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On Holomorphic Maps between Domains in Cn.

GIORGIO PATRIZIO

Introduction.

The Kobayashi metric and distance are important tools to study holo-
morphic maps between complex manifolds. Whenever precise informations
about them are available, it is relatively easy to get a great deal of useful
results. In this paper we use them to characterize biholomorphic maps
between certain classes of domains in Cn. In Section 2 we consider the relati-

vely elementary case of pseudoconvex, complete circular domains. Using a
recent result of T. J. Barth we show that a holomorphic map between two
such domains, which fixes the origin and is an isometry at the origin for
the Kobayashi metric, is in fact a linear biholomorphic map (Theorem 2.5).
With additional convexity assumptions on the domain we draw the same
conclusion for isometries of the Kobayashi distance (Theorem 2.7). Some

of the general results which are presented in Section two are given in the
infinite dimensional case since they seem to belong naturally to this context.
In Section 3 we take over the case of strictly convex domains in Cn. Using
the very powerful theory of Lempert [L] we can show that a holomorphic
map between two of them, which is an isometry of the Kobayashi metric
or distance at least at one point, is a biholomorphic map (Theorem 3.1).
Analogous results are shown for maps between a circular domain and a
strictly convex domain (Theorem 3.2). We also give a characterization of
the unit ball in Cn among the strictly convex domains in terms of the
Kobayashi distance and metric (Theorem 3.3). A version of our Theorem 3.1
has also been proved by I. Graham and H. Wu [GW] in the case when the
first strictly convex domain is the ball. While this paper was in preparation,
we were not aware of the results of Vigue [Vi2] who proves in an equivalent
form part of our Theorem 3.1. We thank the referee for pointing us out
the paper of Vigue.

Pervenuto alla Redazione il 7 Settembre 1984 ed in forma definitiva il 15 No-
vembre 1985.
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1. - Notations and preliminaries.

Let U = {z c C: lzl  1-1 be the unit disk in C. If M is a complex
(Banach) manifold, denote by H(U, M) the set of all holomorphic maps
from TT to M. The Kobayashi metric of M is defined by

for all q E M and v E T,(M). Here we identify T,,(V) with C and denotes
the euclidean norm. The indicatrix of M at p E M with respect to the

Kobayashi metric is defined by

Let M, N be complex (Banach) manifolds and p: N --&#x3E; N be a holo-
morphic map. We say that p is an isometry of the Kobayashi metric
(K-isometry for short) at p E M if for all v E TrAM) we have KM(p, v ) =
= -KN(9,(p), drp(p)(v)). In particular if rp is a biholomorphic map then it
is a K-isometry at every point of M.

The Kobayashi (pseudo)-distance ðM is defined as follows. Let p, q E M.

A holomorphic chain for p, q is a pair {(fj);=l,...,N, (z;)i=O,...,N} such that
f jc- H(U, M), zjc- U and p - f,(z,,), , f i(zj) = f;+i(z; ) , ..., fN(ZN) = q. Then
if o denotes the hyperbolic distance on U,

is a holomorphic chain for

.

In fact, if D is a convex domain in Cn, then, because of a theorem of Lem-
pert [L], b.,, is a distance function and, if p, q c- D, we have
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Let M, N be two complex (Banach) manifold and q : M - N be a holo-
morphic map. We say that 99 is 6-preserving at p E M’ if for all q E M we
have

In particular if p is a biholomorphic map, then it is 6-preserving at every
point.

Given f c H(U, M), we say that f is extremal with respect to p E M and
v E Tp(M) if f(0) = dl(O)(l) = Av with A E R and KM(p v) - À-l. IVe say
that f is extremal with respect to p, q E M if there exist z, w E U with

f (z) = p, f (w) = q such that bm(p, q) = g(z, w).
Throughout the paper S = S2n-l will denote the unit sphere in Cn and B

the unit ball. Also upper indeces will denote components and lower indeces
derivatives. Whenever it is not confusing, summation conventions are as-
sumed.

2. - Complete circular domains.

Let V be a complex Banach space. We say that G c V is a complete
circular domain if G is a connected, bounded, open set such that if Z E G
and A c- U, then AZ c- G. The Minkowski functional ma = m: V - R- asso-
ciated to G is defined by

Then, for all Z c- V - {01, we have (m(Z))-’Z c 8G and m(Z) = 1 if and

only if Z E aG. Moreover m has the following homogeneity property:

We shall identify freely the tangent space To(G) of G at the origin with V.
Then, in particular, the indicatrix -To ((7) will be a subset of V. Also we

denote by Kg the restriction .KG(o, 0) of the Kobayashi metric to To(G).
We recall the following result.

THEOREM 2.1 (Barth [B]). Let G be a complete circular domain in a

Banach space V. Then G c Io(G). Moreover, if G is pseudoconvex, then

G = Io(G) and, in fact, ma = Kg.
In [PW] the complete circular domains have been classified by consider-

ing their Minkowski functionals. Barth’s theorem implies that one can
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also use the Kobayashi metric, even in the infinite dimensional case. More
precisely we make the following observation.

PROPOSITION 2.2. Let G, G’ be two pseudoconvex, complete circular domains
in a complex Banach space V. The following statements are equivalent :

(i) G is biholomorphic to G’.

(ii) There exists a linear isomorphism A : V - V such that mG = mG, oA.
(iii) There exists a linear isomorphism A: V - V such that EGO Ko,oA.

PROOF. Clearly (ii) =&#x3E; (iii) because of Theorem 2.1. Assume that (ii)
holds. Then, if Z E G, we have MGI(A(Z)) = ma(Z)  1 and hence A(G) c G’.
Similarly one shows that G’ c A(G) so that A IG: G - G’ is a biholomorphic
map and (i) holds. Fillally if (i) is true, because of a theorem of Braun,
Kaup and Upmeier [BKU], then there exists a linear isomorphism A : V - V
such that A(G) = G’ and thus (ii) follows. q.e.d.

A simple and interesting consequence of Proposition 2.2 is the following
(cfr. [Pw] for a weaker statement) :

COROLLARY 2.3. Let G c Cn be a pseudoconvex, complete circular domain
with 02 boundary and let B be the unit ball in Cn. The following statements
are equivalent:

(i) G is biholomorphic to B.

PROOF. Clearly (i) =&#x3E; (ii), (i) =&#x3E; (iii), (ii) =&#x3E; (iii). Also since m,B = 11 11,
Proposition 2.2 implies that (ii) =&#x3E; (i). We shall show that (iii) =&#x3E; (ii).
Define M == (ma)2. If (iii) holds, then M is of class C2 on Cn. Moreover

because of (2.2), we have for all ZeC" and A c- C

Let Z c C, - {0}. Differeiltiating (2.3) for h, we get

Taking limit in (2.4) as £ - 0, we can conclude that lVl is a positive definite
hermitian form and hence (ii) follows. q.e.d.
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We shall use a Schwarz’s lemma for holomorphic maps between circular
domains. A version of it is due to Sadullaev [S] (cfr. also [FV] Theo-
rem 111.2.3 and [R] Theorem 8.1.2). We outline here a proof of the precise
statement that we need using Barth’s theorem.

THEOREM 2.4...Let G, G’ be complete circular domains in a complex Banach
space V. Let m, m’ be the respective Minkowski functionals and assume that
G’ is pseudoconvex. If rp : G --&#x3E; G’ is a holomorphic map wilh q(0) = 0, then

(i) m’(99(Z)) c m(Z) for all Z E G and if m’(p(Z)) = m(Z) for some
Z E G, then, for all À E C with 121  (m(Z))-’, we have m’(tp(ÀZ))
- m(AZ) = JAI M(Z).

(ii) I f A = dqJ(O) is the differential of 99 at 0, then A(G) c G’.

PROOF. Fist of all we observe that if f c- H(U, G’ ) and f(O) = 0, then

m(f (z))  Izl for all z E U. In fact, if we define gr : U --&#x3E; V by gr(z) = z-1 f (rz)
for r e (0, 1), then gr is holomorphic on U, continuous on U and gr( Ô U) c G’.
But then, since G’ is pseudoconvex, by the Kontinuitiitssatz, gr( U) c G’ for
all r E (0,1). Taking limit as r ---&#x3E; l-, this implies m’(/(z))  Izl. Let Z E G.

Then Z = tc where t = m(Z) and c = t-1 Z E aG. Define opz c-H(U, G) by ggz(z)
= p(zc). Then, as observed above, m’(opz(z))  Izl for all z E U. In particular
we get

Since G’ is pseudoconvex then m’ is a plurisubharmonic function (cfr. [B],
Theorem 1). Thus the function h defined by h(Â) = m’(Â-lcp(ÂZ)) on the
disk U’ === {Â E C: IÂI  m(Z)-ll is subharmonic for every Z E G. Since

sup h = m(Z), if m’(99(Z)) = m(Z), then h must be constant and hence
m’(99(2Z)) = m(ÂZ) === IÂlm(Z) and the proof of (i) is complete.

Part (ii) follows immediately from Barth’s theorem because under the

hypothesis we have

Using the above results we can now give the following characterization
of the biholomorphic maps between complete circular domains.

THEOREM 2.5. Let G, G’ be pseudoconvex, complete circular domains in Cn
and rp: G --&#x3E; G’ be a holonorphic map with rp(O) = 0. If rp is a K-isometry
at 0, then q is a linear bihotonzorphic map o f G into G’.

PROOF. Let .A. = drp(O): Cn -+ Cn be the differential of 99 at 0. By hy-
pothesis Kg, = .KGoA. Thus A is non singular and, by proposition 2.2, G is
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biholomorphic to G’ and, in fact, G’ = A(G). But then 1p = qJoA -1: G ---&#x3E; G

is a holomorphic map such that 1p(O) = 0 and dy)(0) = Id. By Cartan’s
uniqueness theorem, we conclude that y = Id and hence rp = A = dgg(o),

q.e.d.

Since biholomorphic maps are K-isometry at every point, one gets at
once the following

COROLLARY 2.6. Let G, G’ be pseudoconvex, complete circular domains in
Cn and rp: G -+ G’ be a holomorphic macp.

(i) If G is homogeneous and Z E qJ-l(O) exists such that is a K-isometry
at Z, then rp is a biholomorphic map.

(ii) If 0’ its homogeneous and cp is a K-isometry at 0 E G, then cp is a

biholomorphic map.

.In particular if both G, G’ are homogeneous, then q is biholomorphic if and
only if (p is a K-isometry at some point Z E G.

REMARK. It is known that every bounded symmetric domain call be
realized as a bounded, pseudoconvex, complete circular domain (even in
the infinite dimensional case, cfr. [Vill). Thus the above result implies
in particular that a holomorphic map between two bounded symmetric
domains in Cn is biholomorphic if and only if it is a K-isometry at one point.

We now restrict our considerations to more special domains. First we

need some terminology. Let V be a complex Banach space and K c V. A
point p e K is called a complex extreme point of K if q = 0 is the only vector
in V such that {p + 2q: 2 E U} c K. Let D be a bounded, convex domain
in Y. We say that D is .E-convex if every point p E a..D is a complex extreme
point of N. It is known (cfr. [V]) that if G is a E-conveg, complete circular
domain in a complex Banach space V and Z E G, then the only extremal
maps f c- H(U, G), for the Kobayashi distance or metric, such that f(O) = 0
are of the type f = f, with fc(z) = zc for some c E aG. This fact together
with Barth’s theorem implies the following formula for all Z E G :

THEOREM 2.7. Let G, G’ be E-convex, complete circular domains in Cn
and let m, m’ be the respective Minkowski functionals. I f q;: G-* G’ is a holo-

morphic map with q(0) = 0, then the following statements are equivalent :
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(i) 99 is a linear biholomorphic map.

PROOF. Since biholomorphic maps are 6-preserving, (i) =&#x3E; (ii). Also

(ii) =&#x3E; (iii) because of (2.5). Again because of (2.5) and of (i) of Theorem 2.4.
we have that (iii) =&#x3E; (ii). Only (ii) =&#x3E; (i) remains to be shown. Given any
CE 8G, the map fcEH(U, G) defined by f, (z) = zc is an extremal map of G.
If (ii) holds, then the map g = q;ofcE H(U, G’ ) is an extremal map of G’

and g(o) = 0. Thus, as remarked above, g must be linear and hence

Since this holds for all c E 30, rp is linear. Also since 6,, is a distance, if

tp(Z) = 0, then 0 = ðG,(O, gg(Z)) = ðG(O, Z) and hence Z = 0 i.e. tp is injective
and therefore (p c- GL(n, C). Because of (2.5) then EG, = K’ogg = Kgodq(0)
i.e. 99 is K-isometric at 0 and the claim follows from Theorem 2.5.

q.e.d.

As with Corollary 2.6. since biholomorphic maps are 6-preserving, one
shows at once the following consequence of the above theorem.

COROLLARY 2.9. Let G, G’ be B-convex, complete circular domains in C"
and let rp : G --&#x3E; G’ be a holomorphic map.

(i) If G is homogeneous and there exists Z E G such that tp(Z) = 0
and 6,(Z, W) = ðG,(O, p(W)) for all W EG, then q; is biholomorphic.

(ii) If G’ is homogeneous and ðG(O, W) = ðG,(rp(O), tp(W)) for all W E G,
then (p is biholomorphic.

In particular, if both G and G’ are homogeneous, 99 is biholomorphic if
and only if there exists Z E G such that ðo(Z, W) === 6G’(99(Z), 99(W)) for all
W E G.

3. - Strictly convex domains.

We say that D c Cn is a strictly convex domain if it is an open, bounded,
connected set and there exists a defining function r : Cn-&#x3E; R for it of class C°°

and such that the real Hessian of r is everywhere positive definite. For

such domains Lempert has shown the existence and the unicity of the ex-
tremal maps for the Kobayashi metric and distance. Here we shall recall a
few notions that will be used below (cfr. [L] for proofs).
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Let D be a strictly convex domain in Cn. There exists a C°°, proper,
surjective map

with the following properties:

(3.2) For every p E D, b c 8, the map F(p, 0, b): U ---&#x3E;- D is holomorphic
with F(p, 0, b) = p and F’(p, 0, b) = IIF’(p, 0, b)/I b, and it is the

unique extremal map with respect to p and b (here and below we
identify Tp(D) with Cn) and KD(p, b) = (//F’(p, 0, b)II)-1.

(3.3) For every z, W E U and 1) E D, the map F(p, 0, b): U - D is the
unique extremal map with respect to F(p, z, b) and F(p, w, b).

(3.4) If 2 E a U then F(p, z, 2b) = F(p, 2z, b) for all (p, z, b) E D X U X S.

(3.5) If b, c- S for j = 1, 2 and L, = F(p, 0, bj)(U) for some p E D, then
either L_, n L2 == (p) or Ll = L2 and there exists g E a U such that
bl = ub,. In fact, for all p E D, F(p, z, b) = F(p, w, c) if and only
if lzl- Iw and c = ,ub for some lic-au.

For striotly convex domains we have the following analogue of Theo-
rem 2.5 and 2.7:

THEOREM 3.1. Let D, D’ be strictly convex domains in Cm and op: D - D’
be a holomorphic map. Then the following statements are equivalent:

(i) p is a K -isometry at one point p E D.

(ii) q is 6-preserving at one point p E D.

(iii) p is a biholomorphic map.

PROOF. It is clear that (iii) implies both (i) and (ii). Let FD, F,,, be
the maps introduced in (3.1) relative to D, D’ respectively. Assume that (ii)
holds. If q = p(p) and b c S is any given vector, then the map f : U - D’
defined by I(z) = q;(FD(p, z, b)) is extremal with respect to q === 1(0) and
f (w) for all WE U and also (cfr. [L], Theorem 2) it is extremal with respect
to q = f(0) and /’(0) == A(F(p, 0, b)) = ))F£(p, 0, b) ))A(b) where A = dgg(p).
But then it is also extremal with respect to q and A(b)/lfA(b)/I and there-
fore, because of the unicity of the extremal maps we have rp(FD(p, z, b))
= lJ’D,(q, z, A(b)/lfA(b)II). Differentiating this equality with respect to z and
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setting z = 0, one gets:

and therefore KD,(q, A(b)) = KD(p, b ) . Since b was arbitrary it follows that 99
is a K-isometry at q i.e. we have shown that (ii) implies (i). It remains

only to prove that (i) implies (iii). Assume that (i) holds and let q = q;(p),
A = dp(p). Since 99 is a K-isometry at p, then for all b c S the map f : U - D’
defined by f (z) = gg(FD(p, z, b)) is extremal with respect to f (0) = q and
f’(o) == A (FD ’(p, 0, b)) = ll-F’(p, 0, b)IIA(b). Thus f is also extremal with re-
spect to p and A(b)IIIA(b)li and therefore, by the unicity of extremal maps
we get for all z e U

From (3.6) one gets immediately that 99 is surjective. In fact if S E D’,
then there exists x E IJ and c E S such that .X = FD, (q, x, c). But then

X = p(FD(p, x, A-i(c) /[[A-i(c))) )). Let Z, W E D and assume p(Z) = p(W).
Then there exist z, w E U and b, c E S such that Z = .FD(p, z, b) and

W = FD(p, w, c). Then

Thus Iz = Iwl and there exists Â E a U such that

But then, since llbll = iiell = 1, we have IIA(b)ll = IIA(c)11 and c = Ab. Thus

Z = F’D(p, z, b) = -FD(p, w, c) = X. It follows that is also injective and
therefore bijective and hence (iii) holds. q.e.d.



276

REMARKS. As mentioned in the introduction, the part (i) =&#x3E; (iii) of

the above theorem is contained in Vigue’s paper [Vi2]. In fact, he shows
that a holomorphic map between two convex domains (not necessarily
strictly convex) is biholomorphic if and only if it is an isometry at one
point for the Caratheodory metric. Since for convex domains the Kobayashi
and Caratheodory metric coincide (cfr. [L2] and [RW]), our statement

(i) &#x3E; (iii) follows at once.
Given a strictly convex domain D c Cn and p E D, using (3.2), one has

the following description of the indicatrix of D at p :

and thus we have also

Because of (3.4) and (3.5) a map h: Ip(D) -+ D is well defined by h(zc)
- I’D(p, z, clllcl!) where z E U and c E ôIf)(D). The map h, which we called
in [P] the circular representation of the domain D at p, has the following
properties (cfr. [P] for proofs) :

(3.9) h is a homeomorphism.

(3.10) h : IfJ(D)-{O} -+D-{p} is a diffeomorphism .

(3.11) For all complex line LcCn, the restriction hlLnlp(D) is holomorphic.

(3.12) h is biholomorphic if and only if it is of class C°° at 0.

Using this map h we can show the following:

THEOREM 3.2. Let D c Cn be a strictly convex domain and G c Cn be a

pseudoconvcx, complete circular domain.

( i ) If q;: G --* D is a holomorphic ma p and a X-isometry at 0 then 99
is a biholomorphic map.

(ii) If V: D -+ G is a holomorphic map with 1p(p) = 0, ip is a K-iso-

metry at p and G is an B-convex domain, then V) is a biholomorphic
map.
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PROOF. (i) If p is a K-isometry at 0 and A = dgg(O) then A e GL(n, C)
and, since by Barth’s theorem G = ID(G), we have A(G) = h(D). If we

show that 99 = hoA, then it follows that p is a holomorphic bijective map
and hence a biholomorphic map. Let Z E G be any point. Then z E U and

ce aG exist with Z = zc. Define f : U -- D by f (z) = (p(ze). Since 99 is a

.g-isometry at 0 then f is extremal with respect to p = f (0) and f’(0) = A(c).
Thus f is also extremal with respect to p and A(c)/IIA(c)ll E S. But then

we have

because of the unicity of extremal maps for strictly convex domains and
the claim is proved.

(ii) Again by Barth’s theorem, since is a K-isometry at 0, if B = dy(p),
we have B (1,,, (D)) = G. If we show that V o h - B then it will follow that
1p = Boh-1 is a bijective holomorphic map and therefore biholomorphic.
Let Z E Ip(D). Then Z = zc for some z E U and c E ôlp(D). Since 1jJ is a

K-isometry at p and the unique extremal maps f : P - G with f (0) = 0 are
of the type f (z) = zf’(o), we have

which proves the claim. q.e.d.

Our last theorem is a characterization of the ball B in Cn among the

strictly convex domains which has the same flavor of the previous results
although the proof relies on different techniques. First we need to introduce

one more notion. Let D c Cn be a strictly convex domain and p E D be
any point. Because of (3.4) and (3.5) an exhaustion -r =- -r,: -D --* [0, 11,
called the Lempert exhaustion at p, is well defined by

for all z E U and b E S where h’D is the map defined in (3.1). Because of

(3.3) one has immediately that for any q E D.
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In addition the function r has the following properties (cfr. [L] and [P]):

(3.15) -r is continuous and proper, of class C°° on D - fp} with z(p) = 0,
o  í(q)  1 if qeD- {?} and í = 1 on aD.

(3.16) 1 is strictly plurisubharmonic and log r is plurisubharmonic on
D - fp}.

Using Stoll’s characterization of the unit ball ([SPM) we can prove
the following :

THEOREM 3.3. Let D c Cn be a strictly convex domain.

( i ) If there exists p E D such that the squared Kobayashi distance from p
6£(p, 0) : D - [0, 00) is a f unction of class Coo, then D is biholo-

morphic to B.

(ii) If there exists p E D such that the Kobayashi metric is a smooth

hermitian metric in a neighborhood of p, then D is biholomorphic
to B.

PROOF. First observe that if (ii) holds then (i) follows too. In fact for

strictly convex domains 6’ D (p, D) E C°°(D - {p}). On the other hand under
the assumption of (ii) it follows that ð1(p, D), which is the squared integrated
distance of the Kobayashi metric, is smooth in a neighborhood of p and
therefore the assumption of (i) are verified.

To prove (i), first observe that, if T = íp is the Lempert exhaustion
at p, we have í = (tg hðD(p, 0)) 2 because of (3.14) and therefore T is an

analytic function of ð1(p,0) and thus -r is of class 000 on D. Moreover -c

is strictly plurisubharmonic also at p. In fact, if b E 8, then, using (3.13),
we have

This together with (3.15), (3.16) and (3.17) shows that is a strictly para-
bolic exhaustion for D of radius 1 and thus by Stoll’s theorem D is biholo-
morphic to p (cfr. [SPM]). q.e.d.


