t \), independent of \(s \). First we prove that \((\partial^2 \chi/\partial s^2) \chi_+ \) is in \(L^1(Q^*) \). In fact, by Remark 2.1,

\[
\frac{\partial u_0}{\partial s} \leq [] s^{(2/N) - (3/2)},
\]

(2.19)

\[
\frac{\partial^2 \chi}{\partial s^2} \leq \frac{\partial u_0}{\partial s} + \left| \frac{\partial U_0}{\partial s} \right| \leq [] s^{(2/N) - (3/2)}.
\]

On the other hand

\[
|k| \leq \int_0^1 |u_0| \, d\sigma \leq s^{1/2} \|u\|_{L^1(\Omega)} = [] s^{1/2}
\]

(2.20)

\[
|\chi_+| \leq |\chi| \leq |k| + |K|
\]

Thus,

\[
\left| \frac{\partial^2 \chi}{\partial s^2} \chi_+ \right| \leq [] s^{(2/N) - 1},
\]

which belongs to \(L^1(Q^*) \). By integrating by parts, we are going to prove that \(\int (\partial^2 \chi/\partial s^2) \chi_+ \, ds \) is non-positive. For \(a > 0 \), as \(\chi \) belongs to \(W^{2,\infty}(a, \partial^* \Omega) \) by (2.19), the following integration by parts is justified

\[
(2.21) \quad \int_a^{a+1} \frac{\partial^2 \chi}{\partial s^2} \chi_+ \, ds = - \int_a^{a+1} \left(\frac{\partial \chi}{\partial s} \right)^2 \, ds - \frac{\partial \chi}{\partial s} (a) \chi_+(a) + \int_a^{a+1} \frac{\partial \chi}{\partial s} \chi_+ \, ds
\]

(we used the fact that \((\partial \chi/\partial s)(\partial \Omega) = 0 \) by (2.17)). When \(a \) tends to zero, the two integrals tend respectively to \(\int (\partial^2 \chi/\partial s^2) \chi_+ \, ds \) and \(\int (\partial \chi/\partial s)^2 \, ds \) (\(\chi_+ \), as \(\chi \), belongs to \(H^1(Q^*) \)). Now we prove that \((\partial \chi/\partial s)(a) \chi_+(a) \) tends to zero.
with \(a\). One has

\[
\left| \frac{\partial \chi}{\partial s}(a) \right| = \left| \int_a^b \left(\frac{\partial u_s}{\partial s} - \frac{\partial U_s}{\partial s} \right) ds \right| \leq \left| a^{(2/N)-(1/2)} - |\Omega|^{(2/N)-(1/2)} \right| \quad \text{(by (2.19))}
\]

By (2.20),

\[
\left| \frac{\partial \chi}{\partial s}(a) \chi(a) \right| \leq \left| a^{2/N} - |\Omega|^{(2/N)-(1/2)} a^{1/2} \right|
\]

which tends to zero with \(a\). From (2.21), we get

\[
\int_\Omega \frac{\partial^2 \chi}{\partial s^2} \chi_+ ds = -\int_\Omega \left(\frac{\partial \chi_+}{\partial s} \right)^2 ds \leq 0.
\]

From (2.18),

\[
0 \geq 2 \int_0^t \int_\Omega s^{(1/N)-1} \frac{\partial \chi}{\partial t} \chi_+ ds d\tau = \int_0^t \int_\Omega s^{(1/N)-1} \frac{\partial}{\partial t} (\chi_+^2) ds d\tau = \int_\Omega s^{(2/N)-2} \chi_+^2 ds.
\]

It follows \(\chi_+ \equiv 0\) in \(\bar{Q}^*\). \(\square\)

Now we shall prove the second inequality in (2.2). Let us consider the equation satisfied by \(K\) in \(Q^*\):

\[
F - \frac{\partial K}{\partial t} = -N^2 \alpha_0^{2/N} s^{-(2/N)} \frac{\partial U_s}{\partial s} \geq 0.
\]

Thus,

\[
\int_0^s f_s(t, \sigma) d\sigma \geq \frac{\partial}{\partial t} \int_0^s U_s(t, \sigma) d\sigma.
\]

By integration, we find

\[
\int_0^s U_s(t, \sigma) d\sigma - \int_0^s u_{ss} d\sigma \leq \int_0^s f_s(\tau, \sigma) d\tau. \quad \square
\]

Now, (2.3) is a simple consequence of a lemma in [2] (p. 174), for all \(r\) in \([1, \infty[\), and then for \(r = \infty\).

Remark 2.2. If \(f_s(t)\) is absolutely continuous in \([0, |\Omega|]\), for almost every \(t\) in \((0, T)\), then we can obtain an isoperimetric energy inequality:
we get from (2.1)

\[\int_{\bar{\Omega}} \left(\frac{\partial u}{\partial t} u + A(\nabla u, \nabla u) + cu^2 \right) \, dx = \int_{\bar{\Omega}} fu \, dx \]

\[\leq \int_{\bar{\Omega}} f_* u_* \, ds \quad \text{(by Hardy-Littlewood inequality)} \]

\[= -\int_{\bar{\Omega}} \frac{\partial f_*}{\partial s} k \, ds + f_* (|\Omega|) k(\Omega) \]

\[\leq -\int_{\bar{\Omega}} \frac{\partial f_*}{\partial s} K \, ds + f_* (|\Omega|) K(\Omega) \quad \text{(by Theorem 2.1)} \]

\[= \int_{\bar{\Omega}} f_* U_* \, ds \]

\[= \int_{\bar{\Omega}} \left(\frac{\partial U}{\partial t} U + |\nabla U|^2 \right) \, dx . \]

Using the uniform ellipticity condition, we have

\[\int_{\bar{\Omega}} \left(\frac{\partial u}{\partial t} u + |\nabla u|^2 \right) \, dx \leq \int_{\bar{\Omega}} \left(\frac{\partial U}{\partial t} U + |\nabla U|^2 \right) \, dx , \]

and, by integration

\[\frac{1}{2} \int_{\bar{\Omega}} u(T)^2 \, dx + \int_{\bar{\Omega}} |\nabla u|^2 \, dx \, dt \leq \frac{1}{2} \int_{\bar{\Omega}} U(T)^2 \, dx + \int_{\bar{\Omega}} |\nabla U|^2 \, dx \, dt . \]

Appendix.

In the proof of Lemma 1.2, we shall use the following lemma, whose proof is easy (see [1] for example).

Lemma A. Let \(v \) in \(W^{1,\infty}(0, T) \) \((1 \leq \alpha \leq \infty)\). If \(0 < |h| < \varepsilon \), we have

\[\int_{\varepsilon}^{T-\varepsilon} \left| \frac{v(t-h) - v(t)}{h} \right| dt \leq \left\| \frac{dv}{dt} \right\|_{L^1(\varepsilon, \varepsilon + |h|, T-\varepsilon + |h|)} . \]
Proof of Lemma 1.2. If \(u \) belongs to \(H^1(0, T; L^p(\Omega)) \), then \(u \) and \(\frac{\partial u}{\partial t} \) belong to \(L^2(0, T; L^p(\Omega)) \subset L^p(\Omega) \);

\[
\text{a.e. } x, \quad u(x) \quad \text{and} \quad \frac{\partial u}{\partial t}(x) \in L^p(0, T),
\]

that is

\[
\text{a.e. } x, \quad u(x) \in W^{1,p}(0, T).
\]

We can apply Lemma A, with \(v = u(x) \). For \(0 < |h| < \varepsilon \), we have, with \(q_n(t, x) = (u(t + h) - u(t))/h \),

\[
\text{a.e. } x, \quad \int_{\varepsilon}^{T-\varepsilon} |q_n(t, x)|^p \, dt \leq \left\| \frac{\partial u}{\partial t} \right\|_{L^p(\varepsilon - |h|, T - \varepsilon + |h|)}^p.
\]

By integrating over \(\Omega \), we get

\[
(A.1) \quad \lim_{h \to 0} \left\| q_n \right\|_{L^p(\Omega)} \leq \left\| \frac{\partial u}{\partial t} \right\|_{L^p(\Omega)}.
\]

1) If \(p > 1 \) (then \(\alpha > 1 \)), it is easy to prove that \(q_n \rightharpoonup \frac{\partial u}{\partial t} \) in \(L^p(\Omega) \), weakly. Then, classically, by (A.1), \(q_n \to \frac{\partial u}{\partial t} \) in \(L^p(\Omega) \) for the strong topology.

2) If \(p = 1 \), then \(\alpha = 1 \). There exists a sequence \(u_n \) in \(H^1(0, T; L^\infty(\Omega)) \) such that \(u_n \rightharpoonup u \) in \(H^1(0, T; L^1(\Omega)) \). Let

\[
r_{hn} = \frac{u_n(t + h) - u_n(t)}{h} - \frac{\partial u_n}{\partial t}.
\]

We have, with the \(L^1(\Omega) \) norms,

\[
\|r_n\| \leq \|r_{hn}\| + \|r_{hn} - r_n\|.
\]

We have just seen (case \(p > 1 \)) that \(r_{hn} \to 0 \) in \(L^1(\Omega) \) (and consequently in \(L^1(\Omega) \)). Besides, by Lemma A,

\[
\left\| \frac{(u_n - u)(t + h) - (u_n - u)(t)}{h} \right\|_{L^p(\Omega)} \leq \left\| \frac{\partial (u_n - u)}{\partial t} \right\|_{L^p(\Omega)}.
\]

Thus

\[
\|r_{hn} - r_n\|_{L^1(\Omega)} \leq 2 \left\| \frac{\partial (u_n - u)}{\partial t} \right\|_{L^p(\Omega)}
\]

which tends to zero with \(n \). It follows that \(r_n \to 0 \) in \(L^1(\Omega) \), and Lemma 1.2 is proved.
BIBLIOGRAPHY

Laboratoire d'Analyse Numérique
C.N.R.S. et Université Paris-Sud
91405 Orsay, France