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On the Regularization of the Pressure Field
in Compressible Euler Equations

R. DI LISIO - E. GRENIER - M. PULVIRENTI

1. - Introduction

In this paper we want to study the stability of the Euler equations for a
generic polytropic fluid, with respect to a regularization of the pressure field.
The motivation of this study derives mostly from the problem of the convergence
of the so called Smoothed Particle Hydrodynamics (SPH) method, a numerical
scheme often used to compute solutions of compressible Euler equations. Indeed
in a previous paper (see [2]), the same authors proved the convergence of the
empirical measures arising from the SPH scheme to the solutions of a regularized
version of the Euler equations for compressible flows (see equations (1.2) below).
Therefore to complete the convergence proof one needs to show the convergence
of the solutions of equations (1.2) to the corresponding solutions of the genuine
system of Euler equations (1.1). This is the aim of the present paper. Besides
the motivations related to the SPH method, we believe that the stability problem
we takle here has an intrinsic interest.

Let us consider the Euler equations:

where p : JR3 - R and u : R3 -- R3 are the density and the velocity field

respectively. These are the Euler equations for a fluid with the pressure defined
by the state law P = (a + 2)-’p c,+2 (for a &#x3E; -1).

We regularize the pressure field in equations (1.1) in this way:

where p£ = p * 8£ and 3s = g£ * g£ . We assume that
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where 0 and f g, = 1. ge is a mollifier which converges to the delta
Dirac measure as 8 --~ 0 (see [ 1 ] for the case a = 0, and [2] for the study of
this system, and in particular for the existence of global solutions in a kinetic
sense, obtained by passing to the Vlasov kinetic picture).

We shall consider periodic solutions of problems ( 1.1 ) and (1.2). The fol-
lowing classical Theorem (see [3]), establishes that problem ( 1.1 ) has a regular,
local solution, if the initial condition is regular enough. Let A = [-1, 1 ] 3 be
the periodic torus.

THEOREM 1.1 ([3]). Given po E uo E &#x3E; 0, s &#x3E; 5/2,
there exists a unique classical solution ( p, ü) of the problem ( 1.1 ),

with p &#x3E; 0, provided that T is small enough.

Our aim is to state the convergence of the regular solution of problem
(1.2) to the solution of ( 1.1 ), with the same initial datum, as s - 0 (obviously
locally in time). Namely we will prove

THEOREM 1.2. Let s &#x3E; 11/2. If gl satisfies
a) there is C &#x3E; 0 and t7 &#x3E; 0 such that:

for IPI = 1, 2,
b) there is C &#x3E; 0 such that

for 1/31 = 1, 2, 3, (where f denotes the Fourier transform of the function f ), and if
the initial data po and uo belong to HS (A) and infxEA Po &#x3E; 0, then there exists a
positive time T such that, for the solutions ( p, u ) of ( 1.1 ) and (p, u) of (1.2), the
following limit holds:

Examples of mollifiers satisfying these conditions are those for which

g(À) = (1 -~- ~,2)-p with p large enough.
We mention that L 2 estimates for the regularized problem has been proved

by Oelschlager [4] in the case a = 0 (see also Caprino et al. [1]).
The plan of the paper is the following: first we obtain a-priori bounds

in Sobolev norms by studying a suitable norm. Then we prove the conver-

gence in L2 norm. The appendix is devoted to further considerations involving
pseudodifferential operators which have led us to the choice of the right norm.
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2. - A-priori estimates in HS norm

Consider the box A = [-1, 1 ]3 (3 is the dimension of the physical space)
and two fluids described by equations ( 1.1 ) and (1.2). We assume periodic
boundary conditions so that A can be thought as a 3-dimensional flat torus.
The density p and the velocity field u can be extended to the whole space R 3
by periodicity. The convolution operator on Iae3 is denoted by the symbol *.

If f (x) is a function on A and f (x ) is its periodic extension on Iae3, we
define:

where *A means the convolution product on the torus A, and = g (x -~- 2k) .
Let us introduce the following seminorm:

where

In what follows we shall consider only the case when s is an integer. [ - ip and
11 - denote the LP(A) and Sobolev norms respectively.

The semi-norm Ws controls fqr Iyl = s, and for Iyl = s -1
(see the Appendix).

We will only look for a-priori estimates of Ws on the solution of the

regularized problem (1.2). The existence of such a solution can then be deduced
by standard arguments (for instance using the Galerkin method).

Notice that, for a fixed initial condition (po(x),uo(x)), the solution of equa-
tions (1.2), p(x, t), has a lower and an upper bound. In fact, by the continuity
equation we have:

Analogously
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so that Theorem 1.1 assures the existence of upper and lower bounds for the
solution p of problem ~ 1.1 ).

To obtain an a priori estimate for W, (uniform in s) we consider its time
derivative. We have:

To estimate W , integration by parts, Holder inequality and Moser type inequal-
ities will be often used (see for example [3] p.43). In particular, we recall:

+ 

In the sequel Cs will denote the generic positive constant possibly depending
on the parameter s. We have:

Furthermore:

so

so
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Moreover,

It remains to estimate, and we shall do it later

Moreover:

By Schwartz inequality, if s &#x3E; 7/2,

We have
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and, recalling that 3, = gE,

provided that

which is ensured by assumption (a) of Theorem 1.2.

so
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Finally the terms and T53 are the usual terms which can be handled
by a Taylor expansion as shown by Oelschlager [4]. To this end, following
Caprino et al. [ 1 ], we need assumptions (a) and (b) of Theorem 1.2 on g 1.

The term TSIa can be written as

The first term can be easily estimated So, we shall consider the
second one.

We perform a Taylor expansion of u up to the fourth order. The i - th

component gives

Substituting this sum in the second part of (2.22) we have four new terms. The
first one is bounded by

By the Plancherel theorem on A, using (2.1 ), assumption b, and the identity

The second and third terms can be estimated in a completely analogous
way, namely by:

after using (1.4) for 1/31 = 2, 3.
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It remains to estimate

To handle this term we perform an integration by parts. We obtain inside
the integral fo dB(1 - 0)3 , a sum of terms of the type:

We estimate the first one.
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But

by assumption a).
The other two terms can be estimated in the same way.
All these estimates lead to

All the above estimates yield:

where f is a continuous smooth function, increasing in each of its arguments.
Let

If a &#x3E; 4 + 3/2 = 11/2, then

which leads to energy estimates and bounds uniform in E on the solution of

equations (1.2), on a time interval [0, T ] independent on s.

3. - Convergence in L 2 norm

Now we are in position to obtain convergence in Sobolev norms, as 8, - ~.
By the interpolation inequalities and the HS bound found in the previous section,
it is enough to prove the L 2 convergence of (p, u ) to (P-, it).

To this end, let us introduce the following function

where ( p, u ) is the regular solution of ( 1.1 ) and (p, u) is the regular one
associated to (1.2).

We suppose that there exists a time T* such that:
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These hypotheses are satisfied for regular enough initial data po, uo.
It is clear that

for some C’  So it is sufficient to show that Q(t) -* 0 as 8£ -* 8.
We proceed as before performing the time derivative of Q(t). By straight-

forward calculations we see that:

and

The second term cancels with the last term of (3.3) and the third is bounded

using

which gives

where C does not depend on ~. So, assuming the same initial conditions for
the problems (1.1) and (1.2), the convergence result follows. The end of the

proof of Theorem 1.2 is then straightforward.

Appendix: a pseudodifferential approach

The proof of the main Theorem was in fact first done by using the pseu-
dodifferential operators machinery, which leads, in a natural way, to the energy
norm (the sum of the seminorms (2.2)) studied in this paper, and which is an
approach equivalent to the use of smoothing kernels. In this section we want
to give the main ideas.

First, we study the linearized version of (1.2) around a constant state (u,p)
(frozen coefficients)
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The symbol of this system is

(where ~ is the dual Fourier variable of x), in the sense that

is equivalent to (A.1 ), (A.2) where

T denoting the Fourier transform.
The standard way to study (A.5) is to symmetrize A’, that is to look for

a positive definite matrix S£ = such that S£A£ is symmetric (see for
instance [3]). Here we take

which leads to the norm

The second step is to study

where AS = ( 1 - 0)5~2, and where the coefficients are no longer frozen. This
can be done by and using estimates on commutators
and adjoints of pseudodifferential operators, or equivalently by using calculus
on kernels as in this paper.

Notice and which leads with (A.2)
to a eontrol on So it is natural to consider the norm
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or, equivalently that one used in this paper.
More heuristically, we see that at high frequencies, the system degenerates

in

If we controlllullHs, we can only control by (A.11 ). On the contrary,
at low frequencies the system behaves like the limit system (Euler equations for
compressible fluids), where we can control The "transition" between
the original system and (A.10), (A.11 ) occurs 1, and is described
by which does not take into account wave numbers [) I » 6~, and
behaves like for wave numbers [ § I 
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