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Nonzero Time Periodic Solutions to an Equation of Petrovsky
Type with Nonlinear Boundary Conditions: Slow Oscillations

of Beams on Elastic Bearings

EDUARD FEIREISL

In the linear theory of vibrating beams, the transversal displacement u(x, t)
at the instant t of the point with reference position x satisfies a linear second
order (in time) equation

where all material parameters are supposed constant and have been scaled out.
If the beam rests on two identical bearings with purely elastic response

characterized by a nonlinear function f, the boundary conditions read

Concerning the function f, we assume

for all

(A2) f is superlinear at infinity, i.e., for any C &#x3E; 0, there is K(C) such that

for all

(A3) f satisfies the growth condition

for all

where

Pervenuto alla Redazione il 7 Ottobre 1991.
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where f’ denotes the derivatives and the symbols ci, t = 1, 2, ... stand
for strictly positive constants.

We are interested in nonzero time periodic solutions to the above problem,
i.e.

for all

with a positive period T.
The problem has been proposed to me by Professor G. Capriz as a simple

analogue of a more complicated shaft dynamics model where (E) is replaced by
a pair of beam equations coupled by means of the nonlinearity f, which in that
case depends also on the first time derivative of the unknown functions (see
Capriz [3], [4]). The situation of interest is when the rotation speed of the shaft
reaches a critical value, large self-excited oscillations occur, the amplitude of
vibrations at the bearings tends to clearance while the amplitude at the center
of the beam goes to infinity.

In the present case, however, we have a conservative system where the
beam is at rest (does not rotate) and the response of the bearings is purely elastic,
the dissipative effects neglected. As we will prove (Section 2, Theorem 1), free
vibrations, i.e. non-zero time periodic solutions, exist at least for large periods
T that are appropriately related to the lenght .~ of the beam.

1. - Variational formulation

To solve the problem (E), (B), (P), we adopt the variational approach that
has been, to our best knowledge, the only successful one to obtain analytical
results.

The solution u is a critical point of the action functional

which motivates the following definition.

DEFINITION 1. A function u is called a weak solution to the problem (E),
(B 1), (BZ)~ (P), if

is continuous on

satisfies
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and the equality

holds for any test function satisfying (P) along with the
natural boundary conditions

However, the search for critical points of indefinite functionals like J
is often a nontrivial task. The first successful attack has been carried out by
Rabinowitz in the celebrated paper [6]. His truly pioneering work stimulated a
rather vast amount of research, a complete list of which lies beyond the scope
of the present paper. A nice survey may be found in Brézis [ 1 ] .

Quite recently, the effort concentrated on certain qualitative properties of
the critical points related to the minimality of the period T (see Salvatore [7],
Tarantello [9]).

The essential stumbling block related to (E), (B), (P) is that the restoring
force f is concentrated just at two boundary points in contrast with all the

problems mentioned above where the elastic response is distributed continuously
along the interval (0, ~). As a consequence, we encounter a lack of coercivity in
certain sense calling for a refined analysis of critical points (cf. Section 4). In
particular, the dual action principle used in Brézis-Coron-Nirenberg [2], Tanaka
[8] and many others does not seem to work here.

2. - Main results

The aim of the present paper is to prove the following theorem.

THEOREM 1. Let the function f satisfy the hypotheses (A,)-(A4).
Then there exists a (sufficiently large) positive integer M such that the

problem (E), (B i ), (B2), (P) possesses at least one nonzero time periodic solution
u with the period 

- -

The method of the proof leans on the approximate method of Ray-
leigh-Ritz. We look for a sequence of approximate critical points of a slightly
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modified functional Jn restricted to Hilbert spaces of finite dimension (see
Section 4).

The critical points are found by the help of a lemma of saddle point type.
The proof of the lemma is standard. What is more technical is to verify its
abstract hypotheses in the present context.

Finally, we have to pass to the limit in the sequence of approximate so-
lutions (see Section 5). To this end, we need some information concerning the
distribution of eigenvalues of the beam operator appearing in (E) (see Section 3).

3. - Spectral properties of the linear operator

To simplify the notation, we assume that l=27/4 .4
Next we denote

and, finally, recall that the symbol 11 . lip will denote the norm on the Lebesgue
space Lp(Q).

We start with the eigenvalue problem

which is known to possess a sequence of eigenvalues
where

and

(see Timoshenko-Young-Weaver [10]).
The corresponding orthonormal (in L2) system of eigenfunctions reads
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where the constants Wk are given by the formula

From the relation (3.2) we deduce the asymptotic formula

where

for all

The proof of Theorem 1 is based, among other things, on the spectral
analysis of the linear operator

In order to prevent accumulation of eigenvalues, we restrict ourselves to
the class of functions having the symmetry properties

for all

Note that, in view of (A1 ), the symmetry is preserved by the superposition
operator corresponding to f.

Consequently, the linear operator L determined for smooth functions by
(3.6) and restricted to the class defined in (3.7) admits a spectral resolution in
the form

where the eigenvalues are
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and the symbols akj denote the Fourier coefficients

evaluated with respect to the orthonormal system

PROPOSITION 1. For any function v E L 1 (Q) satisfying (3.7) for a.e. x, t,
the following estimate

holds for any

PROOF. Since 2(2k - 1) is even and (2 j + 1 ) odd, we can use the asymptotic
formula (3.4) along with the estimate (3.5) to obtain the inequality

which holds with a possible exception of a finite number of indices, i.e. for all

Now we have

where the latter term is further estimated using the Holder inequality
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Finally, we estimate

where the last series is summable for any

Proposition 1 has been proved.

4. - The Rayleigh-Ritz approximation

In this section, we will look for suitable critical points of a modified
action functional

restricted to the finite dimensional space

To find suitable critical points of Jn, we use the following assertion, the
proof of which is standard and may be found in [5].

PROPOSITION 2. Let E = VI ED V2 (D V3 be an orthogonal decomposition of
a finite dimensional space E. Let the symbol S denote a sphere in E with the
center at zero.

Let J E C1 (E, R1 ) be a functional satis, fying the hypotheses
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and

Then there is a critical point vo E E such that

The goal of the remaining part of this section is to verify the hypotheses
of Proposition 2 for the choice

with suitable constants -oo  c  d  0 independent of n.
To begin with, observe that the coercivity condition (4.1 ) is satisfied thanks

to the additional term I v 44n ~~ 4-

Verification of the hypothesis (4.2).

Consider a sphere For

we have

As on we can use Proposition 1 to obtain
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Thus the terms

are of order o(r2) in accordance with (A4).
Consequently there exist r small enough and d  0 such that (4.2) holds

independently of n.
As the next step, observe that &#x3E; 0 on V3 and thus that (4.3) follows

as Jlv3 &#x3E; 0.

Verification of the hypotheses (4.4).

This is the most difficult step. Take v E V2 (B V3, i.e.

Evaluating Jn at v, we obtain

In view of (A2), we have the estimate

for any C &#x3E; 0 where N(C) - oo as C - oo. Consequently, we obtain
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Making use of the orthogonality of the eigenfunctions we obtain

Further we have

and, finally,
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Combining (4.6)-(4.9), we conclude that

where The constant c9 is independent of M.

Consequently, if M is so large that

we can choose the constant

As we have verified all the assumptions of Proposition 2, we are allowed
to use its conclusion to construct a sequence of approximate solutions
such that

for any test function p E En, and

where are independent of n.
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5. - Passing to the limit in the sequence of approximate solutions

We start with some estimates that may be deduced from (4.12), (4.13).
To begin with, we set p = un in (4.12), multiply by 1/2 and substract

(4.13) to obtain

The first consequence of (5 .1 ) is that, by virtue of (A3),

and

According to Proposition 1, we have

and, by virtue of (5.1), (5.3), we conclude that
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Our ultimate task is to estimate the part of un belonging to a possibly
nonvoid kernel of the operator L. According to Proposition 1, the kernel is at

most finite dimensional and, moreover, we have

where the index k(j) is uniquely determined by the equation Akj = 0.
On the other hand, we have

Combining (5.5) and (5.6) we get that for any y E Ker(L) the estimate

i.e. that the L2-norm on the boundary and the L2-norm inside Q are equivalent
on Ker(L).

Combining (5.2), (5.4)-(5.7) together with the growth condition (A2), we
obtain the estimate

Note that the L 1- and L2-norms on the boundary restricted to Ker(L) are

equivalent as this is finite dimensional.
Using the conclusion of Proposition 1, we deduce the final result

is precompact in

Now, it is matter of routine to pass to the limit in (4.12) as n - oo to
conclude that (1.3) holds for any accumulation point u Moreover, the
same procedure applied to (4.13) implies that the solution u is not identically
zero.

Theorem 1 has been proved.
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