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On the Boundary Conditions at the Contact Interface
Between a Porous Medium and a Free Fluid

WILLI JÄGER - ANDRO MIKELI0107

1. - Statement of the problem and of the results

1.1. - Introduction

In this paper we consider a slow viscous two-dimensional incompressible
flow in a domain QS consisting of the porous medium Q2 =]o, L[xR-, the free
fluid domain S21 1 =]o, L [ x R+ and the interfaces =]0, L[x{O} between them.
We assume that the structure of the porous medium is periodic and generated
by translations of a cell Z£ _ ~ Z, where Z is the standard cell, Z =]0, 1 [2,
consisting of an open set Z*, a Z* = S E C°°, being strictly included in Z.
Let Y * = Z B Z* be connected and let x be the characteristic function of Y*
extended by periodicity to R 2. We set x E (x) = x (5), x E R 2, and define Q2 by
SZ2 = {xl x E Q2, x ~ (x ) = 1 } . Furthermore, QS = SZ U 1: U Q2. It is supposed
that Lis E N.

Therefore, our porous medium is supposed to consist of a large number of
periodically distributed channels of characteristic length ~, being small compared
with a characteristic length of the macroscopic domain.

The principal objective of this work is the systematic study of the effective
behavior of the velocities US and pressures p’ as ~ ~ 0 , i. e. when the
characteristic size of the pores tends to zero. For a fixed 6’ &#x3E; 0, lu’, p’l are
defined through the equations of motion and mass conservation

where

(the free fluid domain);
(the porous medium)

with f E CÜ(Q)2, f Q 0 on E. Motivation for different scaling in SZ I and
Q2 comes from different values of the characteristic numbers (Reynolds’ and
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Froude’s numbers). We suppose that Reynolds’ number is small in both domains
in order to have the Stokes system ( 1.1 )-( 1.2). Then F’ is corresponding to the
ratio between Reynolds’ and Froude’s number and it is proportional to L 2 / U .
Rescaling gives (1.3).

Furthermore we suppose that the velocity vanishes along the boundaries
of the solid part of the porous medium and that lu’, p’l satisfies the periodic
boundary conditions on (101 U {L{) x R, i.e.

The homogenization of a slow viscous incompressible flow in a periodic
porous medium has been the subject of many mathematical papers, starting with
the pioneering work of Tartar [25]. Tartar’s results were extended by Allaire [2]
who generalized the pressure extension to realistic three dimensional geometries,
and .Lipton-Avellaneda [18], who found explicit formula for Tartar’s pressure
extension. The homogenization of the Navier-Stokes system in the periodic
porous medium has been done by Mikelic [19].

Despite the huge number of papers on the homogenization of flow in the
porous medium articles addressing the boundary effects are rare. This is in
contrast to the situation with Laplace operator and with linear elasticity where
there already exist some monographs (Lions [17] and Oleinik et al. [22]). The
paper of Mikelic et al. [20] considers the homogenization of fluid injection into
the periodic porous medium, but only gives the weak convergence of the velocity.
Also there are Conca’s papers [5], [6] on the homogenization of flow through
a sieve, but that problem has its own special structure. The main difficulty
comes from the appearance of the boundary layers in the neighbourhoods of
the contact surfaces, with the gradient of a solution greatly differing from the
behavior inside the interiors of the domains.

Furthermore, the particularity of the contact problems between a porous
medium and a non-perforated domains under Dirichlet’s condition on the bound-
aries of the solid part is the influence of the boundary layers on the effective
behavior of the solution. The corresponding problem for the Laplace’s operator
is solved by Jager-Mikelic [11] and here the contact problem for the Stokes
system is addressed.

It is clear that in view of the classical homogenization results on Stokes
system in the porous media we expect to have Darcy’s law in 522. In Q the flow
should remain governed by the Stokes system. These two flows are coupled
at the interface and the main goal of this paper is to identify the effective
behavior of Jul, pl) on the interfaces in the limit 8 ~ 0. Also we point out
the incompatibility of the Stokes system and the second order equation for the
pressure, which also poses additional complications.

We derive rigorously the laws governing the flow at the interface by con-
structing the corresponding boundary layers. Furthermore, we compare our
results with the well-known results at the physical level of rigour by Beavers
and Joseph [4], Saffman [23], Ene and Sanchez-Palencia [8] and Levy and
Sanchez-Palencia [15] and find a partial agreement, depending on the choice
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of y. For example the Beavers-Joseph’s slip condition is not obtained in the
first step, but it is an additional property of the solution for the homogenized
problem.

Our main results are presented in the chapter 1 for a two-dimensional

cylinder S2. The auxiliary and homogenized problems are introduced and studied
in Section 1.2 . The main convergence theorems are stated in Section 1.3. The
most interesting values of y are y = 0 and y = 2 and they are treated in
Theorem 3 and Theorem 1, respectively. Sections 2.1-2.3 are devoted to the

proofs of convergence theorems.
The final chapter collects various results concerning the auxiliary ’problems

necessary for the convergence proofs.

1.2. - Notations, assumptions and auxiliary results

Before studying the limits -~ 0 we briefly discuss Problem ( 1.1 )-( 1.4).
We introduce the functional space W, by

W, is equipped with the norm
Now the variational problem corresponding tao

We get F’ E W" as a consequence of the inequality

Since inequalities analogous to (1.7) will be derived in Sec. 1.2 we omit its

proof.
Assuming a Z * E Coo we get

PROPOSITION 1.1. Problem (1.6) has a unique solution U’ E W,. Furthermore,
there exists P’ E L2(0’) such that ( 1.1 ) holds in the sense of distributions. Finally,

The information about the asymptotic behavior in Proposition 1.1 can be

improved as follows:

PROPOSITION 1.2. Let I u 1, pB} be a solution for (1.6). Then there exist constants
C£, q’ and C’ such that
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PROOF. By taking the divergence of ( 1.1 ) we obtain

Now we see that Vp~ E L 2(QI)2 and results from Landis-Panasenko [12] (or
from Oleinik-Iosif’yan [21]) imply ( 1. 8) B .

In the next step we take the curl of ( 1.1 ) and find that

Consequently, results from Landis-Panasenko [12] give

for x2 &#x3E; XB. Since div u’ = 0 we conclude an exponential decrease of Vu’ and,
finally, (1.8). It should be noted that the incompressibility condition implies
stabilization of u2 towards zero, as x2 - too. 0

REMARKS. a) Arguing as in the chapter 3 we could obtain exponential
stabilization in Q2. However, as we do not use it we skip the discussion.

b) By redefining the pressure p’ we can set C~ = 0, however we will fix
that free constant in the Section 1.2.13 .

Our goal is to study the limit 8 - 0 and in order to formulate the results
corresponding to the different values of y we introduce the auxiliary problems
connected with the periodic structure.

1.2.1. - The auxiliary problem determining permeability

As expected the permeability of the porous medium will be computed by
solving the following cell problem:

We are looking for {wj, 1r j} satisfying

The unique solvability of the Problem (1.9) is well-known (see e.g. Sanchez-
Palencia [24]). Furthermore C°- regularity of aZ* implies Cl-OC(Uk,=-N(Y* -
(0, k))) -regularity of the solution fwJ’,7rJ’I.

We define

and
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and extend wj,B by zero to SZ2 B SZ2 . Then we have

and

and

Furthermore,

for every bounded open set D C Q2. Finally,

1.2.2. - The auxiliary problem correcting the compressibility effects in Q2

In constructing an approximation of u’ we have to consider term containing
times a factor depending on the slow variable and giving rise to a divergence

not necessarily small. We have to correct the divergence term using the following
auxiliary problem.

We are looking for i satisfying

The existence of at least one

(1.18) is straightforward.
We introduce yj,i,B by

satisfying
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and extend it by zero to S22 B Q2. Then

and

1.2.3. - The auxiliary problem corresponding to the boundary layer around
~, created by the extension of 

We consider the
following problem

and z is yl-periodic }. Then Corollary
3.16 of Section 3 gives the existence of a unique solution

but the limits from
two sides are in general different. Furthermore, it is proved that there exist
constants yo e]0,1[ and Cj and a constant vector = (Cj,bl, Kj2) such that

and

We define
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and extend by zero to Let H be the Heaviside’s function. Then
we have

Finally,

1.2.4. - The auxiliary problem correcting the pressure created in the free
fluid domain by the preceeding boundary layer

The presence of two different stabilization constants for the pressure neces-
sitates correction of ¡rj,bl,s in the free fluid region Let Ci be the difference
between them, defined by (1.28). Then we consider the problem

The existence of at least one Qj E L2 (Z+) such that
straightforward.

We set

Then
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1.2.5. - The auxiliary problem correcting the values of YJ,’,’ 
We are looking for satisfying

in

in

on

on

is yl - periodic.

Proposition 3.19 from Section 3 gives the existence of a solution
where

is unique is unique up to a constant.
but the limits

from two sides of S are in general different. Furthermore, it is proved that
there exist constants yo e]0, 1[, C~° i and Cj,’ and a constant vector such
that 

.... -

and

We define

and

and extend by zero to S2 B Then after setting Ci.1’ = 0 we have

Finally,

in

in

on

on
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1.2.6. - The auxiliary problem correcting the compressibility effects caused
by

Let wj,bl be defined by (1.23)-(1.27) and let the constant vector Cj,bl =

Kj2) be given by (1.28). We are looking for satisfying

The existence of at least one satis-

fying (1.54) is a consequence of Propositions 3.20 and 3.21 from Section 3.

Furthermore, there exists a yo &#x3E; 0 such that
traces of from each side are in W 1-1 /~

and

We introduce

and extend by zero to Q B Then we have

and

1.2.7. - The auxiliary problem correcting the values of the normal stress
of the free fluid at the interface

We are looking for 

in

in

on

on

is yl - periodic.
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.. 

Proposition 3.22 from Section 3 implies the existence of a solution
where

is unique and wbl is unique up to a constant. Furthermore, we are able to
fix the constant in and obtain the existence of constants yo 1[, Cbt and
Cwt such that

and

In the neighborhood of S we have
and

We define

and

and extend by zero to S2 B Then we have

Finally,
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1.2.8. - The auxiliary problem correcting the compressibility effects caused
by f3bl,s

Let f3bl be defined by (1.60)-(1.64) and let the constant vector (Cbl, 0)
be given by (1.65). We are looking for çl satisfying

As in Subsection (1.2.6) we have at least one solution
satisfying (1.74) as a consequence of Proposition 3.23 from

Section 3. Furthermore, there exists a yo &#x3E; 0 such that
and traces of ~ 1 from both sides are in

We introduce çl,s by

and extend çl,s by zero to S2 B Then we have

and

1.2.9. - The auxiliary problem correcting the pressure created in the free
fluid domain by 

The presence of two different stabilization constants for the pressure neces-
sitates correction of in the free fluid region Let be the difference
between them, defined by (1.65). Then we consider the problem

The existence of at least one

straightforward.
We set

such that
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Then

1.2.10. - The auxiliary problem describing the Darcy flow in the porous
medium.

Now we turn to the auxiliary problems in the free fluid region Let

and is L-periodic in yl }

and

We start with the following Hardy type inequality which is going to imply
existence and uniqueness for a number of related problems.

PROPOSITION 1.3. Let z E Vi . Then

PROOF. Without loosing generality we suppose i = 1. Let
xi-periodic function such that VZ E L 2 ( S21 ) 2 . Then

Consequently, we get

and (1.83) follows.
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After having established (1.83), we can consider the problem

on 1:, p is L-periodic in x 1,

where K is the permeability tensor given by ( 1.16). The existence of a unique
solution p E V2 for (1.84) is a direct consequence of Proposition 1.3. Fur-

thermore using the results from Landis-Panasenko [12] we get a pointwise
exponential stabilization of p towards a constant as IX21 ~ oo. Analogously,
~p tends pointwise exponentially to 0 as 2013~ oo. Finally, p E U E).

1.2.11. - The auxiliary problem describing the Stokes flow in the free fluid
domain

We search for f uo, satisfying

Because of Proposition 1.3 Problem (1.85) has a unique solution uo E W.
Furthermore u o E and there exists a pressure field no E 

E ) such that ( 1.85 )A holds true. Finally, arguing as in Proposition 1.1 and after
redefining .7ro we conclude an exponential pointwise stabilization of uo towards
(CO, 0) and of 7ro towards 0 as x2 -~ oo.

1.2.12. - The counterflow effects caused by the stabilization of to 

in Ql

Let

Then we look for 7rjkl satisfying

Because of Proposition 1.3 Problem (1.87) has a unique solution u~k E W.
Furthermore E U E ) 2 and there exists a pressure field E

such that (1.87) holds true. Finally, arguing as in Proposition 1.1
and after redefining we conclude an exponential pointwise stabilization of

towards a constant vector and of towards 0 as x2 2013~ oo.
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1.2.13. - The counterflow effects caused by the stabilization of to

C j,i,bl in Q1

Then we search for satisfying

Because of Proposition 1.3 Problem (1.89) has a unique solution E W.

Furthermore E Cloc U ~ ) 2 and there exists a pressure field 7r j, i, kE
such that (1.89) holds true. Finally, arguing as in Proposition 1.1

and after redefining we conclude an exponential pointwise stabilization of
towards a constant vector and of towards 0 as x2 -~ oo .

1.2.14. - The counterflow effects caused by the correction of the compress-
ibility effects due to the 

We look for satisfying

Because of Proposition 1.3 Problem (1.90) has a unique solution ~ i E

W. Furthermore d~i E U 1:)2 and there exists a pressure field g~i E
such that (1.90) holds true. Finally, arguing as in Proposition 1.1

and after redefining g~i we conclude an exponential pointwise stabilization of
d ~ i towards a constant vector D~ i and of g towards 0 as X2 2013~ oo.

1.2.15. - The counterflow effects caused by the stabilization of f3bl,s to

Let ore = Vuo, where f uo, is defined by (1.85). Furthermore let
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We look for Id k,9kl satisfying

We easily get the same type of the results as in the Subsection (1.2.14)

1.2.16. - The counterflow effects caused by the correction of the compress-
ibility effects caused by çl.

We search for satisfying

We easily get the same type of the results as before for zt}.

1.2.17. - Some additional auxiliary results in Q

After discussing in details the auxiliary problems we turn to other auxiliary
results, which are necessary for our convergence proof.

LEMMA 1.4. e such that ~p = 0 on Then we have

PROOF. See Jager-Mikelic [11] for (1.95) and Sanchez-Palencia [24] for

(1.96). 0

Let

and let it be equipped with the following scalar product

We have
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PROPOSITION Then the problem

has a unique solution W E V3 such that IE w (xl , O)dxl = 0. Furthermore

PROOF. We start with the variational formulation for (1.97)

Then it should be proved that h E V3. We have

Now by Proposition 1.3 and Lax-Milgram’s theorem implies existence
of a unique solution W E V3 for (1.99). The estimate (1.98) is obtained after
differentiation of the equation (1.97). 0

1.2.18. - The a priori estimate for the pressure through the velocity estimate

Let us now consider the Stokes system

like to estimate using the estimates on

Then we have
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and consequently (1.7) gives

We are looking for an estimate for ’ in 0 and, clearly, it is necessary
to extend ~’ to S2. We extend as by zero to S2 B QS, however extending ~’ is

much more complicated.
It should be noted that the geometry of S22 satisfies the assumptions from

Tartar [25]. Therefore we are able to use Tartar’s construction and get the
restriction operator Rs, Rs : H 1 (S2)2 ~ {z E H 1 (S2E)2 : z = 0 on a S22 B 
such that

such that

and

We refer to Tartar [25] for details (see also Allaire [2] for the case of a

tridimensional geometry).
Now following Lipton-Avellaneda [18] we extend the pressure by

where Y * is the part of Y * between the solid part Z* and the "security" curve
surrounding a Z*, corresponding to the Tartar’s construction of the operator 7~.

As in Lipton-Avellaneda [18] a straightforward calculation gives

and we have

PROPOSITION 1. 6. Let çs be defined by ( 1.100), let the extension be given by
I

(1. 105) and let a free constant in ~ £ be choosen in the way that

Then we have


