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A Locally Contractive Metric for
Systems of Conservation Laws

ALBERTO BRESSAN

1. - Introduction

This paper is concerned with the problem of continuous dependence for
solutions of the m x m system of conservation laws

We assume that the system is strictly hyperbolic and that each characteristic
field is either genuinely nonlinear or linearly degenerate. If the total variation
of u at the initial time t = 0 is suitably small, the global existence of weak
solutions of (1.1) was established in a fundamental paper of Glimm [7]. Since
then, the question of uniqueness has been investigated by several authors [6, 9,
11, 12, 13, 14], but no general result is yet known. A paper by Temple [17]
shows that monotone semigroup techniques cannot be applied to the general
problem ( 1.1 ).

We remark that a natural way to establish the stability of a solution 
of a nonlinear evolution problem

relies on the study of the linearized variational system

If (1.3) is globally stable, then one can often prove that u is a stable solution of
(1.2). This program, in connection with discontinuous solutions of the system
( 1.1 ), was initiated in [3]. For a class of piecewise Lipschitz continuous functions
u : R ~ one can define a space Tu of "generalized tangent vectors" and
derive a linear system of equations describing how first order variations evolve
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in time, along solutions of ( 1.1 ). If u has N points of jump, a tangent vector to
u has the form (v, ~) E Tu -*- Ll x where v describes changes in the values
of u while ~ = ( ~l , ... , ~N ) accounts for shifts in the locations of the shocks.
The present paper contains a detailed study of these linearized equations for
v, ~. Our main result is the existence of a family of defined on
suitable tangent spaces Tu for u piecewise Lipschitz continuous with small total
variation, having the following properties.

i) If u = u(t, x) is a piecewise Lipschitz continuous solution of ( 1.1 ) and
(v(t), ~(t)) is a corresponding tangent vector to u(t, .), then the norm

11(v(t), is a nonincreasing function of time, even in the presence
of interacting shocks.

ii) The Riemann-type metric obtained from the norms 11 - Ilu is uniformly
equivalent to the L1 distance.

A precise definition of these weighted norms is given in (4.2). In Section
4 we study the behavior of tangent vectors to solutions whose discontinuities
remain isolated. The case of interacting shocks is then analyzed in section 5.

As an application, given any two piecewise Lipschitz continuous functions
u, u’ with small total variation, consider the family 1:u,u’ of all continuous paths
1 : [0, 1] ] -~ L 1 with ,(0) = u, = u’ such that, for all 0  9  1, the
differential Di(0) is a well defined element in The length of a path
I E 1:u,u’ can then be measured as

while the Riemannian distance between u and u’ is given by

Because of (i), the length of every regular path does not increase in time
along the flow of (1.1). This suggests that the flow generated by (1.1) should
be globally contractive w.r.t. the distance (1.5); hence by (ii) it should also
be Lipschitz continuous w.r.t. the usual L1 distance. A rigorous proof of this
conjecture was given in [1, 2] for systems with coinciding shock and rarefaction
curves, and in [5] for all 2 x 2 systems. We believe that the present analysis
can provide a guideline for a proof in the general n x n case.

Other examples of nonlinear evolution equations generating a flow which
is contractive w.r.t. a suitable Riemann-type metric can be found in [4, 13]. For
stability results in the presence of viscosity, see [10, 16].
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2. - Preliminaries

In the following, the euclidean norm and inner product on Wn are denoted
by I - I and ( ~, ~ ~ respectively; Q is an open convex subset of R"’ and F is a
three times continuously differentiable vector field whose domain contains the
closure of Q. For u, u’ E SZ, we call A(u) = DF(u) the Jacobian matrix of F at
u and define the matrix

We assume that there exist m disjoint intervals [ÀFn, with AT,  Anin
such that the i-th eigenvalue u’) of A(u, u’) satisfies

This is certainly the case if uo E A(uo) has m real distinct eigenvalues and
SZ is a suitably small neighborhood of uo. Throughout the paper, we assume
that each characteristic field is either linearly degenerate or genuinely nonlinear
according to Lax [8]. For i = 1,..., m, one can then select a C2 family of right
and left eigenvectors ri(u, u’), li(u, u’) of A(u, u’), normalized as follows. If the
i-th characteristic field is linearly degenerate, choose ri such that

If the i-th characteristic field is genuinely nonlinear, normalize u’) so that

This is certainly possible whenever u, u’ are sufficiently close. Then choose the
families l1’( u, u’) so that

where 6;j is the Kronecker symbol. Since A(u, u) = A(u), we write ai (u) for
Ai(u, u) and similarly for ri and li. The differential of Ai at (u, u’) is written

u’). We thus have

The same notation will be used for the differentials of the eigenvectors ri and h.
Let u = u(t, x) be piecewise Lipschitz continuous weak solution of ( 1.1 ),

taking values inside S2. Then ux exists almost everywhere and one can define
its components
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With this notation, for a.e. t, x one has

In the following, if p is a function defined on 0, its directional derivative at
w E SZ along the vector field ri is written

Differentiating (2.7) w.r.t. t and (2.8) w.r.t. x, combining the results and taking
the inner products with li (u), i = l, ... , m, one obtains the system of m scalar
equations

(see (2.6) in [ 1 ] ), where

and [rk, = rk 8 r1’ - r1’ 8rk is the usual Lie bracket. If u is piecewise Lipschitz,
then the measurable functions u2 provide an integral solution to the system
(2.9). More precisely, for every t one can redefine ux on a set of measure
zero so that, along almost all characteristic lines x = y~ (t) of the i-th family,
with y~ (t) = 2/~))), the following holds. The component u’ x is absolutely
continuous and satisfies

for s  t, as long as the characteristic does not cross a line where u is
discontinuous. Let now xa(t), a 2 1, ... , N, describe the position of the a-th
discontinuity of u at time t. If the jump at xa occurs along the ka-th characteristic
family, the Rankine-Hugoniot conditions imply
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Moreover, one has

if the ka-th characteristic field is linearly degenerate, while

in the genuinenly nonlinear case. Here ~- _ ~c(xa ) and denote

respectively the left and right limits of u(t, x) as x tends to xa(t), while Eo &#x3E; 0

is a suitably small constant. Notations such as A- * At = will also
be used. For any a, because of (2.11) the limits

can be defined pointwise for almost every t; except for the case where i = ka
and the ka-th characteristic field is linearly degenerate. Differentiating (2.12)
and using (2.7), (2.8), one obtains: .

for almost every t and all Equations of the form (2.17) will arise over
again, so we study them in greater detail. For u-, u+ E K2 consider the functions

As in [3], define the sets 1 and 0 (incoming and outgoing) of signed indices:
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For a fixed ka, the system of m - 1 equations

is linear homogeneous w.r.t. w-, w+, with coefficients which depend continuo-
usly on u-, u+. When u- = u+ one has

Therefore, whenever u+, u- are sufficiently close to each other we have

In turn, when the (m - 1) x (m - 1) determinant in (2.21) does not vanish, one
can solve (2.20) for the m - 1 outgoing variables 

where denotes the set of m + 1 incoming variables ~}. In the
special case where the ka-th characteristic field is linearly degenerate, we have

hence all functions w1’ do not depend on Comparing (2.18) with
(2.17), it is clear that the outgoing waves uz~ can be obtained as functions of
the incoming waves E 1 :

The linear homogeneous functions are related by

k.’ k-
Observe that in the linearly degenerate case, the components uza , u2a may not
be defined. Yet, the functions Uj are well defined because they do not depend

k:1=on ux
Following [3], in connection with the system ( 1.1 ) we say that a function

u : R - Q is in the class of functions PLSD (Piecewise Lipschitz with Simple
Discontinuities) if u is piecewise Lipschitz continuous with finitely many jumps,
each jump consisting of a single admissible shock or a contact discontinuity. If
u is in PLSD and has N discontinuities at the points Xl  ...  xN, the space
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of generalized tangent vectors at u is defined as Tu = L 1 x Elements in Tu
can be interpreted as first order tangent vectors as follows. On the family X~
of all continuous paths : [0, co] - Ll 

1 with 1(0) = u, define the equivalence
relation

We say that a continuous path -1 E 1. generates the tangent vector (v, ç) E Tu
if -1 is equivalent to the path 1~,i;u&#x3E; defined as

where XI denotes the characteristic function of the interval I. Up to higher
order terms, i(c) is thus obtained from u by adding ev and by shifting the
points xa, where the discontinuities of u occur, by eça.

The main purpose for introducing this space of tangent vectors is to

understand the behavior of "first order perturbations" of a given solution of ( 1.1 ).
More precisely, let -1 : e H be a parametrized family of initial conditions,
with E PLSD for all c E [0,eco]. Following [3], we say that i is a Regular
first order Variation (R.V.) of 5° if the functions suffer jumps at points
x i  ...  xN depending continuously on c, and have a uniform Lipschitz
constant outside these discontinuities. 

_

If -1 is a R. V. of generating a tangent vector (v, ~), then one can
consider the family of solutions uE(t,.) of ( 1.1 ) corresponding to the initial
values ’iiE. As long as the shocks do not interact and the Lipschitz constants
remain uniformly bounded, it was proved in [3] that the family is still a
R.V. of uO(t, .), generating some tangent vector (v(t), ç(t». This vector provides
an integral solution to the following linear system of equations:

outside the lines of discontinuity, together with the conditions

on each line x = xa(t) where u suffers a discontinuity in the ka-th characteristic
field. We remark that (2.27) is formally obtained by differentiating (2.8), while
(2.28), (2.29) are derived from the Rankine-Hugoniot equations (2.12), (2.13).
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Under generic conditions, the existence of a generalized tangent vector can
be proved also beyond the time where two shocks interact. By studying how
these first-order perturbations evolve in time, one can gain useful informations
on the stability of the original system (1.1).

3. Some Basic Estimates

Let u be a function in the class PLSD and assume that, for a = 1,..., N,
u has a jump of the ka-th characteristic family at xa. The strength Ja.= Jf?
of the a-th discontinuity is then measured as follows. If the jump at za is a

genuine shock, set .

If the jump at x, is a contact discontinuity, then there exists a unique integral
curve of ic = rka(u) joining u(x-) with u(xa). In this case, we let Ja be the
arc-length of the curve. Observe that we always have Ja &#x3E; 0. Following [7,
14], we define the potential for future wave interaction as

and the instantaneous amount of interaction as

where



117

The total amount of waves in u will be measured as

In the following, Cl , C2, ... will denote suitable constants whose value depends
only on the vector field F and on its derivatives inside SZ. For example, in the
equations (2.10) we clearly have an estimate of the form

We shall always assume that the domain Q is sufficiently small so that (2.21 )
holds whenever u-, u+ E S~ satisfy the Rankine-Hugoniot conditions.

LEMMA 3.1. The functions w1’ in (2.22) satisfy bounds of the form

for all u-, u+ in 0, connected by a shock or by a contact discontinuity of the
ka-th family.

PROOF. Since the wit are linear functions of wt, depending smoothly on
u-, u+, the bounds (3.8), (3.9) follow easily from (2.20), (2.21). To prove the
sharper bound (3.10), by the implicit function theorem it suffices to show that

Set 6- = lu+ - Writing and using the Landau order
symbol we now have: 

"
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The computation for is entirely similar. By the smoothness of ~1 on
Q, (3.12) thus implies (3.10). 0

Combining the estimates (3.8)-(3.10) with (2.24) one obtains

If the ka-th characteristic field is linearly degenerate, (3.10) and (3.15) can be
replaced by

From (2.15), (3.5) and (3.13)-(3.16) it now follows

LEMMA 3.2. There exists a constant C5 such that, if u = u(t, x) is a

piecewise Lipschitz continuous solution of ( 1.1 ), with a jump in the ka-th
characteristic family at xa(t), then for almost every t the following estimate
holds:

The here defined as

f 1 if the is 
(3.20) r. -1 0 if the kc,-th family is linearly degenerate.
(3.20) k 

k= 0 
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PROOF. We begin by introducing some notation. Given u-, u+ E Q, let the
states u- = uo, = u+, be such that each couple (ua_ 1, ui) satisfies the
Rankine-Hugoniot equations

If the i-th characteristic field is genuinely nonlinear, we define the (signed)
strength of the i-th shock determined by the jump (u-, u+) as

If the i-th field is linearly degenerate, for some c one has ui = (exp 
In this case we set As usual (exp êiri)(w) denotes here the value
at time t = c of the solution of the Cauchy problem

To prove the lemma, observe that Ja = Jka(u-, u+), with u- = u(t, z§) and
u+ = u(t, Its derivative w.r.t. time can be written as

Of the four terms on the right hand side of (3.22), the first and the third one
are bounded by a constant multiple of Aa(u), while the second vanishes. The
last term is computed by

In the linearly degenerate case, xa - aka, hence (3.19) holds. In the
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genuinely nonlinear case the bound (3.19) is derived from (3.23) using the
estimates 

- - -

A similar argument yields

LEMMA 3.3. Under the same assumptions of Lemma 3.2, there exists a
constant C7 such that

is the constant in (3.20).

If u = u(t, x) is a piecewise Lipschitz solution of ( 1.1 ), for almost every
t the functions and Q(u) satisfy bounds of the form:

As long as shocks do not interact, these bounds can be established by a

straightforward differentiation in (3.6), (3.2), using the estimates (3.13)-(3.15)
and (3.17)-(3.20). Notice that, if the total variation of u is suitably small, we
can assume

4. - A Locally Contractive Metric

The goal of this section is to introduce a family of on the

tangent spaces Tu and to study how the lengths of tangent vectors change
in time, along piecewise Lipschitz continuous solutions of (1.1). Let u be a
function in the class PLSD, having a discontinuity at each one of the points
x  X2  ...  xN, with the jump at Xa occurring along the ka-th characteristic
family. For any (v, ~) E Tu = L1 X R N, define the components
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e now introduce the weighted norm

where

and M, 6 are suitable constants whose precise value will be specified later.
Observe that Ra (x) describes the total amount of waves which are approaching
a wave of the i-th family located at x. The main result of this section shows
that if the total variation of u is suitable small, then M, 6 can be chosen so
that the norm (4.2) is nonincreasing along solutions of the linearized system
(2.27)-(2.29).

THEOREM 4.1. There exist constants M, 6, 6’ &#x3E; 0 for which the following
holds. Let u = u(t, x) be a solution of ( 1.1 ) such that each u(t, ~ ) is in PLSD
and has total variation smaller than 6’. Let (v(t), ~(t)) E Tu(t) be a generalized
tangent vector satisfying the linearized system (2.27)-(2.29). Then the norm

11(v(t), ç(t»llu(t) defined at (4.2) is a nonincreasing function of t, as long as the
shocks in u do not interact.

PROOF. From (2.27), one obtains a system of m scalar equations of the
form

where the are C I functions of u §3eii1 [ 1 ] for details). More precisely, for
fixed i one has

Along each line of discontinuity x = xa(t), the jump conditions (2.28), (2.29)
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become

for each and

respectively. Differentiating (4.4) and using (2.9), one obtains
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From (4.8), using (3.18) and (3.19) one obtains the estimate

Recalling (3.5), the time derivative of RQ along the line of jump can be

estimated by 
"

The time derivative of the norm (4.2) can now be written as the sum of four
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terms:

To estimate (4.11), define the instantaneous amount of interaction ~F between u
and v as

Define also

A couple of preliminary estimates will be needed.



125

LEMMA 4.2. For some constant C12, at every point of jump xa one has

PROOF. From (2.28) and the estimates (3.8)-(3.10), for j± E it

follows

for some constant C, with x as in (3.20). Using (3.17) we thus obtain (4.16).

LEMMA 4.3. For some constant C13 and with It as in (3.20), at every
point of jump one has

PROOF. The derivative of the eigenvalue Ak. can be written as

By (2.15) and (4.16), the first three terms in (4.20) satisfy an estimate of the
form 

. - ... --- I ,I.L I. ....
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for some constant C. Concerning the last term, (2.4) implies

in the genuinely nonlinear and in the linearly degenerate case, respectively. This
proves (4.19).

We are now ready to estimate each of the four terms in (4.11). Call
S C { 1, ... , N} the set of indices a such that the jump at xa is a genuinely
nonlinear shock. From (2.29), using first the bounds (3.19), (3.24), (4.10), then
(4.19) and (3.27) we obtain:

Concerning E2, (4.9) and (3.27) yield

The quantity E3 clearly satisfies a bound of the form




