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On the Asymptotic Behavior of Solutions of Linear
Parabolic Equations in L1 Space

DONG GUN PARK - HIROKI TANABE (*)

The object of this paper is to investigate the asymptotic behavior of the
solution of the initial-boundary value problem for the linear parabolic equation

in as t -+ oo.

This type of problem for an abstract parabolic evolution equation

was first treated in [9], and the convergence of the solution u(t) to a stationary
state was shown under the assumption that the domain D.(A(t)) of A(t) is

independent of t. Pazy [8] established the asymptotic expansion of the solution
of (0.4) assuming a certain asymptotic behavior of A(t) and f (t), and as its

application he obtained the asymptotic expansion of the solution of the parabolic
problem (0.1)-(0.3) in LP(Q), 1  p  oo, in case when the boundary conditions
(0.2) are independent of t. 

’

Recently, Guidetti [4] extended the above results to the case when D (A(t) )
and the boundary conditions (0.2) depend on time. We show that analogous
results for the solution of (0.1)-(0.3) hold in using the method of [7],
[ 11 ] of estimating the Green function of the problem considered.

(*) The work of the second author was supported by Grant-in-aid for Scientific Research
61460003, Ministry of Education of Japan.

Pervenuto alla Redazione il 29 Gennaio 1987 e in forma definitiva il 21 Ottobre 1987.
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1. - Notations

Let 12 be a not necessarily bounded domain in locally regular of class
C2m and uniformly regular of class Cm in the sense of Browder [2]. The
boundary of n is denoted by an. We put

Let

be a linear differential operator of even order m with coefficients defined in f2
for each fixed t E [o, oo), and let

be a set of linear differential operators of respective orders mj  m with
coefficients defined on an for each fixed t E 

The principal parts of A(x, t, D) and are denoted by A *(x,t,D)
and Bt(x,t,D) respectively.

Let k be a nonnegative integer. For 1  p  oo, stands for
the Banach space consisting of all measurable functions defined in 0 whose
distribution derivatives of order up to k belong to IP(Q)-

The norm of Wk,P(O) is defined by

We simply write 11 lip instead of 11 Ilo,p to denote I,p norm for 1  p  oo.
We use the notation 11 II to denote both the norm of and that of

bounded linear operators from Ll (12) to itself.
We denote by the set of all functions which are bounded and

uniformly continuous iri 0 together with their derivatives of order up to k.

Bk (-a) is a Banach space with norm

For 0  h  1, Bk+h (f-2) is the set of all functions in Bk(n) whose kth
order derivatives are uniformly Holder continuous of order h. The norm of

B k + h (f-2) is defined by



589

denotes the Banach space consisting of all functions having
bounded and uniformly continuous derivatives of order up to k on 

is a Banach space with norm

We denote the set of all bounded linear operators from to

LP (Q) , by B (Lp, Lp), respectively.
For a Banach space X we denote by Bk (I : X) the set of all functions

with values in X which are bounded and continuous in the interval I together
with their derivatives of order up to k.

2. - Convergence as t -~ o0

We assume the following:

(1.1) A(z, t, D) is uniformly strongly elliptic, i.e. there exists an angle 00 E

(0, -2-) such that for all real vectors I # 0 and all (x, t) E 11 x [0, oa)

(1.2) is a normal set of boundary operators, i.e. ail is
noncharacteristic for each and mk ’for j # k.

(1.3) For any (x, t) E ao x [0, oo) let v be the normal to ail at x and C 0 0 be
parallel to 9H at x. The polynomials in T

are linearly independent modulo the polynomial in
J-’

for any complex number A with 00 ~ arg A  27r - 00 where

,are the roots with positive imaginary part of the polynomial

(1.4) For each t E [0, cx) the formal adjoint of A(z, t, D)

and the adjoint system of boundary operators

can be constructed.
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where I

Similarly, for
and

i For each p E (1, oo) there exists a constant Cp such that for t E [0, 00), 90 
u, v E W"P (0)

where gi and hi are arbitrary functions in and 
such that = gj and Bj (x, t, D)v = hi on 9 f2 respectively.
REMARK. It is known that under the hypothesis (I.1)-(L6) the inequalities

(2.1), (2.2) hold if we add some positive constant to A(x, t, D) if necessary.
For 1  p  oo let Ap (t) be the operator defined by

for u E D(Ap(t)), (Ap(t)u)(x) = A(z,t,D)u(z) in the distribution sense.
Similarly, the operator Ap(t) is defined by replacing A(x, t, D) and

by and 
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From the assumptions above it follows that -Ap(t), -Ap(t) generate
analytic semigroups in L.P(f2), and the resolvent sets p(Ap(t)), contain
the closed sector 

p

. The operator A(t) is defined as follows:
The domain D(A(t)) is the totality of functions u satisfying the following

three conditions:

(i) u E for any q with 1  q  n/(n - 1),
(ii) A(x, t, D)u E in the sense of distributions,

(iii) for any p with 0  (n/m)(1 - 1/p)  1 and any v E D (A’, (t)),
p’ = pl(p - 1),

For u E D(A(t)) (A(t)u)(x) = A (x, t, D) u (x) in the distribution sense.
It is known that -A(t) generates an analytic semigroup exp(-rA(t)) in

([10], [11]). It can be shown without difficulty that for some positive
constant co the inequalities (2.1) and (2.2) hold if we replace A(x,t,D) by
A(x, t, D) - co and Cp by some other constant. Hence, there exists a constant
Co such that for r &#x3E; 0, 0  t  o0

Let U(t,s) be the evolution operator of the evolution equation in 

The existence of such an operator was shown in [6] and it is constructed
as follows:
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Our first main result is the follow.ing:

THEOREM 2.1. Suppose that the hypotheses (1. 1)-(1.6), (II) are satisfied.
Let f (t) be a uniformly Holder continuous functions with values in Ll (f2)
defined in [0, oo):

where 01 and h are constants with 01 &#x3E; 0, 0  h  1. Moreover, assume
that the strong limit fo = t im f (t) exists. Then, for any solution u(t) of the

, , 
t- oo

evolution equation (2.5), we have

in the strong topology of Ll (f2).
Following the argument of [4] we can prove Theorem 2.1 with the aid of

(2.3), (2.4) and the following lemma. 
/

LEMMA 2.1. For each fixed s &#x3E; 0

For any e &#x3E; 0 there exists a constant 0 such that

...

We plan to prove Lemma 2.1 as follows. First we note that

If we have a desired estimate of A(t) PRl (T, s) for some 0  p  1, then
we can write the first term of the right side of (2.12) as

Let be the real interpolation space of
and with norm denoted by 11 118,1.. 

’
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Then, in view of Grisvard [3] we have for 0  6  1

It is easy to show that for 0  p  0/m

Clearly,

Combining (2.13), (2.14), (2.15) we get

Consequently, in order to establish an estimate of it

suffices to obtain that of where B(Ll, W9.1) is the set

of all bounded linear operators from to (0). Since

(2.17) 

the problem is reduced to estimating and for

0  s  t  oo. In view of (2.1) the desired result follows from the estimates
of where G(x, y, r; t) is the kernel of

exp(-rA(t)).

3. - Proof of Lemma 2.1.

In what follows we let the notation Cp stand for constants depending only
on the hypothesis (1. 1)-(1.6), (II) and p E (1, oo).

Arguing as in [7], [11] we see that for each p E (l,oo) there exists a
positive constant bp such that for each t E (0, oo), A E E, a complex vector ty

with  6plAll/- and u,v E 
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where gj and hj are arbitrary functions satisfying = gi and

We define the operator A~ (t) by

for u E = in the sense of distributions.

Similarly replacing A(x, t, D ~-- r~), {B~ (x, t, D + r~)}".’’~i by A’(x, t, D -I- r~),
t, D the operator All? (t) is defined..7 

= 1

It follows from (3.1), (3.2) that if A E , then

Let w(t) be a function defined in [0, oo) such that

Since the derivative w = aw/at of the function
satisfies

it follows from (3.1), (3.3) that
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We choose natural numbers E, s and exponents 2 = q1  q2  . ~ .  qa 
3 as follows (Beals [1]):

In what follows we consider only the case (iii).
According to Sobolev’s imbedding theorem there exists a positive constant

ï such that for j = 1,..., s - 1

where (

where

where

Similarly, by virtue of (3.3), (3.4), (3.8), (3.9), (3.12) we obtain
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As is easily seen
r

where r is a smooth contour running in E B{0} from
For ~1,..., At E E and ’7 with

be the kernel of

~ is the kernel of

By an elementary calculus

With the aid of (

Estimating other terms of the right side of (3.21) analogously we obtain
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Similarly we get

Hence

It is easy to show

Let (x, y; t) be the kernel of
Then as was shown in [7], [11]

With the aid of (3.20), (3.26), (3.27), (3.28) we obtain

Minimizing the right side of the above inequality with respect to 1/ we
get (H6nnander [5])

In view of (3.19) we have
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For any fixed &#x3E; 0 let be the contour defined by

where a = =,splr, p = and e is a

positive constant which will be fixed later. Differentiating both sides of (3.30)
with respect to xj and t, deforming the integral path r to and using
(3.29) yield

Estimating the right side of the above inequality as in section 5 of [6]
we conclude

Similarly

If we denote the kernel of then in view of (2.9)

By virtue of (3.31) and (3.32)
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With the aid of (3.33), (3.34) we conclude

for any f E Ll (f2).
We choose constants p and 0 so that 0  p  0/m, 0  0  1.

Combining (2.16), (2.17), (3.35), (3.36) we obtain

By virtue of (2.8), (3.36) and Gronwall’s inequality we get

Using (3.37) and the inequality

we get

Making use of (3.37) and (3.39) yields
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With the aid of (2.7) and (3.38) we get

As was mentioned in section 1 all the hypothesis (I.I)-(1.6), (II) are

satisfied by A(x, t, D) - co, for some co &#x3E; 0 if we replace Cp
by some other constant. If we denote by 
operators obtained by replacing A(t) by = A(t) - co in the definition of
U(t, s), W (t, s), 1~1 (t, s), R ( t, 8), then

and (3.41), (3.42) hold with AO (t), WO (t, s) in place of A(t), W(s,t).
Hence

which implies (2.10).
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With the aid of (3.44) we have

Let e be an arbitrary positive number. If s is so large that sup cv (T)  c,

then the right side of (3.45) does not exceed 
- -

from which the second half of the assertion of Lemma 2.1 follows.
Thus the proof of Lemma 2.1 is complete.

4. - Asymptotic expansion at t = o0

In this section we consider the asymptotic expansion at t = oo.
In addition to (I.1)-(L6), (II) we make the following assumptions.

(III.1) For 10:1  m

with o~, a" k E for k - 0,...~ r’ E ~([0,oo) :
L- (f2)). If I a = m, a.,, k E and r~ E Bo (i-l x [0, oo) ), and hence
so do c~ ~ and r’..
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For

where

with

with

where

THEOREM 4.1. Suppose that the hypotheses (1.1)-(1.6), (II), (III,I)-(III.4)
are satisfied. Let f (t) be such that

with fk E L1(0) for k = 0, ..., v and r E 
Then for any mild solution of (1.5)
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wish,

According to the argument of theorem 1.4 of [4] it suffices to show that

with Tk, R(t) E B(L1, L1) for k = 0, ..., L and t E [0, 00), lim R(t) = 0,t oo

lim (dldt)R(t) = 0 in the strong operator topology. Actually we shall provet-oo
this convergence in the uniform operator topology.

In what follows we assume that are extended to

the whole of [2 or 11 x so that

We put

for and

Analogously, the operators ,
Bi,k (x, D), are defined.
~ 

It is obvious that (3.1 ) holds also for A(x, D + r~), 
in place of A(x, t, D + r~), {B~ (x, t, D + r~) }’.’~~i : for A E E, ’1 E en with

1r¡1 ~ and u E 

where gj is an arbitrary function in satisfying 
= gj for each j = 1, ..., m/2. This is the same for the inequality (3.2).
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Let Ap be the operator defined by

(Apu)(z) = A(z,D)u(z) for u E D(Ap) in the distribution sense, and Ap be the
operator defined analogously with A(x, D + ~) and {B; (x, D + rI) } ~ ~i in place
of A(x,D) and {B; (z, D) }m~~ . Similarly, the operator Ap, are defined.

For A ~ EB{0}, ? with Illl C and f E 1  p  oo,
we put v(t) = ,B)-1 f and vo = a)-1 f. In view of (3.1) and.
(4.10)

We define a finite sequence of functions Via, i = 1, - - ., v, successively as
the solutions of the following boundary value problems:

Since the functions 1, ..., v, are uniquely determined by f, we
may denote them as 

’

We put

Clearly
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Applying (4.10) to v; yields

It follows from (4.12) and the above inequality that

We put

An elementary calculus yields

Hence, applying (4.10) to
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we easily get,

The inequality (4.15) implies

Similarly, replacing (A, {B; }) by its adjoint (A’, {Bjl }) we define operators
i = 0, - - ., v, and so that

We obtain

We first establish the asymptotic expansion of the kernels of the semigroup
exp(-TA2(t)) at t = oo. We choose natural numbers t, s and exponents
2 = 91  92  "’  g  9+i =00, 2 = ri  r2  ...  re-,,  rt-,+, = oo

as in [7], [11] (Beals [1]) i.e. 
,

(i) in case m &#x3E; n/2. t = 2 and s = 1, hence 2 = q1  q2 - oo and

2 = ri  r2 = cxJ;

(ii) in case m  n/2. s &#x3E; n/2m, t - s &#x3E; n/2m, q~ 1 -  m/n for
j = 1, ..., s-1, &#x3E; m/n &#x3E; m-nlq, is not a nonnegative integer,

 1, ..., e-s-1, &#x3E; 

is not a nonnegative integer;




