KAZUHIRO KONNO

Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces

<http://www.numdam.org/item?id=ASNSP_1993_4_20_4_575_0>
Non-hyperelliptic Fibrations of Small Genus and Certain Irregular Canonical Surfaces

KAZUHIRO KONNO

Introduction

Let S be a minimal surface of general type defined over \mathbb{C}. We call S a canonical surface if the rational map associated with $|K|$ is birational onto its image. Assume that S is a canonical surface with a non-linear pencil, and let $f : S \to B$ be the corresponding fibration. Since S is canonical, any general fibre of f is a non-hyperelliptic curve. A natural question is then: what is the genus of a general fibre? This leads us to studying the slope of non-hyperelliptic fibrations. For a hyperelliptic fibration of genus g, $4 - 4/g$ is the best possible lower bound of the slope by [P] and [H1]. Later, Xiao [X] showed that the slope is not less than $4 - 4/g$ even when non-hyperelliptic. But, for non-hyperelliptic fibrations, it may not be the best bound. In fact, we showed in [K2] that the slope is not less than 3 when $g = 3$ (see also [H2] and [R2]), and Xiao himself conjectured that the slope is strictly greater than $4 - 4/g$ for non-hyperelliptic fibrations ([X, Conjecture 1]).

At present, we have two methods for studying the slope. The first is Xiao’s method [X] of relative projections and the second is counting relative hyperquadrics which is still at an experimental stage (see [R2] and [K2]). Combining these two, we show that the slope is not less than $24/7$ for $g = 4$ and give a bound $40/11$ for $g = 5$ (Theorems 4.1 and 5.1). We also answer affirmatively to Xiao’s conjecture referred above (Proposition 2.6).

As an application, we show in Section 6 that, for an irregular canonical surface S (with a non-linear pencil), the canonical image cannot be cut out by quadrics when $K^2 \leq (10/3) \chi(\mathcal{O}_S)$. For irregular surfaces, Reid’s conjecture [R1, p. 541] may be shown along the same line if we can sufficiently develop the second method.

This paper was written during a research visit to Pisa in 1992. The author would like to thank, among others, Professor Catanese for his hospitality. After writing the manuscript, the author received a preprint [C] in which our Theorem 4.1 is shown independently.

Pervenuto alla Redazione il 3 Marzo 1993.
1. Relative hyperquadrics

Let B be a non-singular projective curve of genus b, and let \mathcal{E} be a locally free sheaf on B. We put $\mu(\mathcal{E}) = \deg(\mathcal{E})/\text{rk}(\mathcal{E})$. According to [HN], \mathcal{E} has a uniquely determined filtration by its sub-bundles \mathcal{E}_i

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_\ell = \mathcal{E}$$

which satisfies

(i) $\mathcal{E}_i/\mathcal{E}_{i-1}$ is semi-stable for $1 \leq i \leq \ell$,

(ii) $\mu(\mathcal{E}_i/\mathcal{E}_{i-1}) > \mu(\mathcal{E}_{i+1}/\mathcal{E}_i)$ for $1 \leq i \leq \ell - 1$.

As usual, we call such a filtration the Harder-Narashimhan filtration of \mathcal{E}. Put $\mu_i = \mu(\mathcal{E}_i/\mathcal{E}_{i-1})$ and $r_i = \text{rk}(\mathcal{E}_i)$. Then

$$\deg(\mathcal{E}) = \sum_{i=1}^{\ell-1} r_i(\mu_i - \mu_{i+1}) + r_\ell \mu_\ell.$$

Let $\pi : \mathbb{P}(\mathcal{E}) \to B$ be the projective bundle associated with \mathcal{E}. We denote by $T_\mathcal{E}$ and F a tautological divisor such that $\pi_*\mathcal{O}(T_\mathcal{E}) = \mathcal{E}$ and a fibre of π, respectively. Note that for any \mathbb{R}-divisor D on $\mathbb{P}(\mathcal{E})$, there are real numbers x, y satisfying $D \equiv xT_\mathcal{E} + yF$, where the symbol \equiv means numerical equivalence.

The following can be found in [N].

Lemma 1.1. An \mathbb{R}-divisor which is numerically equivalent to $T_\mathcal{E} - xF$ is pseudo-effective if and only if $x \leq \mu_1$. It is nef if and only if $x \leq \mu_\ell$.

Assume that $\ell \geq 2$. For $1 \leq i \leq \ell - 1$ let

$$\rho_i : W_i \to \mathbb{P}(\mathcal{E})$$

denote the blowing-up along $B_i = \mathbb{P}(\mathcal{E}/\mathcal{E}_i)$. Then W_i has a projective space bundle structure $\pi_i : W_i \to \mathbb{P}(\mathcal{E}_i)$. We put $\mathcal{E}_i = \rho_i^{-1}(B_i)$. Then $\pi_i^*T_\mathcal{E}$ is linearly equivalent to $\rho_i^*T_\mathcal{E} - \mathcal{E}_i$. Furthermore, \mathcal{E}_i is isomorphic to the fibre product $\mathbb{P}(\mathcal{E}_i) \times_B B_i$. Let $p_1 : \mathcal{E}_i \to \mathbb{P}(\mathcal{E})$ be the projection map onto the first factor. Then $p_1 = \pi_i|_{\mathcal{E}_i}$. Similarly, if $p_2 : \mathcal{E}_i \to B_i$ denotes the projection to the second factor, then $p_2 = \rho_i|_{\mathcal{E}_i}$. In particular, $[-\mathcal{E}_i]|_{\mathcal{E}_i}$ is given by $p_1^*T_\mathcal{E} - p_2^*T_\mathcal{E}/\mathcal{E}_i$.

The following is essentially the same as [N, Claim (4.8)].

Lemma 1.2. Assume that an \mathbb{R}-divisor $Q \equiv p_1^*T_\mathcal{E} + p_2^*T_\mathcal{E}/\mathcal{E}_i - xF$ on \mathcal{E}_i is pseudo-effective. Then $x \leq \mu_1 + \mu_\ell + \deg(\mathcal{E}_{i-1}/\mathcal{E}_i)$.

Proof. Since $T_\mathcal{E}/\mathcal{E}_i - \mu_\ell F$ is nef on B_i, $H_y = T_\mathcal{E}/\mathcal{E}_i - (\mu_\ell - y)F$ is ample for any positive rational number y. Let m be a sufficiently large positive integer such that mH_y is a very ample \mathbb{Z}-divisor, and choose $s - 1$ general members $H_j \in |mH_y|$ so that $C = \cap_j H_j$ is an irreducible non-singular
curve, where $s = \text{rk}(\mathcal{E}/\mathcal{E}_t)$. Let $\tau : C \to B$ denote the natural map. Then
\[\mathbb{P}(\mathcal{E}_t) \times_B C \simeq \mathbb{P}(\tau^*\mathcal{E}_t).\]
Since the restriction of Q to this space is numerically equivalent to
\[T\tau*\mathcal{E}_t - \mu_1(\tau^*\mathcal{E}_t)F_C + \{(T\tau*\mathcal{E}_t + (\mu_1 - x)F) \cdot C\}F_C,
\]
where F_C denotes a fibre of $\mathbb{P}(\tau^*\mathcal{E}_t) \to C$, and since it must be pseudo-effective, it follows from Lemma 1.1 that
\[(T\tau*\mathcal{E}_t + (\mu_1 - x)F) \cdot C \geq 0,\]
that is,
\[(T\tau*\mathcal{E}_t + (\mu_1 - x)F)H_y^{s-1} \geq 0.\]
Letting $y \downarrow 0$, we get
\[x \leq \text{deg}(\mathcal{E}/\mathcal{E}_t) - s\mu_2 + \mu_1 + \mu_\ell = \text{deg}(\mathcal{E}_{t-1}/\mathcal{E}_t) + \mu_1 + \mu_\ell.\]

An effective divisor Q on $\mathbb{P}(\mathcal{E})$ is called a relative hyperquadric if it is numerically equivalent to $2T\tau - xF$ for some $x \in \mathbb{Z}$. It is said to be of rank r, \(rk(Q) = r\), if it induces a hyperquadric of rank r on a generic fibre of $\mathbb{P}(\mathcal{E})$.

Lemma 1.3. Assume that $\ell \geq 2$ and consider a relative hyperquadric $Q \equiv 2T\tau - xF$ on $\mathbb{P}(\mathcal{E})$. If Q is not singular along B_{t-1}, then $x \leq \mu_1 + \mu_\ell$.

Proof. We may assume that $x > 2\mu_\ell$. Then, by Lemma 1.1, Q vanishes on B_{t-1}, since $Q|_{B_{t-1}} \equiv 2T\tau/\mathcal{E}_{t-1} - xF$. However, since Q is not singular along B_{t-1}, it cannot vanish twice along B_{t-1}. Let \tilde{Q} be the proper transform of Q by ρ_{t-1}. Then
\[\tilde{Q} \equiv \rho_{t-1}^*(2T\tau - xF) - \mathbb{E}_{t-1} = \rho_{t-1}^*T\tau + \pi_{t-1}^*T\mathcal{E}_{t-1} - xF.\]
Hence $\tilde{Q}|_{\mathbb{E}_{t-1}} \equiv \rho_{t-1}^*T\mathcal{E}_{t-1} + \pi_{t-1}^*T\mathcal{E}_{t-1} - xF$. Since it must be effective, we get $x \leq \mu_1 + \mu_\ell$ by Lemma 1.2.

Lemma 1.4. Let $Q \equiv 2T\tau - xF$ be a relative hyperquadric on $\mathbb{P}(\mathcal{E})$. If $x > \mu_1 + \mu_\ell$, then $rk(Q) \leq r_{t-1}$ and Q is singular along B_{t-1}.

Proof. Since $x > \mu_1 + \mu_\ell$, it follows from Lemma 1.3 that Q is singular along B_{t-1}. Let \tilde{Q} be the proper transform of Q by ρ_{t-1}. Then
\[\tilde{Q} \equiv \rho_{t-1}^*(2T\tau - xF) - 2\mathbb{E}_{t-1} = \pi_{t-1}^*(2T\mathcal{E}_{t-1} - xF).\]
Hence there exists a relative hyperquadric $Q_{t-1} \equiv 2T\mathcal{E}_{t-1} - xF$ on $\mathbb{P}(\mathcal{E}_{t-1})$ satisfying $rk(Q) = rk(Q_{t-1}) \leq r_{t-1}$. Now, the assertion can be shown by induction.

Lemma 1.5. Let $Q \equiv 2T\tau - xF$ be a relative hyperquadric on $\mathbb{P}(\mathcal{E})$. If $rk(Q) \geq 3$, then the following hold.

1. If $r_1 \geq 3$, then $x \leq 2\mu_1$.
2. If $r_1 = 2$, then $x \leq \mu_1 + \mu_2$.
3. If $r_1 = 1$ and $r_2 \geq 3$, then $x \leq 2\mu_2$.
PROOF. (1) follows from Lemma 1.1 applied to a Q-divisor Q/2. We only have to show that \(x \leq 2\mu_2 \) in (3) and (4), since the other assertions follow from Lemma 1.4. Assume that \(r_1 = 1 \). Then \(B_1 \) is a relative hyperplane on \(\mathbb{P}(\mathcal{E}) \). Since \(\text{rk}(Q) \geq 3 \), we see that \(Q \) cannot vanish identically on \(B_1 \). Note that \(0 \subseteq \mathcal{E}_2/\mathcal{E}_1 \subseteq \cdots \subseteq \mathcal{E}/\mathcal{E}_1 \) is the Harder-Narasimhan filtration of \(\mathcal{E}/\mathcal{E}_1 \). Since \(Q|_{B_1} \equiv 2T_{\mathcal{E}/\mathcal{E}_1} - xF \), we get \(x \leq 2\mu_2 \) by Lemma 1.1.

LEMMA 1.6. Let \(Q \equiv 2T_{\mathcal{E}} - xF \) be a relative hyperquadric on \(\mathbb{P}(\mathcal{E}) \). If \(\text{rk}(Q) \geq 4 \), then the following hold.

1. If \(r_1 \geq 4 \), then \(x \leq 2\mu_1 \).
2. If \(r_1 = 3 \), then \(x \leq \mu_1 + \mu_2 \).
3. If \(r_1 = 2 \) and \(r_2 \geq 4 \), then \(x \leq \mu_1 + \mu_2 \).
4. If \(r_1 = 2 \) and \(r_2 = 3 \), then \(x \leq \mu_1 + \mu_3 \).
5. If \(r_1 = 1 \) and \(r_2 \geq 4 \), then \(x \leq 2\mu_2 \).
6. If \(r_1 = 1 \) and \(r_2 = 3 \), then \(x \leq \min\{2\mu_2, \mu_1 + \mu_3\} \).
7. If \(r_1 = 1, r_2 = 2 \) and \(r_3 \geq 4 \), then \(x \leq \mu_2 + \mu_3 \).
8. If \(r_1 = 1, r_2 = 2 \) and \(r_3 = 3 \), then \(x \leq \min\{\mu_2 + \mu_3, \mu_1 + \mu_4\} \).

PROOF. We show that \(x \leq \mu_2 + \mu_3 \) in (7) and (8). Assume by contradiction that \(x > \mu_2 + \mu_3 \). Since \(r_1 = 1 \), \(B_1 \) is a relative hyperplane on \(\mathbb{P}(\mathcal{E}) \). We have \(Q|_{B_1} \equiv 2T_{\mathcal{E}/\mathcal{E}_1} - xF \). Since \(x > \mu_2 + \mu_3 \), it follows from Lemma 1.4 that \(Q|_{B_1} \) is singular along \(B_2 \) which is a relative hyperplane of \(B_1 \). This implies that, on \(F \cong \mathbb{P}^{r-1} \), \(Q \) is defined by \(X_1L(X_1, \ldots, X_r) + CX_2^2 = 0 \) with a system of homogeneous coordinates \((X_1, \ldots, X_r)\) on \(F \) satisfying \(B_1|_F = (X_1) \), where \(L \) is a linear form and \(c \) is a constant. In particular, \(Q \) cannot be of rank \(\geq 4 \). Hence \(x \leq \mu_2 + \mu_3 \).

The other assertions can be shown similarly as in Lemma 1.5.

REMARK 1.7. Put \(\nu_j = \mu_i \) when \(r_{i-1} < j \leq r_i \) \((1 \leq i \leq \ell)\). Then \(\nu_1 \geq \cdots \geq \nu_r \), \(r = \text{rk}(\mathcal{E}) \), and \(\deg(\mathcal{E}) = \sum \nu_j \). With this notation, the conditions in Lemma 1.5 (resp. Lemma 1.6) can be written as \(x \leq \min\{2\nu_2, \nu_1 + \nu_3\} \) (resp. \(x \leq \min\{\nu_2 + \nu_3, \nu_1 + \nu_4\} \)).

2. - Some inequalities

Let \(f : S \to B \) be a surjective holomorphic map of a non-singular projective surface \(S \) onto a non-singular projective curve \(B \) with connected fibres. We always assume that \(f \) is relatively minimal, that is, no fibre of \(f \) contains a \((-1)\)-curve. If a general fibre of \(f \) is a \((n)\)-hyperelliptic curve of genus \(g \geq 2 \), we call \(f \) a \((n)\)-hyperelliptic fibration of genus \(g \). Let \(K_{S/B} \) be the relative
canonical bundle. It is nef by Arakelov’s theorem [B].

LEMMA 2.1. Let \(f : S \to B \) be a relatively minimal fibration of genus \(g \geq 2 \), and put \(b = g(B) \). Then \(f_*\omega_{S/B} \) is a locally free sheaf of rank \(g \) and degree \(\Delta(f) := \chi(\mathcal{O}_S) - (g - 1)(b - 1) \). Furthermore, the following hold.

1. \(\Delta(f) > 0 \) unless \(f \) is locally trivial.
2. Every locally free quotient of \(f_*\omega_{S/B} \) has nonnegative degree.

PROOF. \(\text{rk}(f_*\omega_{S/B}) \) equals the genus of a fibre. The assertion about the degree follows from the Riemann-Roch theorem (on \(S \) and \(B \)) and the Leray spectral sequence, since we have \(R^1f_*\omega_{S/B} = f_*\mathcal{O}_S \) by the relative duality theorem. (1) and (2) can be found in [B] and [F], respectively. \(\square \)

When \(f \) is not locally trivial, we put \(\lambda(f) = K^2_{S/B}/\Delta(f) \) and call it the **slope** of \(f \).

NOTATION 2.2. Let \(f : S \to B \) be a relatively minimal fibration of genus \(g > 2 \). Put \(c = \sum_{i=1}^\ell \mathcal{E}_i \) and let \(c_1 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_\ell \subset \mathcal{E} \) be its Harder-Narasimhan filtration. The natural sheaf homomorphism \(f^*\mathcal{E} \to \omega_{S/B} \) induces a rational map \(h : S \to \mathbb{P}(\mathcal{E}) \). The image \(V = h(S) \) is called the relative canonical image. To be more precise, let \(\mathcal{A} \) be a sufficiently ample divisor on \(B \), and put \(L(\mathcal{A}) = K_{S/B} + f^*\mathcal{A} \). Let \(\sigma : \tilde{S} \to S \) be a composition of blowing-ups such that the variable part \(|\sigma^*L(\mathcal{A})| \) is free from base points. We assume that \(\sigma \) is the shortest among those with such a property. Let \(Z \) be the fixed part of \(|\sigma^*L(\mathcal{A})| \) and let \(E \) be an exceptional divisor with \(K = \sigma^*K + [E] \), where \(K \) is the canonical bundle of \(\tilde{S} \). Since \(\mathcal{A} \) is sufficiently ample, we can assume that \(Z \) has no horizontal components. In particular, we see that \(M(\mathcal{A}) \) induces a canonical divisor on a general fibre \(D \) of the induced fibration \(\tilde{f} : \tilde{S} \to B \). The holomorphic map associated with \(M(\mathcal{A}) \) factors thorough \(\mathbb{P}(\mathcal{E}) \) and we have a holomorphic map \(\tilde{h} : \tilde{S} \to \mathbb{P}(\mathcal{E}) \) over \(h \) which satisfies \(M(\mathcal{A}) = \tilde{h}^*(T_\mathcal{E} + \pi^*\mathcal{A}) \). Then \(V = \tilde{h}(\tilde{S}) \). When \(f \) is non-hyperelliptic, \(V \) is birational to \(S \) and any general fibre of \(V \to B \) can be identified with a canonical curve of genus \(g \).

Put \(M = \tilde{h}^*T_\mathcal{E} \). Since \(M - \mu_\ell D \) is nef by Lemma 1.1 and since \(\mu_\ell \geq 0 \) by Lemma 2.1, (2), we see that \(M \) is nef.

We have (at least) two methods for studying the slope of non-hyperelliptic fibrations, which we recall below.

I (I) Relative projections ([X])

Here we recall Xiao’s method. For each \(1 \leq i \leq \ell \), the natural sheaf homomorphism \(f^*\mathcal{E}_i \subset f^*f_*\omega_{S/B} \to \omega_{S/B} \) induces a rational map \(h_i : S \to \mathbb{P}(\mathcal{E}_i) \) over \(B \). We let \(\sigma_i : S_i \to S \) be a composition of blowing-ups which eliminates the indeterminacy of \(h_i \). We choose a non-singular model \(S^* \) which dominates all the \(S_i \)'s, and we denote by \(\rho : S^* \to S \) the natural map. Let \(M_i \) be the pull-back to \(S^* \) of \(T_\mathcal{E_i} \). Let \(D^* \) be a general fibre of the induced fibration
\(S^* \to B\) and put \(N_i = M_i - \mu_i D^*\), \(Z_i = \rho^* K_{S/B} - M_i\). Then \(Z_i\) is effective and, by Lemma 1.1, \(N_i\) is a nef \(Q\)-divisor. Note that, modulo exceptional curves, \(Z_i\) corresponds to \(Z\). In particular, we see that \(Z_i D^* = 0\). Note also that \(Z_i - Z_i\) corresponds to the inverse image of the center \(B_i\) of a relative projection \(\mathbb{P}(E) \to \mathbb{P}(E_i)\).

Put \(d_i = N_i D^* (1 \leq i \leq \ell)\). Note that \(d_i = 2g - 2\). For \(1 \leq i \leq \ell - 1\), \(d_i\) is the degree of an \(r_i - 1\) dimensional linear system \(|M_i||D^*|\) and hence Clifford’s theorem shows that \(d_i \geq 2r_i - 1\) unless \((d_i, r_i) = (0, 1)\) when \(f\) is non-hyperelliptic. We recall two inequalities which follow from [X, Lemma 2].

\[
(2.1) \quad K_{S/B}^2 \geq \sum_{i=1}^{\ell-1} (d_i + d_{i+1})(\mu_i - \mu_{i+1}) + 4(g-1)\mu_{\ell},
\]

\[
(2.2) \quad K_{S/B}^2 \geq (d_1 + 2g - 2)(\mu_1 - \mu_\ell) + 4(g-1)\mu_\ell.
\]

(II) Counting relative hyperquadrics

Let \(f : S \to B\) be a non-hyperelliptic fibration. We can assume that \(\mathcal{A}\) is taken so that the holomorphic map associated with \(|T_\xi + \pi^* \mathcal{A}|\) gives a quadratically normal embedding of \(\mathbb{P}(E)\). Then we have

\[
(2.3) \quad h^0(2M(\mathcal{A})) \geq h^0(2T_\xi + 2\pi^* \mathcal{A}) - h^0(\delta_\xi(2T_\xi + 2\pi^* \mathcal{A}))
\]

where \(\delta_\xi\) denotes the ideal sheaf of \(V\) if \(\mathbb{P}(E)\). Since the restriction map \(H^0(M(\mathcal{A})) \to H^0(K_D)\) is surjective, we can lift all the quadric relations in \(S^2H^0(K_D)\) to \(S^2H^0(M(\mathcal{A}))\). Since \(H^0(M(\mathcal{A})) \simeq H^0(T_\xi + \pi^* \mathcal{A})\), it follows that \(H^0(\delta_\xi(2T_\xi + \pi^* \mathcal{A})) \to H^0(\delta_\xi(2))\) is surjective, where \(\delta_\xi\) is the ideal sheaf of \(D' = \delta(D)\) in \(F \simeq \mathbb{P}^{g-1}\). Since \(f\) is non-hyperelliptic, we have \(h^0(\delta_\xi(2)) = (g-2)(g-3)/2\). Put

\[
x_i = \max\{\deg \delta | r_k \{H^0(\delta_\xi(2T_\xi + 2\pi^* \mathcal{A})) \to H^0(\delta_\xi(2))\} \geq i\},
\]

where \(\delta\) ranges over \(\text{Pic}(B)\). Then \(x_1 \geq x_2 \geq \cdots \geq x_k\), where \(k = (g-2)(g-3)/2\). We can find a set of divisors \(\{\delta_i\}\) with \(\deg \delta_i = x_i(1 \leq i \leq k)\) and relative hyperquadrics \(Q_i\) linearly equivalent to \(2T_\xi \pi^* \delta_i\) such that they induce a basis for \(H^0(\delta_\xi(2))\). Furthermore, we can assume that \(H^0(\delta_\xi(2T_\xi + 2\pi^* \mathcal{A}))\) is generated by them in the sense that

\[
H^0(\delta_\xi(2T_\xi + 2\pi^* \mathcal{A})) = \bigoplus_i H^0(2\mathcal{A} + \delta_i)Q_i.
\]

Since \(\mathcal{A}\) is sufficiently ample, \(2\mathcal{A} + \delta_i\) cannot be a special divisor. Hence

\[
h^0(\delta_\xi(2T_\xi + 2\pi^* \mathcal{A})) = \sum_i x_i + (g-2)(g-3)(2a + 1 - b)/2,
\]
where \(a = \deg \mathcal{A} \). We have

\[
h^0(2T_\ell + 2\pi^* A) = (g + 1)\Delta(f) + g(g + 1)(2a + 1b)/2
\]

by the Riemann-Roch theorem. Therefore, we can re-write (2.3) as

\[
(2.4) \quad h^0(2M(\mathcal{A})) \geq (g + 1)\Delta(f) + 3(g - 1)(2a + 1 - b) - \sum x_i.
\]

LEMMA 2.3. \(h^1(E + Z - M(\mathcal{A})) \leq M(E + Z)/2 \), where \(\mathcal{A} = 2\mathcal{A} - K_B \).

PROOF. Since \(E + Z \) has no horizontal components with respect to \(\tilde{f} \), we can find an effective divisor \(A_1 \) on \(B \) satisfying \(\tilde{f}^* A_1 \geq E + Z \). We assume that \(\deg A_1 \) is minimal among those divisors with such a property, and put \(L_1 = \tilde{f}^* A_1 \). Since \(\mathcal{A} \) is sufficiently ample, there exists an irreducible non-singular member \(L_2 \in |M(\mathcal{A} - A_1)| \). Put \(L_3 = (L_1 - E - Z) + L_2 \). Since \(L_3 \geq L_2 \), we can assume that \(|L_3| \) induces a birational map of \(S \) onto the image. Then, by Ramanujam’s theorem, we get \(h^1(-L_3) = h^0(O_{L_3}) - 1 \). Consider the cohomology long exact sequences for

\[
0 \rightarrow O_{L_3} \rightarrow O_{L_1 + L_3}(E + Z) \rightarrow O_{E + Z}(E + Z) \rightarrow 0,
\]

\[
0 \rightarrow O_{L_1}(E + Z - L_2) \rightarrow O_{L_1 + L_2}(E + Z) \rightarrow O_{L_2}(E + Z) \rightarrow 0.
\]

From these, we get

\[
h^0(O_{L_3}) \leq h^0(O_{L_1 + L_3}(E + Z)) \leq h^0(O_{L_1}(E + Z - L_2)) + h^0(O_{L_2}(E + Z)).
\]

Since, on fibres, \(E + Z \) is trivial and \(L_2 \) looks like a canonical divisor, we have that

\[
h^0(O_{L_1}(E + Z - L_2)) = h^0(O_{L_1}(-L_2)) = 0.
\]

Hence we get

\[
h^1(-L_3) \leq h^0(O_{L_3}(E + Z)) - 1 \leq L_2(E + Z)/2 = M(E + Z)/2.
\]

by Clifford’s theorem. \(\square \)

Since \(\chi(2M(\mathcal{A})) = M^2 + \Delta(f) + 3(g - 1)(2a + 1 - b) - M(E + Z) \) by the Riemann-Roch theorem, and since we have \(h^1(2M(\mathcal{A})) = h^2 - h(E + Z - M(\mathcal{A})) \), it follows from (2.4) and Lemma 2.3 that

\[
(2.5) \quad M^2 \geq g\Delta(f) - \sum_{i=1}^{(g-2)(g-3)/2} x_i + \frac{1}{2} M(E + Z).
\]
Since $K_{S/B}^2 = M^2 + (\sigma^*K_{S/B} + M)Z$, we have in particular
\begin{equation}
(2.6) \quad K_{S/B}^2 \geq g\Delta(f) - \sum_{i=1}^{(g-2)(g-3)/2} x_i.
\end{equation}

REMARK 2.4. There is another version due to Reid [R2]. It is easy to see that $f_*(\omega^2_{S/B})$ is a locally free sheaf of rank $3g - 3$ and degree $K_{S/B}^2 + \Delta(f)$. If f is non-hyperelliptic, then the sheaf homomorphism $S^2(f_*(\omega_{S/B})) \rightarrow f_*(\omega^2_{S/B})$ is generically surjective by Max Noether’s theorem. Hence we have an exact sequence of sheaves on B:
\begin{equation}
(2.7) \quad 0 \rightarrow \mathcal{R} \rightarrow S^2(f_*(\omega_{S/B})) \rightarrow f_*(\omega^2_{S/B}) \rightarrow \mathcal{T} \rightarrow 0,
\end{equation}
where \mathcal{T} is a torsion sheaf and \mathcal{R} is a locally free sheaf of rank $(g - 2)(g - 3)/2$. Since $\deg S^2(f_*(\omega_{S/B})) = (g + 1)\Delta(f)$, it follows from (2.7) that
\begin{equation}
(2.8) \quad K_{S/B}^2 = g\Delta(f) - \deg \mathcal{R} + \text{length } \mathcal{T} \geq g\Delta(f) - \deg \mathcal{R}.
\end{equation}

We close the section giving an application of method (II).

LEMMA 2.5. Let $f : S \rightarrow B$ be a non-hyperelliptic fibration of genus g. Suppose that $f_*\omega_{S/B}$ is semi-stable. Then
\begin{equation}
(2.9) \quad K_{S/B}^2 \geq \left(5 - \frac{6}{g}\right)\Delta(f).
\end{equation}

PROOF. We give here two proofs using (2.6) and (2.8), respectively.
(1) Since $Q_i = 2T_i - x_iF$ is effective, it follows from Lemma 1.1 that $x_i \leq 2\Delta(f)/g$ since $f_*\omega_{S/B}$ is semi-stable. Hence we get (2.9) from (2.6).
(2) Since $f_*\omega_{S/B}$ is semi-stable, so is $S^2(f_*\omega_{S/B})$ (see, e.g., [G]). Hence we have $\mu(\mathcal{R}) \leq \mu(S^2(f_*\omega_{S/B}))$, that is, $g\deg \mathcal{R} \leq (g - 2)(g - 3)\Delta(f)$. Substituting this in (2.8) we get (2.9). \qed

PROPOSITION 2.6. Let $f : S \rightarrow B$ be a non-hyperelliptic fibration of genus g, and assume that it is not locally trivial. Then $\lambda(f) > 4 - 4/g$. Hence the conjecture of Xiao [X, Conjecture 1] is true.

PROOF. Xiao [X, Theorem 2] showed that $\lambda(f) > 4 - 4/g$ when $f_*\omega_{S/B}$ is not semi-stable, by using (2.1) and (2.2). Hence we can assume that $f_*\omega_{S/B}$ is semi-stable. But then, we have a stronger inequality (2.9). \qed

LEMMA 2.7. Let $f : S \rightarrow B$ be a non-hyperelliptic fibration of genus $g \geq 4$. Assume that the Harder-Narashimhan filtration of $f_*\omega_{S/B}$ is $0 \subset \mathcal{E}_1 \subset f_*\omega_{S/B}$ and $\text{rk}(\mathcal{E}_1) = 1$. Then (2.9) holds without equality.

PROOF. Since all the Q_i’s have rank ≥ 3, we have $x_i \leq 2\mu_2 < 2\Delta(f)/g$ by Lemma 1.5. Hence (2.6) implies (2.9). \qed
3. - The case $g = 3$

In this section, we consider non-hyperelliptic fibrations of genus 3 in order to supplement [K2] and give a geometric interpretation of length T in (2.8). Some results here overlap with [H3].

Let $f : S \to B$ be a non-hyperelliptic fibration of genus 3 and let the notation be as in 2.2. The relative canonical image V is a divisor on $P(\mathcal{E})$ linearly equivalent to $4T_\xi - \pi^*A_0$ for some divisor A_0 on B. Put $a = \deg A$ and $a_0 = \deg A_0$. Since \tilde{h} is a birational holomorphic map onto the image and since $M(A) = \tilde{h}^*(T_\xi + \pi^*A)$, we have

$$M(A)^2 = (T_\xi + \pi^*A)^2(4T_\xi - \pi^*A_0) = 4\Delta(f) + 8a - a_0.$$

Hence

$$(3.1) \quad M^2 - 3\Delta(f) = \Delta(f) - a_0.$$

Since $K_{S/B}^2 = M^2 + (\sigma^*K_{S/B} + M)Z$, (3.1) is equivalent to

$$(3.2) \quad K_{S/B}^2 - 3\Delta(f) = \Delta(f) - a_0 + (\sigma^*K_{S/B} + M)Z.$$

In view of (2.8), the right hand side of (3.2) is nothing but length T (since $\mathcal{R} = 0$).

Let C be a general member of $|M(A)|$. Then

$$2g(C) - 2 = M(A)(\tilde{K} + M(A))$$

$$= 8\Delta(f) + 12a - 2a_0 + 8(b - 1) + M(E + Z).$$

On the other hand, the arithmetic genus of $C' = \tilde{h}(C)$ is given by

$$2p_a(C') - 2 = (T_\xi + \pi^*A)(4T_\xi - \pi^*A_0)(2T_\xi + \pi^*(\det \mathcal{E} + \omega_B + A - A_0))$$

$$= 12\Delta(f) + 8(b - 1) + 12a - 6a_0.$$

Hence

$$(3.3) \quad p_a(C') - g(C) = 2\Delta(f) - 2a_0 - M(E + Z)/2 \geq 0.$$

Note further that the conductor of $C \to C'$ is given by

$$(3.4) \quad \tilde{h}^*\omega_{C'} - \omega_C = \tilde{f}^*(\det \mathcal{E} - A_0)|_C - (E + Z)|_C.$$

The following is a refinement of [K2, Theorem 1.2].

Lemma 3.1. Let the notation be as above. For a non-hyperelliptic fibration $f : S \to B$ of genus 3, $K_{S/B}^2 \geq M^2 \geq 3\Delta(f)$ holds. If $M^2 = 3\Delta(f)$, then $K_{S/B}^2 = 3\Delta(f)$.

PROOF. It follows from (3.3) that $\Delta(f) \geq a_0$. Hence we have $M^2 \geq 3\Delta(f)$ by (3.1). Assume that $M^2 = 3\Delta(f)$, that is, $a_0 = \Delta(f)$. Then, by (3.3), we have $M(E + Z) = 0$. Since $0 \leq (\sigma^*K_{S/B})Z = MZ + Z^2 = Z^2$, Hodge’s index theorem shows that $Z = 0$. Hence (3.2) implies that $K_{S/B}^2 = 3\Delta(f)$. □

The above equalities are sometimes useful in determining the singularity of V.

THEOREM 3.2. When $K_{S/B}^2 = 3\Delta(f)$, V has at most rational double points, and it is linearly equivalent to $4T_\mathcal{E} - \pi^*\det \mathcal{E}$. When $K_{S/B}^2 > 3\Delta(f)$, V is non-normal. In particular, if $K_{S/B}^2 = 3\Delta(f) + 1$, V has at most rational double points except for a double conic curve described in [K1, § 9].

PROOF. Assume first that $K_{S/B}^2 = 3\Delta(f)$. Then $a_0 = \Delta(f)$, and $|L(\mathcal{A})|$ has no base locus as we saw in the proof of Lemma 3.1. We have $p_a(C') = g(C)$ by (3.3). It follows that V has at most isolated singular points. We have

$$\chi(\mathcal{O}_V) = \chi(\mathcal{O}_{\mathcal{O}(\mathcal{E})}) - \chi(-V)$$
$$= 1 - b + \chi(T_\mathcal{E} + \pi^*(\det \mathcal{E} + A_0))$$
$$= \Delta(f) + 2b - 2 = \chi(\mathcal{O}_S).$$

Hence V has at most rational singular points. Since V is a hypersurface of a non-singular 3-fold $\mathbb{P}(\mathcal{E})$, it has at most rational double points. In particular, we have $\omega_{S/B} = h^*\omega_{V/B}$. Since $\omega_{V/B}$ is induced from $T_\mathcal{E} + \pi^*(\det \mathcal{E} - A_0)$ and $K_{S/B} = h^*T_\mathcal{E}$, we see that $f^*(\det \mathcal{E} - A_0)$ is linearly equivalent to zero. That is, $A_0 = \det \mathcal{E}$.

It follows from (2.5), (3.1) and (3.3) that $p_a(C') - g(C) \geq M^2 - 3\Delta(f)$. Hence, by Lemma 3.1, we have $p_a(C') - g(C) > 0$ when $K_{S/B}^2 > 3\Delta(f)$. Since C' is obtained by cutting V by a general member of $|T_\mathcal{E} + \pi^*\mathcal{A}|$, it follows that V has more than isolated singular points.

Assume that $K_{S/B}^2 = 3\Delta(f) + 1$. By Lemma 3.1, we must have $M^2 = K_{S/B}^2$. It follows that $\Delta(f) = a_0 + 1$ and that $|L(\mathcal{A})|$ has no base locus. By (3.3) and (3.4), we have $p_a(C') - g(C) = 2$ and $h^*\omega_C - \omega_C = f^*(\det \mathcal{E} - A_0)|_C$. Hence C' has two double points contained in a unique fiber. Since V has no horizontal singular locus, we see that V has a double curve along a conic traced out by the singular points of C'. The rest follows from an argument in [K1, § 9]. □

REMARK 3.3. Horikawa [H2] announced that he classified degenerate fibres in genus 3 pencils. Though a part of it can be found in [H3], the whole body has not appeared yet.
4. - The case \(g = 4 \)

In this section we show the following theorem with several lemmas.

THEOREM 4.1. \(f : S \to B \) be a non-hyperelliptic fibration of genus 4. Then

\[
K_{S/B}^2 \geq \frac{24}{7} \Delta(f).
\]

If a general fibre of \(f \) has two distinct \(g_1^1 \)'s, then

\[
K_{S/B}^2 \geq \frac{7}{2} \Delta(f).
\]

For the proof of Theorem 4.1, we freely use the notation of the previous sections. In particular, we set \(\mathcal{E} = f_* \omega_{S/B} \) and let \(0 \subset E_1 \subset \cdots \subset E_\ell = \mathcal{E} \) be the Harder-Narashimhan filtration. By § 2, (II), there exists a relative hyperquadric \(Q \equiv 2T_\ell - xF \) through the relative canonical image \(V \) and

\[
K_{S/B}^2 \geq 4\Delta(f) - x.
\]

Since \(\text{rk}(Q) = 4 \) if and only if a general fibre of \(f \) has two distinct \(g_1^1 \)'s, the second part of Theorem 4.1 is nothing but the following:

LEMMA 4.2. If \(\text{rk}(Q) = 4 \), then (4.2) holds.

PROOF. In view of (4.3), we only have to check that \(x \leq \Delta(f)/2 \). But this is straightforward applying Lemma 1.6. Let \(\nu_1, \ldots, \nu_4 \) be as in Remark 1.7. Then it follows from Lemma 1.6 that \(x \leq \min\{\nu_2 + \nu_3, \nu_1 + \nu_4\} \). Hence

\[
2x \leq \sum_{j=1}^4 \nu_j = \Delta(f).
\]

LEMMA 4.3. If \(x \leq \mu_1 + \mu_\ell \), then (4.1) holds.

PROOF. By (2.2), we have \(K_{S/B}^2 \geq (d_1 + 6)(\mu_1 - \mu_\ell) + 12\mu_\ell \geq 6(\mu_1 + \mu_\ell) \). Hence (4.1) holds if \(\mu_1 + \mu_\ell \geq (4/7)\Delta(f) \). Assume that \(\mu_1 + \mu_\ell \leq (4/7)\Delta(f) \). Then \(x \leq \mu_1 + \mu_\ell \leq (4/7)\Delta(f) \) and we get (4.1) from (4.3).

Recall that a canonical curve of genus 4 cannot meet the vertex of the quadric through it, if the quadric is of rank 3.

LEMMA 4.4. If \(x > \mu_1 + \mu_\ell \), then \(\tau_{\ell-1} = 3 \) and \(d_{\ell-1} = 6 \).

PROOF. If \(x > \mu_1 + \mu_\ell \) then, by Lemma 1.3, \(Q \) is singular along \(B_{\ell-1} \). Since \(\text{rk}(Q) \geq 3 \) and \(\tau_\ell = 4 \), we must have \(\tau_{\ell-1} = 3 \) by Lemma 1.4.

We have \(d_{\ell-1} = 6 - Z_{\ell-1}D^* \). Since \(\text{rk}(Q) = 3 \) and since \(B_{\ell-1} \) is the (relative) vertex of \(Q \), we see that any general fibre of \(V \to B \) cannot meet \(B_{\ell-1} \). Since \(Z_{\ell-1} - Z_\ell \) corresponds to \(B_{\ell-1} \cap V \) as we remarked in § 2, (I), we have \((Z_{\ell-1} - Z_\ell)D^* = 0 \). It follows that \(d_{\ell-1} = 6 \), since we always have \(Z_\ell D^* = 0 \).

\[\square\]
We complete the proof of Theorem 4.1 with the following:

Lemma 4.5. Even if \(x > \mu_1 + \mu_2 \), (4.1) holds.

Proof. We can assume that \(\ell = 3 \) and \(d_{\ell-1} = 6 \) by Lemma 4.4.

Assume that \(\ell = 2 \). Since \(r_1 = 3 \), we get \(x \leq 2\mu_1 \) by Lemma 1.5. On the other hand, since \(d_1 = 6 \), it follows from (2.1) that \(K_{S/B}^2 \geq 12\mu_2 + 12\mu_2 = 12\mu_1 \). Hence, if \(\mu_1 \geq (2/7)A(f) \), we get (4.1). If \(\mu_1 \leq (2/7)A(f) \), then \(x \leq (4/7)A(f) \) and (4.1) follows from (4.3).

Assume that \(\ell = 3 \). Since \(r_1 \leq 2 \) and \(r_2 = 3 \), we have \(x \leq \mu_1 + \mu_2 \) by Lemma 1.5. Since \(d_2 = 6 \), it follows from (2.1) that

\[
K_{S/B}^2 \geq (d_1 + 6)(\mu_1 - \mu_2) + 12(\mu_2 - \mu_3) + 12\mu_3 \geq 6(\mu_1 + \mu_2).
\]

Hence we can show (4.1) as we did in Lemma 4.3.

Assume that \(\ell = 4 \). By Lemma 1.5, we have \(x \leq \min\{2\mu_2, \mu_1 + \mu_3\} \). Since \(d_3 = 6 \), it follows from (2.1) that

\[
K_{S/B}^2 \geq 3(\mu_1 - \mu_2) + 9(\mu_2 - \mu_3) + 12(\mu_3 - \mu_4) + 12\mu_4 = 3(\mu_1 + 2\mu_2 + \mu_3).
\]

Hence \(K_{S/B}^2 \geq 6 \min\{2\mu_2, \mu_1 + \mu_3\} \) and we can show (4.1) as we did in Lemma 4.3.

\[\square\]

5. - The case \(g = 5 \)

In this section we show the following theorem with several lemmas.

Theorem 5.1. Let \(f : S \to B \) be a non-hyperelliptic fibration of genus 5. When a general fibre of \(f \) is non-trigonal we have:

\[
(5.1) \quad K_{S/B}^2 \geq M^2 \geq 4A(f).
\]

When a general fibre is trigonal we have:

\[
(5.2) \quad K_{S/B}^2 \geq \frac{40}{11}A(f).
\]

By (II), there are three relative hyperquadrics \(Q_i \equiv 2T_\ell - x_iF, \ 1 \leq i \leq 3 \), through \(V \) satisfying \(x_1 \geq x_2 \geq x_3 \) and

\[
(5.3) \quad K_{S/B}^2 \geq 5A(f) - x, \quad x = \sum_{i=1}^3 x_i.
\]

Lemma 5.2. Let \(f : S \to B \) be a non-hyperelliptic, non-trigonal fibration of genus 5. Then \(K_{S/B}^2 \geq M^2 \geq 4A(f) \). If \(M^2 = 4A(f) \) then \(K_{S/B}^2 = 4A(f) \).
PROOF. Since a general fibre of f is non-trigonal, the relative canonical image V is an irreducible component of $\cap_{i=1}^3 Q_i$. Hence, comparing degrees, we get $M(\mathcal{A})^2 \leq (T_\varepsilon + \pi^* \mathcal{A})^3 \Pi (2T_\varepsilon - x_i F)$, that is, $M^2 \leq 8\Delta(f) - 4x$. Eliminating x from (2.5) using this, we get

$$M^2 \geq 4\Delta(f) + \frac{2}{3}M(E + Z)$$

from which the assertion follows immediately. \hfill \Box

In the rest of the section, we assume that $f : S \to B$ is a trigonal fibration of genus 5. Recall that, for a suitable choice of homogeneous coordinates (X_0, \ldots, X_4) on \mathbb{P}^4, any quadric through a trigonal canonical curve of genus 5 can be written as $c_1(X_1^2 - X_0X_2) + c_2(X_0X_3 + X_1X_3) + c_3(X_2X_3 - X_1X_4)$. Hence there is only one quadric of rank 3, and the vertices of any two independent members cannot meet. Without losing generality, we can assume that $\text{rk}(Q_1) \geq 3$, $\text{rk}(Q_2) \geq \text{rk}(Q_3) \geq 4$.

Lemma 5.3. If $r_i = 2$ then $x_3 \leq 2\mu_{i+1}$.

Proof. Assume contrarily that $x_3 > 2\mu_{i+1}$. Then all the Q_j’s vanish identically on B_i, which is a \mathbb{P}^2-bundle on B. This contradicts the fact that $\cap Q_j$ induces a Hirzebruch surface on a general fibre of $\mathbb{P}(\mathcal{E}) \to B$. \hfill \Box

Lemma 5.4. Assume that there are rational numbers y_1 and y_2 satisfying $x \leq y_1$, $K_{S/B}^2 \geq y_2$ and $8y_1 \leq 3y_2$. Then (5.2) holds. In particular, (5.2) holds when $x \leq 3(\mu_1 + \mu_\ell)$.

Proof. It follows from (5.3) that $K_{S/B}^2 \geq 5\Delta(f) - y_1$. Hence (5.2) holds when $y_1 \leq (15/11)\Delta(f)$. Assume that $y_1 \geq (15/11)\Delta(f)$. Since $3y_2 \geq 8y_1$, we have $K_{S/B}^2 \geq y_2 \geq (8/3)y_1$. Hence (5.2) holds. In particular, since we have $K_{S/B}^2 \geq 8(\mu_1 + \mu_\ell)$ by (2.2), we get (5.2) if $x \leq 3(\mu_1 + \mu_\ell)$. \hfill \Box

We can assume that $x > 3(\mu_1 + \mu_\ell)$. Then $x_1 > \mu_1 + \mu_\ell$.

Lemma 5.5. Assume that $x_1 > \mu_1 + \mu_\ell$. Then $x_i \leq \mu_1 + \mu_\ell$ for $i = 2, 3$ and $r_{\ell-1} \geq 3$. If $r_{\ell-1} = 3$ then $d_{\ell-1} = 6$. If $r_{\ell-1} = 4$ then $d_{\ell-1} = 7$.

Proof. Since $x_1 > \mu_1 + \mu_\ell$, Q_1 is singular along $B_{\ell-1}$ by Lemma 1.3. Since $\text{rk}(Q_1) \geq 3$, we have $r_{\ell-1} \geq 3$. Furthermore, Q_2 and Q_3 cannot be singular along $B_{\ell-1}$ as we remarked just before Lemma 5.3. Hence $x_2, x_3 \leq \mu_1 + \mu_\ell$ by Lemma 1.3 again. If $r_{\ell-1} = 3$, then $\text{rk}(Q_1) = 3$. Since a trigonal curve of genus 5 meets the vertex of rank 3 quadric through it at two points, we get $d_{\ell-1} = 8 - 2 = 6$. If $r_{\ell-1} = 4$ then $d_{\ell-1} \geq 7$ by Clifford’s theorem. \hfill \Box

Lemma 5.6. Assume that $\ell = 2$ and $x_1 > \mu_1 + \mu_2$. Then $K_{S/B}^2 \geq (15/4)\Delta(f)$.

PROOF. Since we have $x_1 \leq 2\mu_1$ by lemma 1.5 and $x_i \leq \mu_1 + \mu_2$ for $i = 2, 3$ by Lemma 5.5, we get $x \leq 4\mu_1 + 2\mu_2$.

Assume that $r_1 = 3$. We have $K_{S/B}^2 \geq 5\Delta(f) - 2(2\mu_1 + \mu_2)$ by (5.3). On the other hand, it follows from (2.2) that $K_{S/B}^2 \geq 14\mu_1 + 2\mu_2$, since $d_1 = 6$ by Lemma 5.5. Since $\Delta(f) = 3\mu_1 + 2\mu_2$, these inequalities imply $K_{S/B}^2 \geq (15/4)\Delta(f)$.

Assume that $r_1 = 4$. Since $\Delta(f) = 4\mu_1 + \mu_2$, we have $x \leq \Delta(f) + \mu_2 < \Delta(f) + \Delta(f)/5$. Hence we get $K_{S/B}^2 > (19/5)\Delta(f)$ from (5.3).

We assume that $\ell \geq 3$ in the sequel.

LEMMA 5.7. Assume that $\ell \geq 3$, $x > 3(\mu_1 + \mu_\ell)$ and $r_{\ell-1} = 3$. Then (5.2) holds.

PROOF. We have $\ell = 3$ or 4. Note that $\text{rk}(Q_1) = 3$ and $\text{rk}(Q_i) \geq 4$ for $i = 2, 3$.

We have $x_1 \leq \mu_1 + \mu_{\ell-1}$ by Lemma 1.5, $x_2 \leq \mu_1 + \mu_\ell$ by Lemma 5.5 and $x_3 \leq 2\mu_{\ell-1}$ by Lemmas 1.6 and 5.3. Hence $x \leq 2\mu_1 + 3\mu_{\ell-1} + \mu_\ell$. On the other hand, applying [X, Lemma 2] for the sequence $\{\mu_1, \mu_{\ell-1}, \mu_\ell\}$, we get

$$K_{S/B}^2 \geq 6(\mu_1 - \mu_{\ell-1}) + 14(\mu_{\ell-1} - \mu_\ell) + 16\mu_\ell = 6\mu_1 + 8\mu_{\ell-1} + 2\mu_\ell,$$

since $d_1 \geq 0$, $d_{\ell-1} = 6$ and $d_\ell = 8$. We have $\mu_1 > \mu_\ell$. It follows that

$$8(2\mu_1 + 3\mu_{\ell-1} + \mu_\ell) < 3(6\mu_1 + 8\mu_{\ell-1} + 2\mu_\ell).$$

Applying Lemma 5.4, we see that (5.2) holds without equality.

LEMMA 5.8. Assume that $\ell \geq 3$, $x > 3(\mu_1 + \mu_\ell)$ and $r_{\ell-1} = 4$. If $r_{\ell-2} \leq 2$, then (5.2) holds.

PROOF. We have $\ell = 3$ or 4. Since $r_{\ell-2} \leq 2$, it follows from Lemma 1.4 that $x_1 \leq \mu_1 + \mu_{\ell-1}$. We have $x_2 \leq \mu_1 + \mu_\ell$ by Lemma 5.5. Furthermore, we can assume that $x_3 \leq 2\mu_{\ell-1}$ by Lemmas 1.6 and 5.3. Hence $x \leq 2\mu_1 + 3\mu_{\ell-1} + \mu_\ell$. On the other hand, applying [X, Lemma 2] for the sequence $\{\mu_1, \mu_{\ell-1}, \mu_\ell\}$, we get

$$K_{S/B}^2 \geq 7(\mu_1 - \mu_{\ell-1}) + 15(\mu_{\ell-1} - \mu_\ell) + 16\mu_\ell = 7\mu_1 + 8\mu_{\ell-1} + \mu_\ell,$$

since $d_1 \geq 0$, $d_{\ell-1} \geq 7$ and $d_\ell = 8$. It follows from $\mu_1 > \mu_\ell$ that

$$8(2\mu_1 + 3\mu_{\ell-1} + \mu_\ell) < 3(7\mu_1 + 8\mu_{\ell-1} + \mu_\ell).$$

Hence, as in the previous lemma, we see that (5.2) holds without equality.

LEMMA 5.9. Assume that $\ell \geq 3$, $x > 3(\mu_1 + \mu_\ell)$ and $r_{\ell-1} = 4$. If $r_{\ell-2} = 3$ and $x_1 > \mu_1 + \mu_{\ell-1}$, then (5.2) holds.
PROOF. Since $x_1 > \mu_1 + \mu_{\ell-1}$, $B_{\ell-2}$ is the relative vertex of Q_1 and it follows that $d_{\ell-2} = 6$.

Assume that $\ell = 3$. Since $d_1 = 6$, we have $K_{S/B}^2 \geq 14\mu_1 + 2\mu_3$ by (2.2). By Lemmas 1.5 and 5.5, we have $x_1 \leq 2\mu_1$ and $x_2, x_3 \leq \mu_1 + \mu_3$. Hence $x \leq 4\mu_1 + 2\mu_3$. We can show that $K_{S/B}^2 > (15/4)\Delta(f)$ using (5.3).

Assume that $\ell = 4$ or 5. We have $x_1 \leq \mu_1 + \mu_{\ell-2}$ and $x_2 \leq \mu_1 + \mu_4$ by Lemmas 1.5 and 5.5, respectively. Furthermore, we have $x_3 \leq 2\mu_{\ell-2}$ by Lemmas 1.6 and 5.3. Hence $x \leq 2\mu_1 + 3\mu_{\ell-2} + \mu_4$. On the other hand, applying [X, Lemma 2] for the sequence $\{\mu_1, \mu_{\ell-2}, \mu_4\}$, we get

$$K_{S/B}^2 \geq 6(\mu_1 - \mu_{\ell-2}) + 14(\mu_1 - \mu_4) + 16\mu_4 = 6\mu_1 + 8\mu_{\ell-2} + 2\mu_4,$$

since $d_1 \geq 0, d_{\ell-2} = 6$ and $d_{\ell} = 8$. Hence we see that (5.2) holds without equality as in the proof of Lemma 5.7.

We finish the proof of Theorem 5.1 with the following:

LEMMA 5.10. Assume that $\ell \geq 3$, $x > 3(\mu_1 + \mu_\ell)$ and $\tau_{\ell-1} = 4$. If $\tau_{\ell-2} = 3$ and $x_1 \leq \mu_1 + \mu_{\ell-1}$, then (5.2) holds.

PROOF. Assume that $\ell = 3$. Since $x \leq (\mu_1 + \mu_2) + 2(\mu_1 + \mu_3) = 3\mu_1 + \mu_2 + 2\mu_3$ and $\Delta(f) = 3\mu_1 + \mu_2 + \mu_3$, it follows from (5.3) that $K_{S/B}^2 > (19/5)\Delta(f)$, which is stronger than (5.2).

Assume that $\ell = 4$ and $\tau_1 = 1$. Then $x_1 \leq 2\mu_2$ and $x_2, x_3 \leq \mu_1 + \mu_4$ by Lemmas 1.5 and 5.5. Since $x_1 > \mu_1 + \mu_4$, we have in particular $\mu_1 + \mu_4 < 2\mu_2$. We have $x \leq 2(\mu_1 + \mu_2 + \mu_4)$. Applying [X, Lemma 2] for the sequence $\{\mu_1, \mu_2, \mu_4\}$ we get

$$K_{S/B}^2 \geq 5(\mu_1 - \mu_2) + 13(\mu_2 - \mu_4) + 16\mu_4 = 5\mu_1 + 8\mu_2 + 3\mu_4,$$

since $d_1 \geq 0, d_2 \geq 5$ and $d_4 = 8$. Since $6(\mu_2 - \mu_4) + (2\mu_2 - \mu_1 - \mu_4) > 0$, we have $3(5\mu_1 + 8\mu_2 + 3\mu_4) > 16(\mu_1 + \mu_2 + \mu_4)$ and therefore (5.2) holds without equality.

Assume that $\ell = 4$ and $\tau_1 = 2$. We get $x_1 \leq \mu_1 + \mu_3$ and $x_2, x_3 \leq \mu_1 + \mu_4$ by Lemma 5.5. Hence $x \leq 3\mu_1 + \mu_3 + 2\mu_4$. Applying [X, Lemma 2] for the sequence $\{\mu_1, \mu_3, \mu_4\}$ we get

$$K_{S/B}^2 \geq 10(\mu_1 - \mu_3) + 15(\mu_3 - \mu_4) + 16\mu_4 > 8\mu_1 + 7\mu_3 + \mu_4,$$

since $d_1 \geq 3$, $d_3 \geq 7$ and $d_4 = 8$. Since $\mu_3 > \mu_4$, we have $3(8\mu_1 + 7\mu_3 + \mu_4) > 8(3\mu_1 + \mu_3 + 2\mu_4)$ and, therefore, (5.2) holds without equality.

Assume that $\ell = 5$. We have $x_1 \leq \min\{2\mu_2, \mu_1 + \mu_4\}$, $x_2 \leq \min\{\mu_2 + \mu_3, \mu_1 + \mu_3\}$ and $x_3 \leq \min\{2\mu_3, \mu_1 + \mu_3\}$ by Lemmas 1.5, 1.6, 5.3 and 5.5. If $\mu_2 + \mu_3 \leq \mu_1 + \mu_5$, then we get $x \leq 2\mu_2 + (\mu_1 + \mu_5) + 2\mu_3 \leq 3(\mu_1 + \mu_5)$ which contradicts the assumption of the lemma. Hence $\mu_2 + \mu_3 > \mu_1 + \mu_5$. Then we have $x \leq (\mu_1 + \mu_4) + (\mu_1 + \mu_5) + 2\mu_2 = 2\mu_1 + 2\mu_3 + \mu_4 + \mu_5$. Note that we have $11x \leq 15\Delta(f) = 15\sum_{i=1}^{5} \mu_i$ when $7(\mu_1 + \mu_3) \leq 15\mu_2 + 4(\mu_4 + \mu_5)$. In particular, (5.2)
will follow from (5.3) if $2\mu_2 \geq \mu_1 + \mu_3$. So, we may assume that $2\mu_2 < \mu_1 + \mu_3$.

Then, since $\mu_3 - \mu_5 > \mu_1 \mu_2$ and $\mu_1 - \mu_2 > \mu_2 - \mu_3$, we get

$$3(\mu_3 - \mu_5) > (\mu_1 - \mu_2) + (\mu_2 - \mu_3) + \mu_3 - \mu_5 = \mu_1 - \mu_5 > \mu_1 - \mu_4.$$

We apply [X, Lemma 2] for the sequence $\{\mu_1, \mu_3, \mu_4, \mu_5\}$ to get

$$K^2_{S/B} \geq 5(\mu_1 - \mu_3) + 12(\mu_3 - \mu_4) + 15(\mu_4 - \mu_5) + 16\mu_5 = 5\mu_1 + 7\mu_3 + 3\mu_4 + \mu_5,$$

since $d \geq 0$, $d_3 \geq 5$, $d_4 \geq 7$ and $d_5 = 8$. Note that we have

$$3(5\mu_1 + 7\mu_3 + 3\mu_4 + \mu_5) = 8(\mu_1 + \mu_4) + 8(\mu_1 + \mu_5) + 16\mu_3 + 5(\mu_3 - \mu_5) - (\mu_1 - \mu_4) > 8x + 2(\mu_3 - \mu_5).$$

Hence (5.2) can be shown using Lemma 5.4. \(\Box\)

Inequality (5.1) gives us a hope that the following holds.

CONJECTURE. $K^2_{S/B} \geq 4\Delta(f)$ holds for a Petri general fibration.

6. - Application

Let S be a canonical surface and X its canonical image. The intersection of all hyperquadrics through X is called the quadric hull of X and denoted by $Q(X)$. The dimension of the irreducible component of $Q(X)$ containing X is called the *quadric dimension* of S. A conjecture of Miles Reid [R1] states that every canonical surface with $K^2 < 4pg - 12$ has quadric dimension 3.

THEOREM 6.1. Let S be an irregular canonical surface and assume that the image of the Albanese map of S is a curve. Then $K^2 \geq 3\chi(O_S) + 10(q - 1)$. When $K^2 \leq (10/3)\chi(O_S) + (122/7)(q - 1)$, the Albanese pencil is a non-hyperelliptic fibration of genus 3. When $K^2 \leq \min \{ (10/3)\chi(O_S) + (122/7)(q - 1), 4p_g - 12 + q \}$, the quadric dimension of S is 3 and the irreducible component of $Q(X)$ containing the canonical image X is birationally a threefold scroll over a curve.

PROOF. The first inequality was remarked in [K2]. By the assumption, the Albanese map induces a non-hyperelliptic fibration $f : S \to B$, where B is the Albanese image and hence $g(B) = q$. If f has genus g, then it follows from Proposition 2.6 that $K^2_{S/B} > (4 - 4/g)\Delta(f)$, that is, $K^2 > (4 - 4/g)\chi(O_S) + (g+1)(q-1)$. We have $g \leq 5$ when $K^2 \leq (10/3)\chi(O_S) + (122/7)(q-1)$. The cases $g = 4$ and $g = 5$ can be excluded by Theorems 4.1 and 5.1, respectively. Hence we have $g = 3$. As for the last assertion, we remark that the restriction map
LEMMA 6.2. Let S be a minimal surface of general type with a non-linear pencil. If $K^2 < 4\chi(\mathcal{O}_S)$ then the base of the pencil is a curve of genus $g(S)$. If S is a canonical surface with a non-linear pencil, then

$$K^2 \geq \min\{4\chi(\mathcal{O}_S), 3\chi(\mathcal{O}_S) + 10(q - 1)\}$$

Proof. Let $f : S \to B$ be the fibration associated with the non-linear pencil. If $q > b = g(B)$, then it follows from [X, Theorem 1] that $K_{S/B}^2 \geq 4\Delta(f)$ which implies that $K^2 \geq 4\chi(\mathcal{O}_S)$ since $b > 0$. Hence we have $b = q$ when $K^2 < 4\chi(\mathcal{O}_S)$.

Assume that S is a canonical surface. Then f is non-hyperelliptic. Hence we have $K_{S/B}^2 \geq 3\Delta(f)$ by Corollary 2.6 and Lemma 3.1. When $K^2 < 4\chi(\mathcal{O}_S)$, this implies that $K^2 \geq 3\chi(\mathcal{O}_S) + 10(q - 1)$, since $b = q$ and $g \geq 3$.

THEOREM 6.3. Let S be a canonical surface with a non-linear pencil. If $K^2 \leq \min\{(10/3)\chi(\mathcal{O}_S), 4p_g - 12 + q\}$ then S has quadric dimension 3.

Proof. Let $f : S \to B$ be the fibration associated with the non-linear pencil. By Lemma 6.2, we have $g(B) = q$. Since $K^2 \leq (10/3)\chi(\mathcal{O}_S)$, one can show that f is a non-hyperelliptic fibration of genus 3 as in Theorem 6.1. The rest follows from [K4, Theorem 8.3].

COROLLARY 6.4. Let S be a canonical surface with $q = 1$ and $K^2 \leq (10/3)\chi(\mathcal{O}_S)$. Then the Albanese map gives a non-hyperelliptic fibration of genus 3. If $K^2 \leq \min\{(10/3)\chi, 4\chi - 11\}$ then S has quadric dimension 3.

This and Theorem 3.2 give a picture of canonical surfaces with $q = 1$ and $K^2 = 3\chi$ or $3\chi + 1$, which is quite similar to the regular case (see [AK] and [K1]): they have a pencil of non-hyperelliptic curves of genus 3. Another “similar” result is the following theorem which will be shown in the next section (see [K3] for the regular case).

Theorem 6.5. The moduli space of even canonical surfaces with $K^2 = 3\chi(\mathcal{O}_S) + 1$ and $q = 1$ is non-reduced.

Remark 6.6. Ashikaga [A] constructed a series of canonical surfaces with a non-hyperelliptic fibration of genus 3. See also [K2].

7. - Proof of Theorem 6.5

In this section we show Theorem 6.5. Though the proof is essentially the same as in [K3], there is one point which is unclear: a vector bundle on an elliptic curve is not necessarily decomposable.
Let S be a canonical surface with $K^2 = 3\chi(\mathcal{O}_S) + 1$, $q(S) = 1$ and let $f : S \to B = \text{Alb}(S)$ be the Albanese map. By Corollary 6.4, any general fibre D of f is a non-hyperelliptic curve of genus 3. Assume further that S is an even surface, that is, there is a line bundle L with $K = 2L$. Since L^2 is even and $K^2 = 4L^2$, there exists a non-negative integer n satisfying

\[(7.1)\quad \chi = 8n + 5, \quad L^2 = 6n + 4.\]

By the Riemann-Roch theorem, we have

\[(7.2)\quad 2h^0(L) - h^1(L) = -L^2/2 + \chi = 5n + 3.\]

Since D is of genus 3 we have $LD = 2$. Since D is non-hyperelliptic, we have $h^0(L|_D) = 1$ by Clifford’s theorem. It follows that the rational map Φ_L associated with $|L|$ factors through $f : S \to B$. Hence there is a divisor \mathcal{L} on B such that $L = [f^*\mathcal{L} + Z_L]$, where Z_L is the fixed part of $|L|$. We have $h^0(\mathcal{L}) \ge h^0(L) \ge (5n + 3)/2$ by (7.2). Hence $\deg \mathcal{L} \ge (5n + 3)/2$. Since $LD = 2$, we have $L^2 = 2\deg \mathcal{L} + LZ_L$, that is,

\[(7.3)\quad LZ_L = 6n + 4 - 2\deg \mathcal{L}.\]

Put $\mathcal{E} = f_*\omega_S/B = f_*\omega_S$ and let $\mathcal{E}_1 \subset \cdots \subset \mathcal{E}_n = \mathcal{E}$ be the Harder-Narashimhan filtration of \mathcal{E} as usual. Let $\pi : \mathbb{P}(\mathcal{E}) \to B$ be the associated projective bundle. As we have seen in Section 3, we have a holomorphic map $h : S \to \mathbb{P}(\mathcal{E})$ satisfying $K = h^*T_\mathcal{E}$, and $V = h(S)$ is linearly equivalent to $4T_\mathcal{E} - \pi^*\mathcal{A}_0$, $\deg \mathcal{A}_0 = \chi - 1$.

Lemma 7.1. The vector bundle $f_*\omega_S$ splits as a direct sum of line bundles. More precisely, there are three line bundles $\mathcal{L}_i(0 \le i \le 2)$ on B satisfying $f_*\omega_S = \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \mathcal{L}_2$ and $\deg \mathcal{L}_0 \le n + 1$, $\deg \mathcal{L}_1 \ge 2n + 1$, $\deg \mathcal{L}_2 \ge 5n + 3$.

Proof. Since $K = 2L = [2f^*\mathcal{L} + 2Z_L]$, we see that $|K - 2f^*\mathcal{L}|$ contains an effective divisor. Since $H^0(K) \simeq H^0(T_\mathcal{E})$, it follows that $H^0(T_\mathcal{E} - 2\pi^*\mathcal{L}) \neq 0$. Then, by Lemma 1.1, we get

\[\mu_1 \ge 2\deg \mathcal{L} \ge \begin{cases} 5n + 3 & \text{if } n \text{ is odd}, \\ 5n + 4 & \text{if } n \text{ is even}. \end{cases}\]

Since $\deg \mathcal{E} = \chi = 8n + 5$ and since $\deg \mathcal{E} \ge \deg \mathcal{E}_1 = r_1\mu_1$, we must have $r_1 = 1$. Recall that V is numerically equivalent to

\[4T_\mathcal{E} - (\chi - 1)F = 4(T_\mathcal{E} - (2n + 1)F).\]

Since V cannot vanish identically on $\mathbb{P}(\mathcal{E}/\mathcal{E}_1)$, it follows from Lemma 1.1 that $\mu_1(\mathcal{E}/\mathcal{E}_1) \ge 2n + 1$. We have

\[\deg(\mathcal{E}/\mathcal{E}_1) = 8n + 5 - \deg \mathcal{E}_1 = 8n + 5 - \mu_1.\]
Hence \(\deg(\mathcal{E}/\mathcal{E}_1) \leq 3n + 2 \) if \(n \) is odd, and \(\deg \mathcal{E}/\mathcal{E}_1 \leq 3n + 1 \) if \(n \) is even. Since \(\mu(\mathcal{E}/\mathcal{E}_1) < \mu(\mathcal{E}/\mathcal{E}_1) \), we see in particular that \(\mathcal{E}/\mathcal{E}_1 \) is not semi-stable. Let \(0 \subset \mathcal{F}_1 \subset \mathcal{E}/\mathcal{E}_1 \) be the Harder-Narasimhan filtration of \(\mathcal{E}/\mathcal{E}_1 \), and put \(\mathcal{F}_2 = (\mathcal{E}/\mathcal{E}_1)/\mathcal{F}_1 \). Then \(\deg \mathcal{F}_1 \geq 2n + 1 \) and we have \(\deg \mathcal{F}_2 \leq n + 1 \) if \(n \) is odd, and \(\deg \mathcal{F}_2 \leq n \) if \(n \) is even. Hence \(\deg \mathcal{F}_1 - \deg \mathcal{F}_2 > 0 \) and \(H^1(\mathcal{F}_1 - \mathcal{F}_2) = 0 \). This implies that \(\mathcal{E}/\mathcal{E}_1 = \mathcal{F}_1 \oplus \mathcal{F}_2 \).

Since \(\mathcal{E}_1 \) and \(\mathcal{F}_1 \) are of positive degree, we have \(h^1(\mathcal{E}) = h^1(\mathcal{E}/\mathcal{E}_1) = h^1(\mathcal{F}_2) \) from the cohomology long exact sequence for

\[
0 \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E} \rightarrow \mathcal{E}/\mathcal{E}_1 \rightarrow 0.
\]

On the other hand, since \(\mathcal{E} = f_*\omega_S \), we have \(h^1(\mathcal{E}) = 0 \). Hence \(h^1(\mathcal{F}_2) = 0 \) and we have \(\deg \mathcal{F}_2 \geq 0 \). Then

\[
\deg \mathcal{E}_1 - \deg \mathcal{F}_1 \geq \deg \mathcal{E}_1 - \deg \mathcal{E}/\mathcal{E}_1 \geq 2n + 1.
\]

It follows that \(H^1((\mathcal{E}/\mathcal{E}_1)^* \otimes \mathcal{E}_1) = 0 \). This implies that \(\mathcal{E} = \mathcal{E}_1 \otimes (\mathcal{E}/\mathcal{E}_1) \). Now, put \(L_0 = \mathcal{F}_2, L_1 = \mathcal{F}_1 \) and \(L_2 = \mathcal{E}_1 \).

Lemma 7.2. Let the notation be as in Lemma 7.1. Then \(n \) is odd, \(\deg L_0 = n + 1 \), \(\deg L_1 = 2n + 1 \) and \(\deg L_2 = 5n + 3 \). Furthermore, \(V \) is linearly equivalent to \(4t\mathcal{E} - 4\pi^*L_1 \).

Proof. We can find sections \(X_i \) of \([T_t - \pi^*L_1] \) such that \((X_0, X_1, X_2) \) forms a system of homogeneous coordinates on fibres of \(\pi \). Assume that \(V \) is linearly equivalent to \(4t\mathcal{E} - 4\pi^*A_0 \) as in Section 3, and recall that \(\deg A_0 = \chi - 1 = 8n + 4 \). Then the equation of \(V \) can be written as

\[
\sum \phi_{ij}X_0^iX_1^jX_2^j = 0,
\]

where \(\phi_{ij} \) is a section of \(L_{ij} = (4 - i - j)L_0 + iL_1 + jL_2 - A_0 \). If \(\deg L_{01} < 0 \), then \(V \) has a multiple curve along \(X_1 = X_2 = 0 \). Hence \(\deg L_{01} \geq 0 \), that is, \(3\deg L_0 + \deg L_2 \geq 8n + 4 \). Since \(\deg L_0 + \deg L_1 + \deg L_2 = 8n + 5 \), we get \(2\deg L_0 \geq \deg L_1 - 1 \). Since \(\deg L_0 \leq n + 1 \) and \(\deg L_1 \geq 2n + 1 \), we have either

(i) \(\deg L_0 = n, \deg L_1 = 2n + 1, \deg L_2 = 5n + 4 \), or
(ii) \(\deg L_0 = n + 1, \deg L_1 = 2n + 1, \deg L_2 = 5n + 3 \).

We show that (i) is impossible. Assume by contradiction that (i) is the case. Note that \(V \) contains an elliptic curve \(B' \) defined by \(X_1 = X_2 = 0 \). We have \(\deg L_{01} = 0 \). If \(\phi_{01} = 0 \), then \(V \) would have a multiple curve along \(B' \), which is impossible. Hence \(L_{01} \) must be trivial and \(\phi_{01} \) is a non-zero constant. But then \(V \) is non-singular in a neighbourhood of \(B' \). This is impossible, since \(V \) is singular along a fibre which meets \(B' \).
Hence we have (ii). In particular, it follows from the proof of Lemma 7.1 that \(n \) is odd. We know that \(V \) is defined by an equation of the form

\[
\phi_{40}X_1^4 + X_2(\phi_{01}X_0^3 + \cdots + \phi_{04}X_2^3) = 0.
\]

Since \(\deg L_{40} = 0 \) and \(\phi_{40} \) cannot be zero, \(L_{40} \) is a trivial bundle, which means that \(A_0 \) is linearly equivalent to \(4L_1 \). \(\square \)

Put \(n = 2k - 1 \).

Lemma 7.3. \(L_2 = 2L, LZ_L = 2k, DZ_L = 2 \) and \(Z_L^2 = -8k + 2 \).

Proof. In the proof of Lemma 7.1, we have

\[
\deg L_2 = \mu_1 \geq 2 \deg L = 5n + 3.
\]

Since \(\deg L_2 = 5n + 3 = 10k - 2 \), we get \(\deg L = 5k - 1 \). Recall that \(H^0(TL - 2\pi^* L) \neq 0 \). Since any element of \(H^0(TL - 2\pi^* L) \) can be written as \(\psi X_2 \) with \(\psi \in H^0(L_2 - 2L) \), and since \(L_2 - 2L \) is of degree 0, we see that \(L_2 = 2L \).

Since \(\deg L = 5k - 1 \), it follows from (7.3) that \(LZ_L = n + 1 = 2k \). Since \(LD = 2 \), we have \(DZ_L = 2 \). We have \(2k = LZ_L = (\deg L)DZ_L + Z_L^2 \). Hence \(Z_L^2 = -8k + 2 \). \(\square \)

Note that we have \(K = h^*(X_2) + \pi^* L_2 = h^*(X_2) + 2f^* L \). Hence \((X_2) \) corresponds \(2Z_L \). We can show the following as in [K3, Lemma 2.3] using (7.4).

Lemma 7.4. \(Z_L = 2G_0 + G_1 \), where \(G_0 \) is a non-singular elliptic curve and \(G_1 \) is a \((-2)\)-curve.

Since every even canonical surface with \(K^2 = 3\chi + 1 \) and \(q = 1 \) has a \((-2)\)-curve \(G_1 \), we have Theorem 6.5 by a result of Burns-Wahl [BW] (see [K3, Proof of Theorem 1.5]).

Example. Let \(\mathcal{M} \) be a line bundle of degree 2 on an elliptic curve \(B \) which induces the double covering \(B \to \mathbb{P}^1 \). Choose a point \(P \in B \) with \(2P \in |\mathcal{M}| \). Put \(\mathcal{L}_0 = k\mathcal{M}, \mathcal{L}_1 = (2k - 1)\mathcal{M} + [P], \mathcal{L}_2 = (5k - 1)\mathcal{M} \) and \(\mathcal{E} = \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \mathcal{L}_2 \). Let \(\xi \in H^0([P]) \) define \(P \), and choose sufficiently general members \(\Phi_0 \in H^0(2T\xi - 2\pi^* \mathcal{L}_1) \) and \(\Phi_1 \in H^0(3T\xi \pi^*(4\mathcal{L}_1 - \mathcal{L}_2 + 2[P])) \). We consider a surface defined in the total space of \([2T\xi - \pi^*(2\mathcal{L}_1 + [P])] \to \mathbb{P}(\mathcal{E}) \) by

\[
\xi w - \Phi_0 = w^2 - X_2 \Phi_1 = 0.
\]

where \(w \) is a fibre coordinate. It is easy to see that it has only one rational double point of type \(A_1 \) and the minimal resolution is an even canonical surface with \(K^2 = 3\chi + 1, q = 1 \) and \(\chi = 16k - 3 \) (see [K3]).
REFERENCES

Department of Mathematics
College of General Education
Osaka University
Machikaneyama
Toyonaka 560
Japan