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On the Order of 03B6(1/2 + it).

E. BOMBIERI - H. IWANIEC (*)

1. - Introduction.

Important for number theory, , the problem of bounding the Riemann
zeta-function C(8) in the critical strip 0 -Re s  1 stimulated a lot of work
on exponential sums of the type

where f (x) is a real smooth function on [-M, M,]. Since ’(8) can be well
approximated by finite sums

the sums (1.1 ) with f (x) = (2n)-it log x are of special interest. Three basic

techniques for bounding sums (1.1) are known (cf. [9]):

1) Weyl-Hardy-Littlewood method;
2) Van der Corput method;

3) Vinogradov method.

In this paper we develop a new method which uses a bit of each of these
three techniques. Our main result is

THEOREM..For any t &#x3E; 1 und s &#x3E; 0, we have

with 19 = 9/56, the constant implied in 0 depending on E alone.

(*) Supported by the Institute for Advanced Study, Princeton, N. J. 08540.
Pervenuto alla Redazione il 19 Giugno 1985.
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The sharpest result hitherto proved was due to G. Kolesnik [6];

This was obtained by an extension of the Van der Corput method (expo-
nent pairs theory in several variables). Using computers, on the basis of
certain conjectures, S. W. Graham and G. Kolesnik [4] predicted that the
best constant one can ever obtain by that method is e == 0.1618... while
we have O = 9/56 = 0.16071....

The method works for general sums (1.1), so we carry out the arguments
in a relatively general setting until the end of Section 5 where we specify
f (x) = t log x in order to use Theorem 4.1 whose proof is elementary. This

restriction would not be necessary if we had extended Theorem 4.1 to the

relevant form. But a proof of such a result would require the highly advanced
technique of the spectral theory of automorphic functions [2]. It was our

wish to avoid this at least in the most spectacular case of the sums (1.2).
Our method seems to work for the divisor problem as well. Since this

would require substantial modifications we do not claim any results.

The authors express their thanks to J.D. Vaaler for his helpful sugges-
tions concerning the proof of Lemma 2.3.

Notation and conventions.

f’, f", f m denotes the derivatives of order 1, 2 and 3,

to) denotes the derivative of order j,

i means with some unspecified constant c, not necessarily
the same in each formula,

means

f means with some positive unspecified constants Ciy c2 , 1

max

ini

d/c means dle where d is a solution of the congruence ad =1 (mod c),

N indicates the end of a proof or it means the result is easy.
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2. - Basic lemmas.

In this section we present in a general setting some principles applied
throughout the paper.

LEMMA 2.1. Let N  M and cv (x) be a real function such that
throughout the interval [N, M]. For any complex number.- an we have

PROOF. Follows by partial integration.

LEMMA 2.2. Let M  N  N,,  M1 and an be any complex numbers. We

then have

with .g(e) = min I , so the Li-norm of K(O) is

PROOF. The sum on the left-hand side is equal to

where X(m) is the function whose graph is

The Fourier transform of X(m) satisfies min j I
This completes the proof.

T,-F,mmA. 2.3. Let f!lJ be a set of points p E RK and let b(p), for p E £P, be
arbitrary complex numbers. Let ð1, ..., ð K , T, , ..., T K be positive numbers.
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Then we have

PROOF. Let 3, T be positive numbers. There exists a function f(t),
t E R, such that

and such that its Fourier transform f(u) has compact support in I ul 13
and

Up to a change of variables, this is the well-known Beurling-Selberg func-
tion (for a full account of this and rclated functions we refer to the exposi-
tory paper by J.D. Vaaler [10]). Since

the result follows..

LEMMA 2.4. Let X and W be two sets of points l E RK and t) E RK respec-
tively and let a(g) f or l E X and b(p) for 0 E qy be arbitrary complex numbers.
Let Xl, ..., Xx, Y l’ ..., Yx be positive numbers. De f ine the bilinear forms

and

We have
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PROOF. We begin with the integral formula

Put I and for put

no, for t) with we have

By (2.3), letting ) and we proceed as fol-
lows

by Cauchy’s inequality. Here we have

and

for any by Lemma 2.3. Finally taking by (2.4) one
completes the proof.

The last result admits an obvious modification. Suppose that for some
k’s all x,ls take integral values. Then the norms and can be
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replaced by and respectively and we put Yk = 1 for such

k’s. Such a modified form of Lemma 2.4 can in fact be deduced from the

lemma itself by an appeal to the inequality

In the next five lemmas we prepare ourselves to appy Poisson’s summa-

tion to sums which are rather short. The arguments are delicate, though
standard. Being unable to quote sources precise enough, we provide proofs
in full detail. A reader experienced with the stationary phase method may
find his own proofs easier.

LEMMA 2.5. hor y &#x3E; 0 we have

PROOF. The integral is known as the Airy-Hardy integral, see for exam-
ple [5]. One can show that its asymptotic expansion is convergent for

y &#x3E; 1 giving the result. For 0  y  1 the assertion is trivial.

Let us give a direct proof for y &#x3E; 1. We have

Hence

where

and
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By a change of variable we get

We have

with analytic in so

Similarly, we deduce that

Hence

But

completing the proof.

COROLLARY. For ,u &#x3E; 0, c &#x3E; 0 and h &#x3E; 0 we have

the constant implied in 0 being absolute.
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LEMMA 2.6..Let and let 6(h) be the charac-
teristic function of the interval [31zcN2, 3,ucN,2]. For any real h =1= 0 we have

the constant im p lied in 0 being absolute.

PROOF. This follows from Lemmas 4.2 and 4.4 of [9] and from the

Corollary to Lemma 2.5..

LEMMA 2.7. Let g(x) be the function whose graph is

Suppose that either We then have

where the constant implied in « is absolute.

PROOF. By partial integration our integral is equal to

because the derivative is monotonic in three subintervals.

LEMMA 2.8. For we have

where the constant implied in « is absolute.
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PROOF. Our integral splits into 3 parts (use the formula from the proof
of Lemma 2.7) say, where

by Lemma 4.3 of [4], y and similarly

Gathering these together three estimates one completes the proof.

LEMMA 2.9 (Poisson’s summation). Let f (x) be a continuous function
compactly supported in (- oo, co) and let el d be integers, c&#x3E; I. ’’PP’e then
have

where f(y) is the Fourier transforrrc of f(x).

Denote the Gauss sums

LEMMA 2.10. I f C&#x3E;1 and (a, c) = 1, then

if I n 0 (mod 2 )

if Z _--_ 1 (mod 2 )

and
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3. - Incomplete Gauss sums.

Now we are ready to estimate the exponential sum

which can be regarded as an incomplete (perturbed) Gauss sum (mod c).

LEMMA 3.1. Let and We
then have

the constant implied in 0 being absolute.

PROOF. We have

by Poisson’s formula. The terms with lhl&#x3E;16o contribute

by Lemma 2.8. The terms with Ihl  16c and contri-

bute

by Lemma 2.7. For the remaining terms with we write

and we appeal to Lemma 2.6. The leading term i.e. the term attached to
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b(h) gives rise to the main term while the total error is

unless in which case the summation over h is void and the.

final bound remains valid.

REMARKS. A similar idea of using Gauss’ sums G(a, 1; c) to evaluate
incomplete Gauss’ sums S(o; a, 0; c) is applied in [3] in a different context.

4. - The distribution of certain fractions.

The problem considered in this section seems to be of independents
interest; thus the results obtained are given in the status of theorems.

Let., I be the number

of pairs . such that

and

THEOREM 4.1. We have

the constant implied in « depending on s and on the constants implied in.

(4.1).

Our proof (by induction with respect to certain parameters) forces us
to consider a more general problem. For a given pair of relatively prime
positive integers r, s put

Let A(L1l, d2; r, s) be the number of pairs {a/c, aifci) from g(r, s) satisfying
(4.2) and (4.3). We are going to prove, by induction on rs, the following
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THEOREM 4.2. For any and

we have

the constant A(8) depending on e and on the constants implied in (4.1).

On taking r = s = 1 one infers Theorem 4.1.
In order to prove Theorem 4.2 we need 3 lemmas. Denote d = (aI, c)

and dl = (a, CI)’ so (d, dl) = 1 and (dd1, rs) = 1. Put

thus

(mod r) and (mod s) .

-Let , be the number of those pairs pertaining
to d, dl. We have

By (4.4) it follows that and I are S.L(2, Z) equivalent, i.e.

for some ?Z(2y Z). In fact  is in the congruence subgroup

I (mod r), y = 0 (mods)}. All such z’s are given by

with k E Z, therefore one can find 7: (unique) with
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First we deal with the pairs which difi’er by a « trivial » transformation
1 -1

i.e. a transformation with Let ,

denote the number of these «trivial» pairs.

LEMMA 4.1. W e have

the constant implied in « depending on those implied in (4.1 ) only.

PROOF. Consider the four cases :

Case 1: oc==0. This implies
giving at most 0(AC/rs) pairs.

Case 2: 6 = 0. This is similar to case 1 giving at most ©(AC jrs) pairs.

Case 3: f3 = 0. This simplies a6 = 1, a = 1, 6 = 1 and

The pairs on the diagonal .a1 == a, el = .c contribute

For the remaining pairs, we have by (4.3)

Hence the number of such points is estimated by

. (mod r), ’(m0d s), (mod a), y

The total number of pairs from case 3 is

Case 4: y = 0. This is similar to Case 3 giving a similar bound.

Now, we cound pairs which differ by a transformation with

Let ,
,, I

denote the number of these pairs.
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LEMMA 4.2. W e have

the constant implied in « depending on s and on those constants implied in
(4.1).

PROOF. A simple computation shows that

In particular one deduces from (4.10) that

and

Next, by (4.2) and (4.7) one gets

thus

This together with (4.10) yields

Here was discarded the term 0(AC-i) because if it dominated then

by Now, by
(4.10) and (4.3) we infer

whence
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where Zl, Z2 are the roots of the relevant quadratic equation (real or com-
plex) :

Here one factor is thus the other one satisfies

The points 4fz are (rsd2 C-2 )-spaced, so (4.13) implies

Finally, by (4.11), (4.12) and (4.14) we conclude that

which leads to (4.9).

Lemmas 4.1 and 4.2 are useful only for small ddi. For large ddl we
intend to apply an induction hypothesis. With this in mind we establish

LEMMA 4.3. We have

PROOF. This follows by applying Cauchy’s inequality to

where z ranges over d 1-spaced points and y ranges over J,AC-spaced
points.

Now, we are ready to prove Theorem 4.2 by induction on rs. If rs&#x3E; A C
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we have trivially

so the assertion is obvious. Let us assume that r8 10. If ddi &#x3E;2 by
the induction hypothesis and by Lemma 4.3 one has

where, y for notational simplicity, , we put

Since

we obtain by (4.15)

on taking D = 2)(c) such that
For dd,,  D we apply Lemmas 4.1 and 4.2 getting first

for any -, &#x3E; 0, and then

by taking £(s) sufficiently large; ,
Combining (4.5), (4.16) and (4.17) one completes the proof of the induc-

tion step and of Theorem 4.2.

REMARKS. Theorem 4.1 is important for estimating exponential sums
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that are related to the Riemann zeta-function, cf. Section 5. When more

general sums are treated, one is faced with a similar problem, the condition
(4.3) being replaced by

where f (x) and g(x) are some smooth functions; f « F, g  G. In order

to study the most interesting exponential sums of type

it suffices to consider f (x) = x’‘ and g(x) = xl. But even then, unless

x = 2A =1= 0, the elementary arguments which we have used to prove Theo-
rem 4.1 fail. In such circumstances one should try to apply the rather
advanced technique of spectral theory of automorphic functions. Using
the Kuznetsov trace formula for sums of Kloosterman sums together with
the large sieve inequality for the Fourier coefficients of Maass cusp forms

(cf. [2]) one is able to extend Theorem 4.1 to the case X2 + h2 * 0.

5. - Proof of theorem.

We first consider the sums of type

where f (x) is a smooth function such that

for 9n-/ M and j&#x3E; 1 with some F &#x3E; 1 such that

with the aim of showing that

We begin by applying iveyl’s method to reduce the problem to the estima-
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tion of cubic exponential sums. For n &#x3E; 1 we have

and by Taylor expansion

Now average the result over n in (N, 2N] for some N with

Since the error term 0(n4M-4F) is bounded, we conclude by Lemma 2.1
that

with some Nl C 2N independent of m and n. The innermost sum is con-

sidered as a Gauss’ sum perturbed by the factor e(-If’(m)n3). Traditionally
at this point one applies Cauchy’s inequality a number of times until a
linear polynomial is reached. This procedure sets the limit e == -1 in (5.4).
We depart from Weyl’s method so that Cauchy’s inequality is not used.

The key idea is to evaluate the perturbed Gauss’ sum rather than to
estimate it. A direct use of Poisson’s summation is not recommended

because of the great variation of terms, y the worst one being the quadratic
term.

Each middle coefficient ] f’(9n) has a rational approximation

with 1 c c c N and (a, c) = 1. Let m(a/c) be the solution of

Then each satisfying (5.6) can be written as

with 1 where Notice that. . by (5.5). The
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terms pertaining to the fraction arc w’ith small denominators,

say, when treated trivially, , contribute to S.,(M)

Now assume that Co C c c N. Denote

and

We find the following approximations to the extreme coefficients

and

The second error term is « e-1 provided

which we henceforth assume. By Lemma 2.1 we conclude

with some Nl c 2N independent of the variables of summation. Hence,
for some A, C and L with

we obtain
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The innermost sum 8(,u; a, b + 2al; c) is an incomplete Gauss’ sum
(mod c) whose order of magnitude in case p = 0 (no perturbation) can be
exactly determined in a number of ways. Yet, when ,u is not too large the
Fourier technique of completing the sum works well. This technique has
been applied to prove Lemma 3.1. Now we use this result. The error terms.
from Lemma 3.1 contribute to S,(M)

The main term £ from Lemma 4.1 can be simplified a bit in two steps.
h

First remove the factor 2(,ch)-1/4 by using Lemma 2.1 (partial summation)
and then replace the constraint 3,ucN2  h  3,ucN’ by a weaker one h - H
with

by using Lemma 2.2. The resulting inequality is

where ¿* is restricted to h with a fixed parity,

and 77 is a real number which does not depend on the variables of summa-
tion. By Holder’s inequality we get

Here the sum can be regarded as a bilinear form of type
considered in Lemma 2.4, where a(X) is the multiplicity of

representations of z in the form


