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Hölder Continuity and Thin Obstacle Problems
for Vector Valued Functions.

THOMAS KARLSSON

1. - Introduction.

The object of this paper is to study the regularity of solutions u, defined
in a set Q c R", of a thin obstacle problem for vector valued functions. We
are concerned with the Holder continuity for solutions of a nonlinear dia,go-
nal system of variational inequalities. The convex set of admissible varia-
tions is given by an obstacle which is active on a smooth n - 1-dimensional
manifold .E c.Q.

Our main result is that if the obstacle function ?p has distributional
derivatives of order one which are of class EP for some p &#x3E; n and is Holder

continuous with exponent p, 0  p  1, then solutions are Holder continuous
with the same exponent It on the manifold E. In order to achieve this we
first prove the following, a result of interest in itself. If the set E, where
the constraint is introduced, is a hyperplane then solutions are Holder
continuous with exponent fl in directions parallel to the hyperplane. In

the special case p = 1 we get Lipschitz continuity in those directions and
this is one of the results in the author’s doctoral thesis [7].

In [8] the author studied a, in some sense, more general problem. It

follows from the results there that bounded weak solutions of our problem
are Holder continuous with some exponent, at least if the bound is suf-

ficiently small.
There are few existing papers dealing with thin obstacle problems for

vector valued functions. However, we can compare our situation with
that in [11]. There Kinderlehrer was concerned with continuity properties
for the solution of a boundary obstacle problem with a variational inequality
pertaining to a non-diagonal system with smooth coefficients, a problem

Pervenuto alla Redazione il 28 Dicembre 1984.
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which arises in the theory of linear elasticity. Let us also mention [13]
where Necas proved W2,2-regularity for solutions of a class of non-linear
boundary obstacle problems.

The scalar valued case has been more extensively studied and this was
initiated by Lewy [12]. He considered the problem of minimizing the Di-
richlet integral in two dimensions and showed that if the thin obstacle

function has a continuous derivative then the solution, y restricted to the

set where the constraint is introduced, has a continuous derivative. After

that this kind of interior thin obstacle problems as well as boundary ob-
stacle problems have been studied by several authors. Here we mention

Kinderlehrer [9] and [10], Beirao da Veiga and Conti [1], Giaquinta and
Modica [5], Frehse [3], Frehse and Mosco [4] and Caffarelli [2].

Acknowledgements. I am much obliged to Dr. Bengt Winzell for his
careful reading and for his many suggestions for improvements of the

manuscript. I am also very grateful to Mrs. Birgitta Arnsby for her efficient
typing of the manuscript.

2. - Notations.

Let Q be a bounded open set in Rn, n &#x3E; 3, of points x = (xl, .., xn_l, xn)
= (x’ xn), and put Br(xo) = (x c- Rn: Ix-x,,Ir}. Denote by w1’P(Q), p:&#x3E;l,
the Sobolev space of functions n such that

and by wl’°(Q) the closure of Or;(.Q) in the wl,p-norm. In the notation for a
function space we add the symbol RN to denote the corresponding space
of RN-valued functions. For instance OO,P(S, RN) stands for the space of
RN-valued functions with components in OO,P(S), the space of locally Holder
continuous functions with exponent ,u. We also use the notations u = (u1, ... , y
..., 2GN-1, uN) = (Pu, uN), Da, === ô/ôxa, and V u = (..., Daui, ...), where 1 lXn
and liN. For positive h and for unit vector e = (e’, 0), e’ERn-l, we let

u_(z) = u(x::f:he) and

When ,u = I we write L1hu instead of dh u. Moreover, we use a summation
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convention such that

means that

where us, v2 and f are the components of u, v and f, respectively. Finally,r
different constants appearing in the text will mostly be denoted by the
same letter c.

3. - Results.

We will look at solutions 2c = (u1, ..., uN) of the variational inequality

for all v E K = {V e WI,2 (Q, RN): (v -1f’) (x) E F(x) for x E E and V _ 99 E WI,2(,Q,
RN)}, where q is a prescribed RN-valued function, {F(x)lEn is a set of half
spaces in RN and E c Q is an n - 1-dimensional manifold without boundary
in Q. The obstacle function V is of class w1,p (’B C°"(Q, RN) for some p &#x3E; n

and some It, 0  u  1. Furthermore, the coefficients a’# Ioc, #n, give
an elliptic operator, that is there exists a positive constant A such that

In the three first theorems we consider the situation where the sets .(x),.
x E Q, all are the same, namely the upper half space. This means that the

constraint (u - 1J’)(x) E F(x) for x E .E takes the form : uN(x):&#x3E; ’lpN(X) for x E E.
Moreover, the right hand side is of the form

For g, which grows linearly in Vu, only measurability is assumed. On the
other hand for go, which grows quadratically in Vu, we need some regularity-
condition. More precisely, go together with ga and atX,fJ, I I cx, Pn, are con-
tinuous functions satisfying the following conditions. For bounded u e K
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.and with uj == u(xj) and Vuj - Vu(xj), j - 1, 2, we suppose that

for some u’, p  p  1, and for almost every x,, x2 E Q. Here 6,, it = ul - u2 ,
Vb,u = Vui- Vu, and bju - PUI-PU2, Vðiu = VPUI- VPu2 for I i N
-1. For the function g = g(x, u, Vu) we assume measurability in Q for
u E K and the existence of positive functions a E LOO(D) and b E LP(D) such
that

for x E Q, U E K and p e RnN.
Note that, except for the restriction that g§, I I N - I, are inde-

pendent of BfuN, condition (4) allows the function go == (go, ..., g:-l, g:) to
grow quadratically in Vi.

The first theorem treats the case when E = Q’= {x = (x’, xn) e Q:
xn = 0), and states that in directions parallel to E solutions are Holder
continuous with the exponent /-l, 0  ,u c 1, given by the obstacle function
From [8] we know that bounded weak solutions, y with sufficiently small
Loo-norm, are Holder continuous with some exponent so we will consider
only Holder continuous solutions of (1).

THEOREM 1. If uEcO,Y(Q,RN), Oyp,l, is a solution of (1) with
_.E = Q’ then for every Qocc Q,

where the supremum is taken over all (x’, xn) and (y’, xn) E Do, x’ =1= y’.

REMARK. Let us for a moment assume that 0  Iz  1. Then it follows
from Theorem 1 that u is Holder continuous with exponent in all direc-
tions if we for the system of differential equations pertaining to the varia-
tional inequality have relevant Schauder estimates.
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The proof of Theorem 1 also gives the following theorem dealing with
the corresponding thick obstacle problem. Define Kn == {v E W1,2(Q, RN):
(v - 1p)(x) e F for x E Q and v - cp E W2(Q, RN)}.

THEOREM 2. I f u e OO,Y(Q, RN), 0  Y  #1 is a solution of (1) with Kn
instead of K then u is Hölder continuous with exponent u in Q.

Next we consider n - 1-dimensional manifolds E with the following
smoothness property.

PROPERTY E. For every XoE E there is a neighbourhood U and a bijec-
tion 6 of U onto BR(O), R&#x3E; 0, such that the image of U n E is B£(0)
=== BR(O) n {y ERn: Yn == O}. Moreover, 0 and its invers (j-l are of class

(Jl,p, and c( U) denotes a positive constant for which the Jacobian matrix
(dO/dx)(0153) satisfies

THEOREM 3. Let the set .E in the definition of K have Property .E and let

u E CO’Il(Q, RN), 0  Y  p, be a solution of (1). Then u E cO’Il(E, RN).

Finally, we are concerned with the regularity of solutions of (1) when
the sets F(x), x E Q, are defined by

with v(x) E (Jl’Jl(Q, RN) and Iv(x) = 1 for x E Q. Also in this case we may
have quadratic growth in the right hand side, but here the restriction on
this growth depends on the directions v(x), x E Q. There is a similar restric-
tion on the coefficients a(XfJ, 1  ex, fJ  n, and their dependence on u. For

simplicity, we dispense with the details here and assume that a(XfJ, 1 c a,
pn, are independent of u and that go = 0. That is, we look at solu-
tions u of

for all v E K = {V E WI,2 (S?9 RN): (v - V) (x) E I’(x) for x E E and v - cp E WOI,2(,Q,
RN)}, where a(XfJ E (J°,P(Q, RN) and the functions g(X, 1  tX  n, and g are as

before.
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THEOREM 4. Let E satisfy Property E. I f u E cO’’’(Q, RN), 0  y  /-l, is
a solution o f (6) then u E cO’P(E, RN).

4. - Auxiliary lemmata.

When mentioning Cauchy’s inequality and Young’s inequality we mean
the inequalities

and

respectively .

Here 8 &#x3E; 01 sy t &#x3E; 0 and I lp + I lp’- 1, p &#x3E; 1. We write Young’s inequality
in the form

which is more convenient for our purposes.
We will utilize the Green function G for the operator E = - D,, (b’x" DO),

where b’O are Holder continuous in a ball B, and its mollification G-e defined
by

We list some useful properties of G and G(1 cf. Widman [14] and [15].

LEMMA 1. For z E B and e &#x3E; 0 small enough G(1(., z) E wo2(B) and satisfies

and

for

Moreover, since btX{J are Hölder continuous G will be regular and we have the

inequalities
and

Finally, if B2rc Band Br is the concentric ball of radius r then
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Next we generalize a lemma from Hildebrandt and Widman [6], p. 203,
which will be needed in the proof of Theorem 1.

LEMMA 2. Let XoE Q acnd suppose that u E OO,Y(Q, RN), 0  y p, is ac so-

lution o f the inequality ( 1 ) . Then for 0  x  2y’, y’ - min (y, 1 - n/p),

for all r, 0  rl dist (xo, ôQ). Here the constant C depends on parameters
of the problem, on x and on the OO,Y -norm o f u.

PROOF. Fix xo E o and let r be such that B2r(xo) C Q. Moreover, let

,q c- Co (B2r(xo)) be a function which satisfies q (x) = 1 for x E Br(xo), 0 ,q I
and I Vq  c/r. If B2r(xo) (1 E =1= ø choose an x, in B2r(xo) f1 .E and put

where 8 &#x3E; 0 and W, 0  (!  r/2, is the mollification of the Green func-

tion C for the operator L = - DfX(atXfJDp). Here, the Hölder continuous
coefficients atXfJ === atXfJ(0153, u) are extended to Hölder continuous functions de-
fined in an open ball B D Q such that the ellipticity property still holds, 
at least for a slightly smaller ellipticity constant Â. It is readily seen that v
is a test function if c is sufficiently small. Now, use this test function in
(1), cancel 8 and rearrange terms to obtain

Standard calculation now gives

For convenience of the reader we sketch the proof of (8). Expand the
left hand side in (7), use the ellipticity condition, the continuity of u, known
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properties of Ge and Cauchy’s inequality to obtain

Treating the first integral on the right hand side in (7) in a similar manner
we find

From (4) it follows that there are constants C1 and e, depending on the
Loo-norm of u such that Igo(x, u, VU) I  e, IVU 12 + C2 for almost every x E Q.
Using this, the fact that the functions g,,, 1  ex  n, are bounded, condi-
tion (5) and as before suitable properties of u, V and G" we see that the
second integral on the right hand side in (7) is bounded from above by

Summing up and using Lemma 1 we get

and together with Fatou’s lemma this gives the estimate (8).
Next we consider the case when B2r(xo) r1 E = 0. Here we can use the

same test function, where x1 now is an arbitrary point in B2r(xo), for instance
xo . The same procedure as above yields the inequality (8) also in this case.
It is not hard to see that the statement in the lemma follows from (8). In

fact,

and we are done.
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5. - Proofs of the results.

PROOF OF THEOREM 1. We will use a rather special test function and
in order to construct this we need some notations. Introduce the sets

QT == {x E Q: dist (0153, aQ) &#x3E; T} and I = {x E Q’ n QT/2: uN(x) = 1pN(X)}, and let
0  h  T/4. Choose 1 &#x3E; 0 such that

L1’ljJN (x) + l:&#x3E; ð &#x3E; 0 for some (5 independent of z E QT/2’ hand e = (e’, 0 ) .

Here e’ is a unit vector in RN-i. Put

where

Fix XoE QT and let 0  rðT(xo)/4, where 6,(x,,) = max (dist (xo, ô,Q) - T, 0).
As a test function we use

where e &#x3E; 0 and’ _ b(xo) q. Here q, e, G2 are as in the proof of Lemma 2.
We will comment on this choice in an appendix at the end of the paper.
This v is an admissible test vector since v E ’U)1,2(Q, RN) and v - rp E w’,’(Q, RY),
and since it is possible to show that (vN- v N) (X) &#x3E; 0 for X C S2’ if 8 is suf-

ficiently small. In fact, if x c- I c S2’ we have

and it follows that A" uN + 1 &#x3E; 0 in some n - 1-dimensional neighbourhood
.N(I ) cQ’ of I. Consequently,

This implies that for .r E N(l),

since w’v(x)  0 and WN (x) = 0 if x belongs to N(l).
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For x c- Q’BQ,12, v = u so trivially vN(0153):&#x3E; ’lpN(0153). Finally, for x E [J’
r) Qï/2""’N(I) there is a positive constant c such that (UN_1pN)(X):&#x3E;C and

if E is chosen small enough. By use of this v in the variational inequality
(1) we can show that

with a constant c which is independent of e and h. The proof of (9) is post-
poned to somewhat later.

From (9) and the definition of it,, we obtain that

According to the definition of uN, luv 1  c yields that

either

from which the following estimate from below is deduced:

However, due to the fact that the constant ci is independent of h, e and x,
we are allowed to reverse the direction of e in (11), whence

This together with (10) gives the statement in Theorem (1). It remains

to prove (9). To do so we exploit the technique used by Hildebrandt-Wid-
man in [6], pp. 205-207.

First we assume that g . == 0. Now, insert the proposed test function in
(1) move the operator J"h to the other factor and delete c to arrive at

By use of the identity



291

we split the integral on the left hand side in (12) into two parts, move the
second one to the right hand side and exploit the conditions (2)-(4) on aa#
and on the right hand side to obtain

where Qz == (s e QT: L1uN(x) + l  O} == (z e .QT: u § # 0 ).
By use of Cauchy’s and Young’s inequalities and the facts that in Qz,

lL1ul «l + l)(luL11 + 1) and )V4j/ u == )Vuj the right hand side in (13) can

be estimated by
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When expanding the left and side in (13) the integral

will show up. Since

and

we find

Now, we split the integral on the left hand side in (13) into three parts the
first of which is estimated from below by use of the ellipticity condition, 
the second of which is treated as indicated above and the third of which

is treated in the following way. Utilizing Cauchy’s inequality we obtain
that

Summarizing and using luj I  lzl," u and JUA I  I + JUA 12 we get

Since r  ôT(xo)/4 we have 6,,(x,,,)  26,(x) for x E B2r(xo) and this implies that
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for all x E B2r(xo). Combine this and known inequalities for Gfl and VG,..
with (14) whereupon

Furthermore, if h is so small that independently of e s-upp 77 + he c B2r(xo)
then

and, taking Lemma 2 into account,

Combine these inequalities and the inequality

with (15) it is easily seen that

Now, let e -&#x3E; 0 and infer

If we choose xo E S2z such that
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and let f = min (6,(x.)14, (2C.)-11") we find

with a constant C independent of hand e. This implies that

which is the desired inequality (9) and this completes the proof for the
case where g = 0. If this is not the case the term

will show up. If we as before exchange the difference operator A_, for the

gradient operator V and use condition (5) it is not hard to see that this

integral is bounded from above by

Now looking at (14) we see that it is possible to have also these terms in
the right hand side and still get the desired inequality. This completes
the proof of Theorem 1.

By inspection it is readily seen that Theorem 2 follows from this proof
if we let e in the definition of J"u be an arbitrary unit vector in Rn,
instead of being of the form (e’, 0).

PROOF OF THEOREM 3. Fix x,, c- B. Let F be a neighbourhood and 0
be a transformation such that Property E holds. Observe that our solu-

tion u of (1) is also a solution of the inequality

and
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After an elementary calculation we see that ft = UO(J-l is a solution of

and

for all vEKBR=== {VEW1,2(BR(O),RN): VN(y»ijJN(y) for y E BR(o) and v-ù
E w,2(B.R(O), RN)}, where v === voO-1 and 1jJ == 1pOO-l. It is not hard to see

that the new coefficients àfX’fJ’ and the new right hand side f satisfy condi-
tions like those in (2)-(5). Note especially that the functions

give an elliptic operator with an ellipticity constant depending on 2 and
C( U), the constant appearing in Property E. Since 1p is Holder continuous
with exponent u Theorem 1 implies that ft is Holder continuous with the
same exponent on BR and consequently u is Holder continuous on U r) E.
Now the collection of sets U n E, x,c- B, constitute an open covering of E
and since every compact subset of E is covered by a finite subcollection
this proves the theorem.

PROOF OF THEOREM 4. We will show that it is possible to introduce
functions u and 1p such that the constraint (u - 1p)(0153) E F(x) for x E B takes
the form fiN(X) &#x3E; fo(X) for x E B. In fact, let fi = Qu where Q is an orthogonal
matrix with entries of class C1,p such that fiN(x) = y(x)u(x), and where u
is our solution of (6). Then it is not hard to show that u is a solution of a
similar problem where all the relevant conditions still hold and where the
constraint is given by iN(X) &#x3E; 1jJ(x) = y(x) 1p(x) for x E E. From Theorem 3
we conclude that U E OO,P(E, RN), and consequently u E OO’P(E, RN), which is
the statement in Theorem 4.

6. - Appendix.

In [6], Hildebrandt and Widman considered a similar problem but with a
thick obstacle, that is when the constraint is of the form (u - 1p)(0153) E F
for all x E D. There ip was assumed to be three times continuously differen-
tiable and then a simple argument shows that one can suppose that ip = 0,
at least if the conditions on the right hand side are less restrictive than


