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Singularity Problems in Linear Elastodynamics

BRUNO CARBONARO - REMIGIO RUSSO

1. - Introduction

As is well known, the qualitative properties of the motions of a linearly
hyperelastic body B (such as Uniqueness, Domain of Influence Theorem, Work
and Energy Theorem, Reciprocity Relation, etc....) are strictly linked with the
behaviour of the fields that express the material features of B (the density p and
the elasticity tensor C (cf. Section 2)). If B is bounded, the above properties
may be all proved by only requiring that p and C are regular and - as far as the
domain of influence theorem is concerned - C is positive definite [1]. Under
this last assumption on C, and the hypothesis that the initial and boundary data
have a compact support, the extension of these theorems to unbounded bodies,
has been performed in [2] for homogeneous and isotropic materials, in [3] for
homogeneous materials, and in [1] ] by assuming C to be regular and bounded,
and p to be continuous and positive. Moreover, in [4] the uniqueness of the
displacement problem has been proved by assuming B to be homogeneous and
C to be semi-strongly elliptic. 

I

The problem of extending the above results to unbounded bodies whose
acoustic tensor A (cf. Section 2) is not necessarily bounded, has been tackled
in [5-7]. Such extension turned out to be possible provided p is positive, C is

positive semidefinite and A is regular and satisfies a suitable growth condition
at infinity, the so-called hyperbolicity condition (cf. Section 2).

When this last condition and/or the regularity assumption on A are given
up, then the above theorems loose their validity [7, 8]. E.g., when the body
B stiffens too rapidly at large spatial distance, then any perturbation initially
confined in a bounded subset of B, invades the whole of B in a finite time:
as a consequence, the motion of the body is not uniquely determined by the
initial and boundary conditions and the body forces acting on B [7]. The same
can be stated when B stiffens too rapidly at a point o [8, 9]. Also interesting
is the case in which the acoustic tensor A decays too rapidly at o. In this

case, the motions of the body are still uniquely determined by the data, but
the behaviour of B at o becomes quite paradoxical: the perturbations initially
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located at o cannot reach the other points of B ; conversely, no perturbation
initially confined in a region which does not contain o can reach o at any time
[8].

As they have been stated here, all these results seem to be rather
disconnected from each other. Moreover, the counter-examples to uniqueness,
given in [9], apply to one-dimensional and two-dimensional bodies, and cannot
be extended to three dimensions. According to these remarks, the current paper
essentially aims at giving a more general and comprehensive view of the

qualitative properties of the motions of a linearly elastic body and of their link
with the behaviour of the acoustic tensor A. To this aim, we considcr hcrc: (a)
an unbounded three-dimensional body B, "crossed’ by a curve r, whose points
are singularity points for A. This means that A either "grows up" to infinity
when approaching the points of r, or vanishes on r; (b) an unbounded three-
dimensional body B, such that A does not satisfy the hyperbolicity condition.
Thus we are in a position to obtain the desired general picture and, what is

more, to test the loss of uniqueness of three-dimensional motions.
The plan of the work is as follows: Section 2 is devoted to a general

statement of the problem to be studied, and to the proof of some very useful
energy inequalities; in Section 3, we study the case in which IAI decays at the
points of r: it is shown, in particular, that the paradoxical behaviour found in
the case of a singularity point o, is completely reproduced for r, which could
be referred to as an "unperturbable curve": perturbations arising at the points of
r remain confined at r, while conversely r cannot "feel" any perturbation on
BBr; Section 4 is mainly concerned with some examples of loss of uniqueness
of the motion when IAI "grows up" to infinity at r, while Section 5 treats the
same problem when A violates the so-called hyperbolicity condition. A way to
restore uniqueness, in view of the physical meaning of the mathematical notion
of "motion", is given at the end of Section 4.

Notation. Scalars are denoted by light-face letters; vectors (on are

indicated by bold-face lower-case letters; the symbols o, x and y are reserved
to denote respectively the origin of an assigned reference frame 
on R 3and generic points of I1~ 3 ; bold-face upper-case letters stand for second-
order tensors (linear transformations from I1~3 into R 3); Vu is the second-order
tensor with components (Vu)ij = ajui (9; = 8/8zj); div S is the vector with

components (here and in the sequel, the sum over repeated indexes is

implied); a superimposed dot means partial differentiation with respect to time;
finally,
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2. - Basic concepts and tools

This Section is devoted to give a general statement of the problem to
be studied in the paper, and to outline the basic concepts and tools that will
help to tackle it. We shall first define the class of the singular motions of an
elastic body B ; then, we shall derive some energy inequalities that, beyond their
intrinsic interest, will play a fundamental role in the proof of our main results.

2.1. - Basic equations. Singular motions

Let B be a linearly elastic body, identified with the open connected set
of I~3 it occupies in an assigned reference configuration. We assume that B is

unbounded, and that the boundary a B is so regular as to allow the divergence
theorem to be applied.

Let r be any smooth curve contained in B, or T = 0. Let us assign
i) a continuous and a.e.-positive scalar field p on BBr (mass density);
ii) a fourth-order tensor field C (elasticity tensor), continuous on l%)r and

smooth on B Br;
iii) a continuous vector field b on B x [0, +oo) (body force per unit volume).
Here, for any x E BBr, CC is a linear transformation from the space of all

second-order tensors into the space of all symmetric second-order tensors, such
that C [W] = 0 for any skew W. Throughout the paper, it will be assumed to
be symmetric, i. e. such that

and positive semi-definite, i. e. such that

For any x E B BT, and any assigned unit vector m, ~ the acoustic tensor

A(x, m) in the direction m is defined by the relation

As is well-known, a motion of B in the time interval (0, +oo) is a solution
u(x, t) to the System

Throughout this paper, we shall only consider solutions to System (2.1 ) which
are twice continuously differentiable on ( B Br) x [0, +(0). 

_

Assume now r = 0, so that p and C are continuous on B. Let
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for some positive cM and

Then y~(~) is of course a positive, increasing and convex function on [0, +(0),
and

We have already pointed out in some previous papers [5, 7] the link
between the growth of the initial support of a solution u to System (2.1) and
the limit

which certainly exists by virtue of the monotonicity of p. In particular, we
showed [5] that, if W,, = +oo, then any solution u to System (2.1) identically
vanishing outside a bounded subset of B at t = 0, has a compact support on B
at each instant t &#x3E; 0. According to this property, we give the following

DEFINITION 2.1. The acoustic tensor A is said to satisfy the hyperbolicity
condition if and only if +oo.

We have already shown ([7], cf. also Section 4) that, when the

hyperbolicity condition is violated, then System (2.1) admits solutions

corresponding to zero data, which are different from zero on the whole of
B in the time interval [c¡jrpoo, +oo). This naturally leads to the following

DEFINITION 2.2. If r = 0, then any motion u of B corresponding to material
data p and C such that pm  +oo is said to be singular at infinity.

The class of all motions of B that are singular at infinity, will be denoted
by 

Assume now r fl 0, and A to satisfy the hyperbolicity condition. As far
as the behaviour of A at r is concerned, denoting by

the distance of x from r, we give the following definitions.

DEFINITION 2.3. If then any motion u of B corresponding to material
data p and C such that

(a) a smooth, positive and decreasing function p on (0, +(0) exists such
that ... ~ ..., ... , , ...,
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for some positive constant cl, is said to be weakly singular at 1.

The class of all motions of B which are weakly singular at r, will be
denoted by Sw,r.

DEFINITION 2.4. If r =/ 0, then any motion u of B corresponding to material
data p and C such that

(b) a smooth, positive and incresing function q on [0, +oo) exists such that

for some positive constant c2, is said to be singular at r.

The class of all motions of B which are singular at r, will be denoted by
Sr.

REMARK 2.1. The solutions to System (2.1) under condition (a) have been
called "weakly singular" because, as can be seen by using the same methods
employed in [6-8], in the class Sw,r all the main qualitative properties of classical
solutions (such as Uniqueness for the boundary-initial value problems, Work
and Energy Theorem, Reciprocity Relation) can be still proved. This is no more
true in the class Sr, unless we impose some restrictions on the behaviour of
the motions near to r.

Let {a 1 B , a2 B } be a partition of a B and assign
iv) two smooth fields u (surface displacement) on 81 1 B x [0, +oo) and s

(surface traction) on a2 B x [0, +(0);
v) two smooth fields uo (initial displacement) and Do (initial velocity) on

B Br.
Then the boundary-initial value problem corresponding to the above data

consists in finding a motion u of B which satisfies the boundary conditions

where n is the outward unit normal to a B, and the initial conditions

Let u be a motion of B and let f be any smooth function on R~ x [0, +oo)
which, Vs &#x3E; 0, has a compact support on R3 and identically vanishes in a

region containing r (if IF :/ 0). By multiplying both sides of (2.1 ) by fn, and
integrating over D x [0, t], where D is a regular subset of B, an integration by
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parts leads to the relation

where

denotes the total mechanical energy density of B. Relation (2.5) will be useful
in the sequel.

It is convenient for our purposes to introduce the following notation:

We must note that, if r fl 0, then the set

is not necessarily a singleton. Therefore, the set of the points x E R3Br, such
that Ar(x) is not a singleton, will be denoted by the symbol Ar, and we put

As a consequence, if x E B,, we may write

where Xr E r is uniquely determined. We shall often use the notation

Finally, it is worth remarking that, in a three-dimensional point space, the set
Air is in general the join of a family of surfaces.
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2.2. - Energy inequalities

We want now to derive some estimates involving the total mechanical

energy density q(u) over cylindrical shells surrounding finite arcs of r. These
will allow us to deduce a number of inequalities either over subsets of a

cylindrical pipe PR containing r (internal energy inequalities) or over subsets
of BBPR (external energy inequalities) in both cases (a) and (b); from now on
to the end of this Section, the tensor A is assumed to satisfy the hyperbolicity
condition.

In order to write the formulae in a simpler and more compact way, we
set

The following theorems hold.

THEOREM 2.1. Let u E Sw,r. Then

for any xo E B, for any R, t &#x3E; 0 and for any R’, R" &#x3E; 0 such that R"  g.

THEOREM 2.2. Let u E Sr. Then
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for any xo E B, for any R &#x3E; 0 and for any t, R’, R" &#x3E; 0 such that
R"  q-1(q(R’) - ct) and

PROOF OF THEOREM 2.1. Consider the function

where

Here w is a smooth increasing function on R, vanishing on (-oo, 0] and equal
to 1 on [l, +oo), and u is an arbitrarily fixed positive constant.

The spatial support of g at instant s is the set

In spite of the fact that Vg is not defined along the space-time axis x = xo,
it is easily verified that, by choosing a suitably small, g is smooth on R 3 x [0, t].
As a consequence, g satisfies the conditions imposed on f for the validity of
(2.5). Then, setting

and
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we have

Since, in Bw,

we may now use the inequality

and the arithmetic-geometric mean inequality to majorize respectively the second
and third integrals and the fourth integral at RHS of (2.8). Then, by taking into
account assumption (a),
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and, by virtue of the convexity of p,

Finally,

where to is a reference time.

According to inequalities (2.9)-(2.10)-(2.11), the second and third integral
at RHS of (2.8) are nonpositive, so that (2.8) yields

where is the set

This set is in turn a join of surfaces, and nw stands for the normal unit vector
to directed outside Bw. Since all the fields in (2.12) are smooth across
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we are allowed to take the limit w - 0 of (2.12), to get

whence, by virtue of Gr6nwall’s lemma, it follows that

Since, as u -&#x3E; 0, g tends boundedly to the characteristic function of the
t

set U Y-,, the passage to the limit a &#x3E; 0 is permissible in (2.14) by virtue
s=0

of Lebesgue’s dominated convergence theorem. Hence, (2.6) follows by letting
u ~ 0 in (2.14). D

REMARK 2.2. Observe, by the way, that if b = 0, then the energy term
arising from (2.11) disappears, so that the term "exp[t/to]" in (2.6) is replaced
by 1.

PROOF OF THEOREM 2.2. Consider the function

where a is again an arbitrarily fixed positive constant. Estimate (2.7) may be
derived by repeating step by step reasoning which led to (2.6), with g replaced
by j. D
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3. - Qualitative properties of motions which are weakly singular at a

curve r

Throughout this Section, we assume that the acoustic tensor A satisfies
assumption (a) and the hyperbolicity condition. We prove a general domain
of influence theorem, from which we deduce, as an immediate consequence,
the uniqueness of solutions to the boundary-initial value problem (2.1)-(2.3)-
(2.4). In this connection, we shall also point out the paradoxical behaviour of
perturbations at the points of r, previously laid out in the Introduction.

3.1. - The Domain of Influence Theorem. Uniqueness

Let .Dt be the set of all points x E B Br such that

and let

THEOREM 3.1 (Domain of Influence Theorem). Let u be a solution to

System (2.1 ). Then, B:It &#x3E; 0,

PROOF. Let (xo, A) E ~ ( B Br)BD~ (t) } x (0, t). Then, writing (2.6) with t = A
and R = + c(t - A)) - ro, choosing R’ and R" in such a way that

xo c (PR, BPRII) n BR (xo ), and setting

we have

Bearing in mind the definition of D,(t) and our choice of the couple
(xo, A), we see that all the integrals at RHS of (3.1 ) are zero, so that, by virtue
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of definite positiveness of C, (3.1 ) yields

Since (xo,A) is arbitrarily chosen in [(B BF)BDw (t)] x (0, t), (3.2) implies
u = 0 on [( B Br)BD~ (t)] x [0, t]. Hence, taking into account that u = 0 on

[(BBr)BDt] x {O} ~ [(BBr)BD~(t)] x {O}, the desired result follows at once. D
A simple consequence of Theorem 3.1 is the following Uniqueness

Theorem:

THEOREM 3.2. System (2.1)-(2.3)-(2.4) has at most one solution.

PROOF. Since System (2.1)-(2.3)-(2.4) is linear, it is sufficient to show

that, if b, û, s, uo and 00 identically vanish in their domains of definition, then
u = 0 on (BBr) x [0, +(0). To this aim, one needs nothing more than remarking
that, in this case, Vt E [0, +oo). D

3.2. - A paradoxical behaviour: the unperturbable line

As far as the propagation of perturbations in B is concerned, the singularity
line r behaves in a rather unexpected way: we shall now show that it behaves
as an unperturbable line, namely, a line which is uncapable of receiving as
well as of transmitting signals.

In order to make the discussion as simple as possible, we assume that the
body force field and the boundary data are identically zero, and that 
is locally integrable over B. Then, for any bounded subset ro of r, by choosing
xo E ro and R in such a way that ro is completely contained in ,SR(xo), and
letting R" -~ 0, (2.6) yields (cf. Remark 2.2)

Thus, if we assume that a cylindrical pipe PR, surrounding r exists such that
uo = 00 = 0 on PR,, then (3.3) implies that, for any instant t &#x3E; 0, there exists
a nonempty neighbourhood of r, namely, where u identically vanishes. In
physical terms, this obviously means that r cannot be reached at any finite time
by any perturbation initially located outside a neighbourhood of r.

On the other hand, if xo is any point of B, letting R’ -~ +oo in (2.6), we
have
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which, for a fixed instant t &#x3E; 0, implies that, for any nonempty neighbourhood
B" of r, any perturbation initially concentrated on r is identically zero outside
Bit at t. In essence, since t is arbitrary, this result tells us that the perturbation
cannot leave r.

4. - Qualitative properties of motions which are singular at a curve r

Throughout this Section, we assume that A satisfies hypothesis (b) and
the hyperbolicity condition. We first show, by means of counter-examples, that
System (2.1)-(2.3)-(2.4) admits in general infinitely many solutions in the class
Sr. Then, from (2.7) we deduce that, if the initial perturbation is identically
zero outside a neighbourhood of r, then the resulting perturbation identically
vanishes outside a neighbourhood of r at each instant t (local domain of
influence theorem). Subsequently, we obtain a thermodynamical domain of
influence theorem for motions belonging to a properly defined subclass of Sr,
and prove that in such subclass of Sr the Work and Energy Theorem holds in
a "generalized" form.

4.1. - Some counter- examples to uniqueness

The most interesting feature which follows from assumption (b) is the
loss of uniqueness of solutions to the boundary-initial value problem (2.1)-(2.3)-
(2.4). Indeed, by extending the counter-examples given in [9], we show that
the Cauchy problem associated with System (2.1) has infinitely many solutions
corresponding to the same assigned body forces and initial values, at least when
r is assumed to be a straight line. To this end, because of the linearity of the
equations, it will be sufficient to show that System (2.1) has infinitely many
solutions corresponding to zero body forces and initial values.

Assume that the body B occupies the whole space and is isotropic with
Lame moduli A and u such that A = 0, J.L &#x3E; 0. Furthermore, let r be the x3_
axis. Then, in the cylindrical coordinate system (6 = 6(x), 1?, x3), if we look for
solutions u - (us = 0, Ufj = 0, u3 = U(6, t)), then the Cauchy problem associated
with System (2.1 )-(2.4) reduces to

We append to System (4.1 ) the "boundary" condition

with the compatibility conditions u*(O) = ic*(0) = 0.
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Assume now that condition (b) is satisfied with

where all the dimensional constants are taken for simplicity equal to 1. Then,
in order to solve System (4.1) by the standard method of characteristic curves,
let us write Equation (4.1)1 1 in the form

Introducing the auxiliary variables

System (4.2) reads

whence v = v(e) and

I
or, setting f v(e)de = w(e),

o

subject to conditions

whence

As a consequence, uo(q(b) + t) = l~/2 and w(q(b) - t) = K/2, so that

In order to determine the solution u(6, t) for t &#x3E; q(6), we must observe that



118

so that

Finally, we have

Therefore, the solution to System (4.1 ), expressed by (4.3)-(4.4), does not in
general identically vanish on (0, +oo) x (0, +oo), and its support is the interior
of the hyperparaboloid of equation t = q(6). This region can be viewed as the
join on t &#x3E; 0 of the domains of influence of the "datum" fi(t): but this "datum"
is fictitious, and has been introduced only in order to give the solution in an
explicit form. Its prescription is in general uncorrect from both the mathematical
and the physical viewpoint, since the Cauchy data are completely expressed by
(4.1)2 and, on the other hand, we cannot be able to measure the values of the
solution over one-dimensional subsets of R 3. It is then quite natural to look for
a criterion to single out the physically meaningful solution among the infinitely
many fields expressed by (4.3)-(4.4). This will be carried out in the sequel
(Sub-section 4.3), by following a method based upon the entropy principle and
introduced in [10, 11].

At the moment, we want to point out that
i) when the data p and p are assumed to be regular and positive on I~3, then

the nontrivial solutions to System (4.1) cannot be continuously differentiable on
the whole of (0, +(0) x (0, +oo) ;

ii) when (b) holds, then it is possible to find smooth nontrivial solutions
to System (4.1 ).

In order to prove the first statement, it is sufficient to note that, for any
t &#x3E; 

so that, if = t =/ 0, as it happens when the data are regular, then
8-+0

and

In particular, if we confine ourselves to consider only smooth solutions, then
we conclude that System (4.1) admits only the trivial one.

As far as ii) is concerned, we note that, by virtue of (b), (4.5) implies
that Vu is continuous on r.


