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Some Mean-Value Theorems for Exponential Sums.

E. BOMBIERI - H. IWANIEC (*)

1. - Introduction.

Analytic number theory benefits from estimates for moments of expo-
nential sums in a number of ways, typical examples being through the
application of the circle method to the Waring problem, cf. [6] and Vino-
gradov’s method [7] of estimating short exponential sums. An important
application of the latter is to the Riemann zeta-function giving strong
bounds for ’(8) near the line or = 1. Recently, , the authors [1] established
a new connection between mean-value theorems and upper bounds for

individual exponential sums, which proves to be powerful for estimating
’(8) on the critical line a = 1/2; this paper deals with such mean-value

theorems.

Our sums are generalized Weyl sums of type

where 1 N  Ni 2N and f(t) is a suitable smooth function. Our aim is

to estimate the eighth power mean-value

Let I,,(N, Y) be the number of solutions of the system

(*) Supported by The Institute for Advanced Study.
Pervenuto alla Redazione il 19 Giugno 1985.
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in integers n, with N  nj  2N. It is clear that (cf. Lemma 2.3 of [1])

with XY = 1, therefore the two problems of estimating J. and 7s are equi-
valent.

In this paper we restrict ourselves to investigating sums (1.1) with

for x =A 0, 1, 2 and

in the latter case we put x = 0. Our main result is

THEOREM. Let N&#x3E;l and X, Y &#x3E; 0. W e then have

and

for any E &#x3E; 0, the constant implied in « depending at most on s and x.

It is easily seen that the order of magnitude of the bounds 11.8) and
(1.9) is the best possible.

REMARKS. The fact that f(t) is a monomial is important for the argu-
ment applied in the proof of Lemma 5. A modification is possible to treat
few other cases but it has not been worked out in detail.

The bound (1.9) for n = 3/2 is used in [1] to prove that

The main idea of this work was inspired by the series of papers of Hardy
and Littlewood on Gauss sums S(ri., fl, 0 ; N), cf. [2] for example. Although
their beautiful argument concerning the diophantine nature of the leading
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coefficient a (continued fraction expansion) is irrelevant to our method,
the philosophy is the same. The fascinating point is that the Poisson sum-
mation is used a number of times to gain very little at each time. Since

the Poisson summation is an involution, it is necessary to alternate the

iteration steps by another operator which makes the whole process progres-
sive. This operator is T (a) = {1/4a}. What really happens is illustrated

symbolically in the following asymptotic formula:

where g is considered as a perturbation and g is a certain transform which
changes g only slightly.

The authors wish to thank S. Graham, D.R. Heath-Brown and G. Kolesnik
for comments which led us to revision of our original version of Lemma 3.

2. - Auxiliary results.

In this and the next section we assume that

LEMMA 1. Let N-1  A  1. We hacve

PROOF. By Lemma 2.3 of [1] , or directly, the left-hand side of (2.3)
is bounded by the number of solutions of the system

in integers nj with N  n,  2N. If we replace n; in (2.4) by a real number
in the unit interval around n; the system (2.4) remains unchanged except
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for new constants involved in the symbol «. This makes it plain that the
number of solutions of (2.4) is bounded by the Lebesgue measure of the cor-
responding set (with new implied constants) defined by extending n’s to
real numbers in the interval [N -1, 2N + 1].

Now we can replace S(ex, fl, x; N) in (2.3) by the corresponding integral

and evaluate instead the eighth power moment of So .
In general, an integral over an interval of an exponential function

e(A(t)) with IÂ(r)(t)I &#x3E; Âr throughout this interval, is bounded by O(Â;l/r)
(for this result with r = 1, 2 see Lemmas 4.3 and 4.4 of [5]). In our case,
since x # 1, from the above principle with r = 3 one gets

Suppose now that a  c.,IxIN-2, where C1 = c,(x) is sufficiently small; then
the principle with r = 2 shows that

if instead a &#x3E; c,IxIN-2, where c2 = c2(x) is sufficiently large, we obtain

finally is trivial. In any case, we find

We also have

Combining (2.5) and (2.6) we conclude that the left-hand side of (2.3) is
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Similar arguments will prove

LEMMA 2. W e have

LEMMA 3. For. we have

We postpone the proof of Lemma 3 to the next section. Let do = c(x) N-1,
where c(x) is a sufficiently large constant. From the upper bound

valid if a &#x3E; do, see [5], Theorem 5.9, p. 90, and by Lemmas 1, 2, 3 on(
infers 

’

COROLLARY. W e have

3. - An application of Poisson’s formula.

In the particular range N-2’3 a 1 we transform S (ex, fJ, x; N) into a
similar but shorter sum by means of Poisson summation. As in Theorem 4.9
of [5], y we obtain

with g(t) = at2 + flt -E- xf(t/N) in mind, where tm is the solution of g’(tm) = m
and E(N) is considered as an error term. Theorem 4.9 of [5] gives
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while a slight modification of the argument leads to

In our case the latter says

which is far better than we need.

Perhaps it is worthwhile at this point to emphasize that the problem
of evaluating such error terms is best approached throughout the use of
general asymptotic expansions, which arise by a higher order stationary
phase technique. In other words, these remainders can be approximated
by oscillatory sums of the same general nature as the main term, to which
one may apply more sophisticated techniques in case far better estimates
are needed. We draw the attention of the number theoretists to the

paper [4] by L. Hormander which proves the existence of asymptotic
expansions under very general conditions. For the one dimensional case
one should mention that the old result of I. M. Vinogradov [7] is amply
sufficient for most applications, see also [3].

Notice that g’ (N) = 2aN + 0(1) and g’(2N) = 4aN + 0(1), thus we

can change the range of summation into

at no cost. Next we compute

thus we can replace the factor Ig"(t.)1-112 by (2a)-ll2 at no cost. It remains
to evaluate g(t.) - mtm. This requires a greater precision. We abbreviate

thus

and
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We shall evaluate F(tm) and F’(tm) with a tolerable precision by a method
of successive approximations. For notational simplicity we denote by h(m)
a function (nor necessarily the same in each occurrence) such that

the constant implied in « being absolute.
By Taylor’s expansion we obtain

and

Hence we express F(t.) in terms of .Fo , Fl , .F2 , F’ (tm ) and get

Seeking for -F’(t.) we proceed as follows

whence, using the fact that (x/2a) F2 is small, we find
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This yields up to a remainder of type

We set v and use Fix
to find our final approximation

where

and

Here the variation of p and q when al and PI change by less than 1 is a func-
tion h(m) of type (3.2), therefore

for any a, b with , and i . Fix d with

. and let oc range over Define M = L1N, so by (3.1)

By Lemmas 2.1 and 2.2 of [1] we can remove the factor e(h(m)) in e(gm(tm})
and change the range of summation (3.1) into (3.4) getting

for any a, b with and i
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PROOF OF LEMMA 3. It easily follows from (3.5) by Holder’s inequality
and an application of the general mean-value theorem

valid for any complex numbers Cm with le. I  I -
After having completed the proof of Lemma 3 and, with it, the proof

of its Corollary, we may now suppose that 4 &#x3E;N-1’2. This simplifies sub-
stantially (3.5), as

because q(a,, PI’ x,,; m) is a function h(m) of type (3.2). By H61der’s
inequality

For notational simplicity define

We integrate the last inequality over in over b in [#1,
over a in over fl in [0, 1] and over x in

and get

where M = 4N or M = 2 L1N. Now we make the change of variables
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and and we find

Next, we divide the range of integration in x into « log N subintervals
of type (XJ2, X) together with a last interval (0, N-4), and we obtain

for some X with.

The expression we have obtained for R(L1, N) bears some striking resem-
blance to the original integral Js(N, X), except for the two additional terms
’U((2jM)j’(mjM))2 I and v(2jM)j’(mIM) and corresponding integration over u
and v. The main point, as in the Hardy and Littlewood argument, is that
the range of summation is over m - 4N, which is somewhat smaller than
the original range. The next lemma shows how to remove the terms involving
u, v and prepares the way for the final inductive argument.

LEMMA 4. Let and c(yl, ... , Yr) be complex numbers.

bounded by d(Yl’ ..., Yr) in absolute value. We then have

PROOF. It follows from

By Lemma 4 we finally conclude a kind of recurrence formula

LEMMA 5. If we have
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4. - Proof of Theorem.

Lemma 5, with A = N- 8, can be used in an inductive argument to
estimate Js(N,N) in terms of .f,(N’, N) with N’«N1-s. Repeating this
procedure [llsl times, and estimating the final integral trivially, we obtain
our theorem by letting s - 0. In a sense, we may say that the proof of
our theorem requires the application of Poisson’s summation formula an
arbitrarily large number of times.

In practice, we present this argument as follows. Let 1)0 be the infimum
of the set of those real numbers 77 &#x3E; 4 for which

for all N &#x3E; 1 and .X &#x3E; 0, the constant implied in « depending at most
on q and x. We wish to show that i7o = 4.

We have

provided and Hence taking
and. W’ we get

By (4.1) and by Lemma 5 we have

for any . By (4.2), (4.3) and (2.8) we conclude that

for any 27 &#x3E; qo and L1 with the constant implied in «
depending on x and n alone. We choose , and we find

for any which ends the proof.
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5. - Remarks.

Our method can be applied to estimate similar integrals of type

In the special case of f(n) = log n we can show that

Perhaps, it is interesting to mention that (5.2) contains our theorem for
x = 3. In other words, (5.2) implies

or, what is equivalent, that the numbers of solutions of the system

in integers ni with

In order to see this consider the Hermite matrices
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They are non-singular orthogonal. We have

By the linear change of variables

the system (5.4)-(5.6) reduces to one equation

and one inequality

in integers mi with im, I 28N where Z = 8P. Of two remaining variables
m7, m8 one is determined uniquely as a linear combination of m1, ..., me
and the other ranges freely over the interval [- 28N, 28N]. Therefore,
letting 16(N, Z) be the number of solutions of (5.9)-(5.10) in integers mj
with Imjl :N we have shown that

On the other hand (5.2) implies, by Holder’s inequality,

By (5.11) with (5.12) one gets (5.7) completing the proof.
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