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Boundary Behaviour of Eigenfunctions
of the Laplace Operator on Trees.

ADAM KORÁNYI (*) - MASSIMO A. PICARDELLO (**)

1. - Introduction.

Let T be any tree, and let s, t be vertices of T. If s and t are neighbours, ,
the ordered pair (s, t) is called an (oriented) edge issuing from s. A nearest-
neighbour transition matrix is determined by assigning a positive number
p(s, t) to each edge (s, t). This matrix gives rise to a transition operator P
on functions F on the vertices of T:

where the sum is taken over all edges issuing from s. The Laplace operator
associated with P is defined by

The Laplace operator has been studied in detail in the case where the tree
is homogeneous of degree q +1, and the transition matrix gives rise to a
(nearest-neighbour) isotropic random walk: p(s, t) =1/(q -E- 1) for every edge
(s, t) [5, 2]. In this case, eigenfunctions of the Laplace operator (or, equi-
valently, of the transition operator P) can be represented as Poisson trans-
forms of generalized functions on the 4 boundary)&#x3E; 92 of the tree [5], that
is, its set of u ends &#x3E;&#x3E;. On a symmetric space, where a similar representation
holds, the boundary behaviour of eigenfuctions of the Laplace-Beltrami
operator can be described explicitly [6]. Indeed, let F, be the Poisson

(*) Supported by NSF grant no. MCS 8201815.
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transform of an integrable function defined on the Poisson boundary of a
symmetric space. Then, if F is appropriately normalized, its asymptotic
values along certain sets, introduced in [3] and called « admissible domains »,
coincide almost everywhere with the values of f. In the case when the sym-
metric space is the hyperbolic disc and the function F is harmonic, this
result coincides with the classical Fatou theorem on nontangential con-
vergence.

The purpose of this paper is to introduce the analogues of admissible
domains for trees, and to use them to describe the boundary behaviour of
eigenfunctions of A. Our results bear a close resemblance to those of [6]
for symmetric spaces.

In section 2 we restrict attention to the homogeneous tree Tq with
branching degree q + l, and the isotropic transition matrix. Fix a reference
vertex o in Tq, and consider the random walk, starting at o, induced by
the transition matrix. For each complex number y, there exists, up to
normalization, only one y-eigenfunction of the transition operator which is
radial, i.e., which depends only on the distance from o : these functions are
called « spherical functions ». If p is a complex measure on the boundary S2
of T,,, denote by ,ur the regular part of a with respect to the Poisson meas-
ure v on Q. For each complex number z, consider the associated Poisson
transform F z of 1", and the corresponding spherical function qz. Let e be
the spectral radius of the transition operator P on l2(Tq). Then the main
result of section 2 states that, for every complex eigenvalue of P outside
the interval (- o, p), the function F,199, converges asymptotically almost
everywhere, along admissible sets, to the Radon-Nikodym derivative dyldv.

Furthermore, for the eigenvalues ±9, we show that convergence to

boundary values holds in a stronger sense than the usual admissible con-
vergence. This is the analogue of a recent result of Sjogren for the hyper-
bolic disc [7].

The results of section 2 follow from sufficiently precise estimates for
the Poisson kernel and the spherical functions, along the lines of [2]. The
crucial part of the argument shows that the normalized Poisson transform
of an integrable function f on the boundary Q is bounded on an admissible
domain by the Hardy-Littlewood maximal function at the vertex.

On the other hand, for non-homogeneous trees, sharp estimates of this

type are not available. Moreover, a Poisson representation theorem is known

only for not too small real eigenvalues and for positive eigenfunctions of
the Laplace operator [1, thm. 2.1]. For these eigenfunctions a generaliza-
tion of Fatou’s convergence theorem was proved by Cartier [1]. Cartier’s

theorem concerns  radial &#x3E;&#x3E; convergence to the boundary Q, that is, con-

vergence along geodesics in the tree. In section 3 we slightly improve this
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result to give admissible convergence instead of radial convergence. Our

argument is independent from Cartier’s, and is based upon the general
Fatou-Naim-Doob theorem (that is, the theory of fine convergence: see,
for instance, [9]). A radial Fatou theorem for harmonic functions with
respect to the isotropic Laplace operator on a homogeneous tree had been
previously obtained in [8], in the framework of local fields.

2. - The isotropic Laplace operator on a homogeneous tree.

In this section, we restrict attention to the homogeneous tree Tq with
branching degree q + 1, q&#x3E;2. Most of the preliminaries are as in [2], and
notations will be, as much as possible, the same as in that reference with
only minor modifications. Most of these notations also make sense (and
will be tacitly adopted) for non-homogeneous trees. In particular, Q denotes
the boundary of the tree, that is, the set of infinite geodesics, starting at the
reference vertex o, and N(w, w’) denotes the number of edges in common
between co, m’e S2. We can identify each vertex x of Tq with the finite

simple path connecting o with x ; then N(x, m) denotes the number of edges
in common between the finite geodesic x and the infinite geodesic m. The
distance d(o, x) is denoted by lxl, and the vertex with length n ixl in the
geodesic connecting o and x is denoted by x... Similarly, mn denotes the
vertex with length n in the geodesic wE S2. Finally, we endow Q with a
compact topology as follows.

As in [2], we introduce the sets .Ex = {w: N(x, m) = x }. Then an open
basis at w E Q consists of all the sets B.., n e N. The Poisson measure v

on S2, that is, the hitting distribution on 92 of the random walk, starting
at o, defined by the transition operator, is given by

and the corresponding Poisson kernel is

[2]. In particular
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We are now ready to define admissible sets in the tree (this definition
is also valid for non-homogeneous trees). Admissible sets in a tree are the
analogue of euclidean cones (that is, hyperbolic cylinders) in the upper
half-spaces, with vertex at the boundary.

DEFINITION. For every integer 0153&#x3E;O, and co E S2

: for some

We say that a function .F’ on the tree converges admissibly to l at w if, for

every x&#x3E;0y lim F(.r) = l.

REMARK. The notion of admissible convergence is independent of the
choice of reference vertex o. Indeed, denote by T( (m) the admissible domains
with respect to a different reference vertex o’. Then, since there is a unique
simple path connecting o and o’, it follows that, if Ix I is large enough,
x E ra(cv) if and only if z e T( (m) . D

Given two complex-valued functions f, g we write f sw g if ( ffg is bounded
above and below.

LEMMA 1..Let co° E S2 and x E Fa(wO) for some x&#x3E;0y Ix = n. Then K(r,
m) sw K(wt, co)y with bounds depending only on a.. In particular

PROOF. It is enough to show that IN(x, ro) - N(a)o, m) I a. For this,
let k = N(x, coO) &#x3E; it - cx. Then, if rok=Xk, both N(x, co) and N(co.0, co) are
not less than k, and not larger than n, and the inequality follows. On the
other hand, if Wk =1= Xk, I then

It has been proved in [5] that all eigenfunctions of P can be represented
as Poisson transf orms, that is, integrals of the form Xz f = g(x, w)’f(w) dv(w),
where f is a finitely additiz e measure (that is, a martingale) on Q, and
z E C. The corresponding eigenvalue is

By the symmetry properties of (1), we can restrict attention to complex
numbers z such that Re z &#x3E; I and - 7t/log q  Im z7t/log q, or Re z --. 2
and 0 Im z  a/log q. The latter set of parameters corresponds to eigen-
values y(z) in the 12-spectrum of P.
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Explicit expressions are known for the Poisson transforms of the constant
function 1 on S2. Indeed, there exists a constant az, depending on z, such
that if Ix --- n, the « spherical function » fp.. = Xz 1 has the properties [2r
ch. 3] :

if

if

if

We are interested in the asymptotic behaviour of Poisson transforms nor--
malized by the corresponding spherical functions. However, (2) shows that,,
for z = 2 I + it 7 0  t  n/log q, the spherical function qz oscillates, and there-
fore dividing by it cannot be expected to lead to results about asymptotic
convergence. For the other values of z we introduce the normalized Poisson

kernel gx(x, m) = .gx(x, co)lgg,.(x).
Lemma 1 and the estimates (2) yield

LEMMA 2. Let Then, ’

with bounds depending only on z and a.

Denote by X the group of all isometries of To which fix o.

COROLLARY 1..Assume Re z &#x3E; 2 or z = 1 + imnjlog q, m = 0, 1. Then.

i) for every k in X and for every x, co,

ii) f or every x,

iii) there exists a constant M, such that, for every x,
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iv) f or every integer j and f or every wo,

PROOF. (i) is obvious, because N(x, cv) is invariant under X, and (ii) is
nothing else but the definition of pz . (iii) follows from Lemma 2 and the
.fact that v(Ey)  q-lvl with bounds independent of y. Finally, (iv) is an

immediate consequence of Lemma 2. CI

By standard arguments (see [10, chapter 17, thms. 1.20, 1.23]) the esti-
mates in corollary 1 yield:

PROPOSITION 1. Assume Re z &#x3E; 2 or z == t + imnjlog q, m = 0, 1. Let f
be defined on Q, and denote by F its normalized Poisson transform :

Then lim F(a).,,) = f(w)

i) uniformly i f f is continuous;

ii) in L1J(Q) if f E L1J(Q) (1 p  00);

iii) in the weak*-topology of LOO(Q) if f E LOO(Q);

iv) in the weak*-topology of M(Q) if f is a regular signed measure.

For the main result of this section, we need a final tool: the Hardy-
Littlewood maximal theorem. If f is integrable function on Q, its Hardy-
_Litttewood maximal f unction is defined as

’The operator f --&#x3E; MI is called the maximal operator,.

LEMMA 3. The maximal operator is weak type (1,1 ) and strong type (p, p)
for 1  p  oo.

PROOF. Denote by A the stabilizer of coO in the group X of all iso-

metries of T,, fixing o. Then we introduce a « gauge » on S2 by the rule
It is readily seen that this is a gauge for (X, A) in the
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sense of [4, definition 1.1]. Indeed, we only need to check condition (iii)
of [4, definition 1.1]: this follows by observing that, if ro1, ro2 satisfy N(ojO,
oil)  N(roo, ro2), then N(roo, ro1) == .N(ao, ro2). Then the lemma follows from [4,
Corollary, pg. 580]. CJ

We can now prove the nontangential convergence theorem.

THEOREM 1. Let z be as in Proposition 1, and let u be a measure on Q.
Denote by F(x) =fK,(x, ro) du(w) = K.,p/gg, the normalized Poisson transform.
of p, and by p, the regular part of p with respect to the Poisson measure v.
Then F has admissible limits a. e. on Q, equal to dPr/dv(ro).

PROOF. Standard methods [10, chapter 17] reduce the proof to the case
of absolutely continuous P, that is, to Poisson transforms of .L1-functions.
Since every .L1-function can be approximated in L1 by continuous functions,
by Proposition l.i. we only need to show that v(m: sup IF(x) &#x3E; A for

XEra{ro)}  IlflBl/Â.
Because of Lemma 3, this follows if we prove that, for f in L1(Q),

We distinguish two cases.

Case 1. Re z &#x3E; 1. For x in F,,((oO), Ixl = n, Lemmas 1 and 2 yield:

We have used the estimate

Case 2. ikn/log q, k = 0, 1. Again by Lemma 2, as above,

In both cases, (2) is proved, and the theorem follows. 0

We recall that the case z = 2 + ika/log q corresponds to the two eigen-
values +e, where g is the spectral radius of P on l2(Tq). For these critical
eigenvalues, we can prove a stronger convergence theorem, along the lines
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of [7]. Let us consider enlarged admissible domains

and the corresponding c strengthened admissible convergence ».

THEOREM 2. If z = 1 -J- i7cnflog q, ly = 0, 1, then, with notations as in
Theorem 1, F converges a.e. to dyldv in the strengthened admissible sense.

PROOF. Let x E ha (00°), Ix ( = n, and m = n - [log,, n] - a. We can as-
sume m &#x3E; 0. Observe that N(r, m°) &#x3E;7n. Moreover, I XEr£¥+logCln(ooO): thus

Lemma 2 yields (write E = E0153:n):

again as v(E) ,. q-m.
On the other hand, if oi c- Q - B then mm# co’ , hence N(m), w)  m

 N(x, WO). Thus Kz(x, w) == Kz(wO, w), and the argument of Theorem 1

applies again to give

By combining these estimates, y we obtain a constant C(a, z) such that
IF(x) I  C(a, z) Mf(m°) for every x E (coO), and the theorem follows. C1

REMARK. The end of the proof of Theorem 2 exploits the geometry
of the tree in the same way as the argument of Lemma 1. This argument
is equivalent to observing that the metric on Q induced by the gauge,
d(ro, ro’) = q-N(W,(O,) , satisfies the ultrametric inequality d(w, cv’) max (d(m,
"CV"), d(GVn, cof)}. .

3. - Non-homogeneous trees.

In this section, T is a non-homogeneous tree. Following [1 ], we consider
a transition operator .P such that, for every vertex 8, the cc transition coef-
ficients» p (s, t) are positive and nearest-neighbour, but do not satisfy, y in
general, the « markovian condition » z p(s, t) = 1.

i

Denote by A the corresponding Laplace operator, and by A. the mar-
kovian Laplace operator on a homogeneous tree considered in the previous
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section. Note that the eigenfunctions g of Am corresponding to a given
-eigenvaliie y &#x3E; - 1 satisfy Ag = 0 for an appropriate non-markovian Laplace
operator A : nevertheless, y in this section we follow the terminology of [1],
and refer to the solutions of Ag = 0 (or Ag &#x3E; 0) as « harmonic » (respectively, ,
superharmonic) functions. A path c in T is a finite or infinite collection
of adjoining edges (ci, ci+,) in T: we write c = (co, cl, ..., cn, ...).

In the markovian case, the transition operator P gives rise to a random
walk X,, on the vertices of T. In the general case, for every infinite path c,
we write Xn(c) = cn [1, section 3.1]. n

For every finite path c = (co, ..., cn), define p(c)= and
’i=1

consider the Green kernel G(x, y) == Ip(c), where the sum is taken over
all paths joining the vertices x and y. Following [1], we assume that G(x, y)
is finite for every x, y (in the markovian case, this implies that the random
walk X n is transient).

Let wE Q, and let K(X, w) = lim G(X, wn)/G(Q, (On): the functions K (0153)
= K(x, co) are the minimal harmonic functions on T, normalized by KQ)(o) =1.
Every positive harmonic function h has a unique Poisson representation
h == f Kro dyltg where lzh is a positive Bore] measure on Q [1, thm. 2.1]. In

fact, Q gives rise to the Martin compactification of Z’ (a basis for the
topology of T u Q is given by the sets B,, U fy: EtJ C -Ex}).

Denote by W be the set of infinite paths and by W’ the subset of paths c
which have a limit (i.e., for which there exists m in Q such that cn - m in
the above topology). By [1, Corollary 3.1 ], for every x in T and (o in Q
there is a probability measure v’ on W, with support in the set of paths
starting at x and tending to w, which has the following property: for every
finite path c joining x and y, 

,

where We is the set of infinite paths whose starting segment is c.

We are now ready- to state the nontangential convergence theorem for
the non-homogeneous case. Our theorem is an extension of [1, thm. 3.3].
The argument relies upon the following fact, which is a consequence of the
Fatou-Naim-Doob theorem [9] (but can also be proved easily, y by using
Corollary 3.1 b, Theorem 3.1 and Theorem 3.2 of [1 ]) : for every positive
harmonic h and positive superharmonic g, the limit lim gfh(Xn) exists vx-atmostn

surely tor Iz,,-almost every w. 
’n

In order to connect the next statement with Theorem 1, suppose that
the tree is homogeneous and the transition operator is as in section 2, and
observe that, if h =- 1, then its representing measure a,, is v.



398

THEOREM 3. Assume that there exists 6 &#x3E; 0 such that p(x, y) &#x3E; 6 for all
neighbours x, y in T, and that the Green kernel is f inite..Let h be a positive
harmonic function with representing measure fth, and let g be a positive super-
harmonic function. Then g/h has admissible limits fth-almost everywhere on Q.

PROOF. By the remark preceding the statement, it suffices to show

that g/h has admissible limit at m for all m such that lim glh(X..) exists4

vl-almost surely. By contradiction, let l = lim g/h(Xn) and suppose that
there exists e &#x3E; 0, an integer a and a sequence {Xk} such that XkE Fa(w),
lXk I --io- 00 and Ig/h(Xk) - I &#x3E; B for all k. Then we claim that there exists

&#x3E; 0 such that, for every x E Fa(w), v’[X,,, = x for some 71] &#x3E;q. Once the

claim is proved, the theorem follows : indeed, the process Xn meets infinitely
many of the xk’s with v-probability &#x3E;,q, which contradicts the assumption
lim g/h(Xn) = 1.

To prove this claim, let .F’w(o, x) = V’[Xk - X for some k]. As in [1, chap-
ter 2] let where the sum is taken over all paths from o

to x reaching x only at the end (in the markovian case, F(o, x) is the proba-
bility of hitting x starting at o). By definition of v#/, FW(o, x) = F(o, x) K(x, a)).
We have to prove -E’ (o, x) &#x3E; 77 &#x3E; 0 for all x in -P,, (w). By definition of K(x, co),
this amounts to showing that, for large n,

By [1, prop. 2.5], the left hand side equals F(o, x)F(x, cvn)/.F’(o, con). As

xEFl¥(CO), there exists an integer j such that d,(x, (oj)  a. Without loss of

generality, we can assume 6  1. Then, by [1, coroll. 2.3], the above ex-
pression equals F(o, a)j)F(coj, x)F(x, wj)F(wj, con)/F(o, coj)F(a)j, con) = Ti(o)j,

amd the claim is proved. C7

REMARK. A more general but less precise statement holds without the
assumption that the transition coefficients be bounded below. Indeed, the
theorem holds with the same proof if we define 1 a(cv) == fx: F(o, x).K(x, b)
oc-ll. On the other hand, a less general but more explicit statement is
obtained by assuming 0  6 p(x, y) 77  -1 for all x, y : this condition

automatically guarantees the finiteness (even the uniform boundedness) of
the Green kernel.

In the case of a homogeneous tree with isotropic transition probabilities, ,
it is interesting to consider the overlapping between Theorems 1 and 3.
As noticed above, multiplication of the transition matrix by a positive
constant gives rise to a dilation of its eigenvalues. By this token, Theorem 3
handles all positive eigenfunctions of the Laplace operator whose eigen-
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values satisfy y &#x3E; -1. On the other hand, it follows immediately by [2,
ch. 3] that the existence of a positive eigenfunction is equivalent to y &#x3E; O -1,
where, as before, p denotes the spectral radius of P in 12. In other words,
Theorem 3 can be used to deal with a proper subset of the set of eigenvalues
considered in Theorem 1.
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