Vladimir I. Bogachev
Nicolai V. Krylov
Michael Röckner

Elliptic regularity and essential self-adjointness of
Dirichlet operators on \mathbb{R}^n

<http://www.numdam.org/item?id=ASNSP_1997_4_24_3_451_0>
Elliptic Regularity and Essential Self-adjointness of Dirichlet Operators on \mathbb{R}^n

VLADIMIR I. BOGACHEV - NICOLAI V. KRYLOV
MICHAEL RÖCKNER

One of the classical problems in mathematical physics is the problem of essential self-adjointness for Dirichlet operators

$$L := \Delta + \beta \cdot \nabla,$$

with domain $C_0^\infty(\mathbb{R}^n)$ (:= all infinitely differentiable functions on \mathbb{R}^n with compact support) on $L^2(\mathbb{R}^n, \mu)$, where μ is a measure on \mathbb{R}^n with density $\rho := \varphi^2$, with $\varphi \in H_{loc}^{2,1}(\mathbb{R}^n)$ and $\beta := \nabla \rho / \rho$. (By definition $\beta(x) = 0$ if $\rho(x) = 0$).

The results obtained in [1], [8], [9], [11], [14], [25] have been important steps in the investigation of this problem. One motivation to study this problem is that the operator $-L$ is unitary equivalent to the Schrödinger operator $H := -\Delta + V$, $V := \Delta \varphi / \varphi$, considered on $L^2(\mathbb{R}^n, dx)$ (see, e.g., [1], [5]) where dx denotes Lebesgue measure on \mathbb{R}^n. The corresponding isomorphism $L^2(\mathbb{R}^n, \mu) \rightarrow L^2(\mathbb{R}^n, dx)$ is given by $f \mapsto \varphi \cdot f$. Conversely, if $H = -\Delta + V$ is a Schrödinger operator on $L^2(\mathbb{R}^n, dx)$ with lower bounded spectrum $\sigma(H)$ whose minimum is an eigenvalue E, then the isomorphism above holds for the potential $V - E$ (and $\varphi :=$ the ground state). Since this unitary equivalence only holds for sufficiently regular φ, Dirichlet operators are also sometimes called generalized Schrödinger operators. We emphasize that under the above isomorphism in general domains change drastically. Hence known results on the essential self-adjointness of H with domain $C_0^\infty(\mathbb{R}^n)$ on $L^2(\mathbb{R}^n, dx)$ do not apply. On the contrary in many cases the essential self-adjointness of Dirichlet operators implies this property for Schrödinger operators (see e.g. [16, pp. 217, 218]).

There are basically two different types of sufficient conditions known for the essential self-adjointness of Dirichlet operators: global and local. A typical global condition obtained in [14] is: $|\beta| \in L^4(\mathbb{R}^n, \mu)$ (provided $\rho > 0$ a.e.). The best local condition obtained so far has been found in [25] where ρ has been required to be locally Lipschitzian and strictly positive if $n \geq 2$ (and

Pervenuto alla Redazione il 28 maggio 1996 e in forma definitiva il 20 novembre 1996.
with even weaker conditions if $n = 1$, cf. Remark 2 below). In particular, this means that β is locally bounded. One of our main results in this paper (cf. Theorem 7 below) says that L is essentially self-adjoint provided that ρ is merely locally bounded and \textit{locally uniformly positive} (cf. below) and $|\beta| \in L^\gamma_{\text{loc}}(\mathbb{R}^n, \mu)$ for some $\gamma > n$ (which as we shall show below, is equivalent to $|\beta| \in L^\gamma_{\text{loc}}(\mathbb{R}^n, dx)$; cf. Corollary 8). The proof of Theorem 7 is based on an elliptic regularity result (which is the main result of this paper) giving H^γ_{loc}-regularity of distributional solutions of the elliptic equation $L^* F = 0$, where $\rho := \Delta f + \langle B, \nabla f \rangle + cf$. This result is formulated as Theorem 1 below. As a consequence one gets H^γ_{loc}-regularity of invariant measures for diffusion processes with drifts satisfying certain mild local integrability conditions (which extends a result from [3], [4]). Finally, we note that for the above mentioned special applications to Schrödinger operators $H = -\Delta + V$, of course, one still needs corresponding information about the ground state φ to ensure that $|\beta| = 2|\nabla \varphi/\varphi| \in L^\gamma_{\text{loc}}(\mathbb{R}^n, \mu)$.

Throughout this paper, Ω is a (fixed) open subset of \mathbb{R}^n, and for $r \in (-\infty, \infty)$ and $p \geq 1$, $H^p_{\text{loc}}(\Omega)$ denotes the class of (generalized) functions u on Ω, such that $(1-\Delta)^{r/2} u \in L^p(\mathbb{R}^n, dx)$ for every $\psi \in C_0^\infty(\Omega)$. These spaces coincide with the usual Sobolev spaces for integer $r \geq 1$. All properties of these spaces which are needed below can be found, for instance, in [23]. If ν is a signed measure, then by definition $\int f \, d\nu = \int f \chi \, d|\nu|$, where $\chi := \nu/|\nu|$, and $L^p(\Omega, \nu) := L^p(\Omega, |\nu|)$. If, in addition, $\nu \ll dx$, then we write ν instead of $d\nu/dx$. Furthermore, $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product on \mathbb{R}^n and $|\cdot|$ the corresponding norm.

THEOREM 1. Let $n \geq 2$ and let μ, ν be (signed) Radon measures on Ω. Let $B = (B^i) : \Omega \to \mathbb{R}^n$, $c : \Omega \to \mathbb{R}$ be maps such that $|B|, c \in L^1_{\text{loc}}(\Omega, \mu)$. Assume that

1. $\int L\varphi(x) \mu(dx) = \int \varphi(x) v(dx) \quad \forall \varphi \in C_0^\infty(\Omega)$,

where

\begin{equation}
L\varphi(x) := \Delta \varphi(x) + \langle B(x), \nabla \varphi(x) \rangle + c(x) \varphi(x).
\end{equation}

Then:

(i) $\mu \in H^p_{\text{loc}}(\Omega, \mu)$ for any $p \geq 1$ and $\varepsilon > 0$. Here $1 - n(p - 1)/p > 0$ if $p \in [1, n-1]$ and, in particular, μ admits a density $F \in L^p_{\text{loc}}(\Omega, dx)$ for any $p \in [1, n/(n-1)]$.

(ii) If $|B| \in L^\gamma_{\text{loc}}(\Omega, \mu)$, $c \in L^{\gamma/2}_{\text{loc}}(\Omega, \mu)$ and $\nu \in L^n(\Omega, dx)$ where $n \geq \gamma > 1$, then $F := d\mu/dx \in H^{p,1}_{\text{loc}}(\Omega)$ for any $p \in [1, n/(n-\gamma + 1))$. In particular, $F \in L^p_{\text{loc}}(\Omega, dx)$ for any $p \in [1, n/(n-\gamma))$, where (here and below) $n/(n-\gamma) := \infty$ if $\gamma = n$.

(iii) If $\gamma > n$ and either.
REMARK 2 (i) There is a similar regularity result for \(n = 1 \) (whose proof is easier and, in fact, quite elementary). Therefore, Theorem 7 and Corollary 8 below also hold in this case. However, our conditions there for \(n = 1 \) are then obviously equivalent to: \(\phi(= \sqrt{\rho}) \in H_{\text{loc}}^{2,1}(\mathbb{R}) \) and (the continuous version of) \(\rho \) is strictly positive. But under these conditions in the special case \(n = 1 \) both results are already contained in [25]. So, we state and prove our results only for \(n \geq 2 \).

(ii) Note that since \(c \in L_{\text{loc}}^1(\Omega, \mu) \) and \(\nu \) is a Radon measure, the assumptions on \(c, \nu \) in Theorem 1 (ii) are automatically fulfilled, if \(\gamma \leq 2 \), provided \(\nu \ll dx \).

To prove Theorem 1 we use the following lemma.

LEMMA 3. (i) For any \(r \in (-\infty, \infty) \) and \(p > 1 \), if \(\Delta u \in H_{\text{loc}}^{p,r}(\Omega) \), then \(u \in H_{\text{loc}}^{p,r+2}(\Omega) \); also if \(u \in H_{\text{loc}}^{p,r}(\Omega) \), then \(u_{,i} \in H_{\text{loc}}^{p,r-1}(\Omega) \), \(1 \leq i \leq n \).

(ii) We have \(H_{\text{loc}}^{p,1}(\Omega) \subset L_{\text{loc}}^{np/(n-p)}(\Omega, dx) \) and \(L_{\text{loc}}^{p}(\Omega, dx) \subset H_{\text{loc}}^{n(p/(n-p)-1)}(\Omega) \) whenever \(1 < p < n \), and \(H_{\text{loc}}^{p,1}(\Omega) \subset C_{\text{loc}}^{1-n/p}(\Omega) \) if \(p > n \), so that in the latter case elements of \(H_{\text{loc}}^{p,1}(\Omega) \) are locally bounded. Also for \(q > p > 1 \), \(L_{\text{loc}}^{p}(\Omega, dx) \subset H_{\text{loc}}^{q,n/q-n/p}(\Omega) \).

(iii) If \(\mu \) is a Radon measure on \(\Omega \), then \(\mu \in H_{\text{loc}}^{p,-m}(\Omega) \) whenever \(p > 1 \) and \(m > n(1 - 1/p) \).

PROOF. Assertion (i) is well-known. Specifically, its first statement is a well-known elliptic regularity result and the second statement follows from the boundedness of Riesz’s transforms. Assertion (ii) is just the Sobolev imbedding theorems (see [23]). Assertion (iii) follows from these imbedding theorems since, for regular sub-domains \(U \) of \(\Omega \), \(H^{q,m}(U) \subset C(\bar{U}) \) if \(qm > n \) whence by duality the space \(H^{q/(q-1),-m}(U) = [H^{q,m}(U)]^* \) contains all finite measures on \(U \).

PROOF OF THEOREM 1. (i): We have that in the sense of distributions

\[
\Delta \mu = (B^i \mu)_{,i} - c \mu + \nu
\]

on \(\Omega \). Here by Lemma 3 (iii), the right-hand side belongs to \(H_{\text{loc}}^{p,-m-1}(\Omega) \) if \(m > n(1 - 1/p) \). By Lemma 3 (i) we conclude \(\mu \in H_{\text{loc}}^{p,-m+1}(\Omega) \), which leads to the result after substituting \(m = n(1 - 1/p) + \varepsilon \).
Before we prove (ii), (iii) we need some preparations. Fix a $p_1 > 1$ and assume that $F := \frac{d\mu}{dx} \in L^{p_1}_{\text{loc}}(\Omega, dx)$. (Such p_1 exists by (i).) Define

$$r := r(p_1) := \frac{\gamma p_1}{\gamma - 1 + p_1}$$

and observe that owing to the inequalities $1 < \gamma$ and $p_1 > 1$, we have $1 < r < \gamma$. Next, starting with the formula

$$|B F|^r = (|B||F|^{1/\gamma})^r |F|^{r-1/\gamma}$$

and using Hölder’s inequality (with $s = \frac{\gamma}{r} (> 1)$ and $t := \frac{s}{s-1} = \frac{\gamma}{\gamma - r}$) and the assumptions $|B||F|^{1/\gamma} \in L^r_{\text{loc}}(\Omega, dx)$ and $F \in L^{p_1}_{\text{loc}}(\Omega, dx)$, we get that $B^i F \in L^r_{\text{loc}}(\Omega, dx)$. By Lemma 3 (i)

$$B^i F \in H^{r,0}_{\text{loc}}(\Omega), \quad (B^i F)_x \in H^{r-1}_{\text{loc}}(\Omega).$$

(ii): Set

$$q := q(p_1) := \frac{\gamma p_1}{\gamma - 2 + 2 p_1} + 1,$$

and note that $q > 1 \leftrightarrow \gamma > 2 \leftrightarrow q < \frac{\gamma}{r}$, in particular, $q < \gamma$ in any case. Hence repeating the above argument with $c, \gamma/2, q$ replacing $|B|, \gamma, r$, respectively we obtain that

$$c F \in L^q_{\text{loc}}(\Omega, dx)$$

Fix $p_1 > 1$ such that $F := \frac{d\mu}{dx} \in L^{p_1}_{\text{loc}}(\Omega, dx)$ and let r, q be as in (4), (6), correspondingly. Since $\gamma \leq n$ we have that $q < n$, which by (7) and Lemma 3 (ii) resp. (iii) yields $c F \in H^{nq/(n-q) - 1}_{\text{loc}}(\Omega)$ if $q > 1$ resp. $c F \in H^{n-1}_{\text{loc}}(\Omega)$ for any $s \in (1, n/(n-1))$ if $q = 1$.

It turns out that if $p_1 < n/(n-\gamma)$, then

$$c F \in H^{r-1}_{\text{loc}}(\Omega).$$

Indeed, if $q > 1$, then (8) follows from the fact that if $p_1 \in (1, n/(n-\gamma))$ the inequality $r \leq nq/(n-q)$ holds. If $q = 1$, then $\gamma \leq 2$ and (8) follows from the fact that $r < n/(n-\gamma + 1) \leq n/(n-1)$ for $p_1 < n/(n-\gamma)$.

Finally by Lemma 3 (ii) we have $\nu \in H^{n/(n-\gamma + 1) - 1}_{\text{loc}}(\Omega)$ if $\gamma > 2$ and $\nu \in H^{r-1}_{\text{loc}}(\Omega)$ for any $s \in (1, n/(n-1))$ if $\gamma \leq 2$. In the same way as above, $\nu \in H^{r-1}_{\text{loc}}(\Omega)$ whenever $1 < p_1 < n/(n-\gamma)$. This along with (5) and (8) shows that the right-hand side of (3) is now in $H^{r-1}_{\text{loc}}(\Omega)$. By Lemma 3 (i) we have

$$\mu \in H^{r,1}_{\text{loc}}(\Omega)$$
and by Lemma 3 (ii) \(F \in L^{p_1}_{\text{loc}}(\Omega, dx) \), where

\[
p_2 := \frac{n r}{n - r} = \frac{n y p_1}{n y - n + (n - y) p_1} =: f(p_1).
\]

Thus we get

\[
p_1 \in \left(1, \frac{n}{n - y}\right) \quad \text{and} \quad F \in L^{p_1}_{\text{loc}}(\Omega, dx) \implies F \in L^{f(p_1)}_{\text{loc}}(\Omega, dx).
\]

One can easily check that \(p_2 = f(p_1) > p_1 \) if \(p_1 < n/(n - y) \), and that the only positive solution of the equation \(q = f(q) \) is \(q = n/(n - y) \). Therefore, by taking \(p_1 \) from \((1, n/(n - 1))\), which is possible by (i), and by defining \(p_{k+1} = f(p_k) \) we get an increasing sequence of \(p_k \uparrow n/(n - y) \), which implies that \(F \in L^{p_k}_{\text{loc}}(\Omega, dx) \) for any \(p < n/(n - y) \).

But as \(p_k \not\to n/(n - y) \), \(r(p_k) \) (defined according to (4)) increasingly converges to

\[
\frac{\gamma n/(n - y)}{\gamma - 1 + n/(n - y)} = \frac{n}{n - y + 1}.
\]

By (9) this proves (ii).

(iii): First we consider case (b) in which \(|B| \in L^{q}_{\text{loc}}(\Omega, \mu), \quad c \in L^{n y/(n + y)}_{\text{loc}}(\Omega, \mu), \quad v \in L^{n y/(n + y)}_{\text{loc}}(\Omega, dx) \). By the last assertion in (ii) we have \(F \in L^{p_1}_{\text{loc}}(\Omega, dx) \) for any (finite) \(p_1 > 1 \). Let \(r := r(p_1) \) be defined as in (4). Then \(1 < r < \gamma \) and (5) holds. Set

\[
q := q(p_1) := \frac{n y}{n + \gamma p_1}.
\]

Hence repeating the arguments that led to (5) with \(c, n y/(n + y), q \) replacing \(|B|, \gamma, r \) respectively we obtain \(c F \in L^{q}_{\text{loc}}(\Omega, dx) \), thus \(c F \in H^{n q/(n - q) - 1}_{\text{loc}}(\Omega) \) by Lemma 3 (ii). Observe that when \(p_1 \to \infty \), we have \(r \uparrow \gamma, \quad q \uparrow n y/(n + \gamma), \) and \(n q/(n - q) \uparrow \gamma \). Therefore, combining this with our assumption that \(v \in L^{n y/(n + y)}_{\text{loc}}(\Omega, dx) \) which by Lemma 3 (ii) is contained in \(H^{\gamma - 1}_{\text{loc}}(\Omega) \), by taking \(p_1 \) large enough, we see that the right-hand side in (3) is in \(H^{\gamma - 1}_{\text{loc}}(\Omega) \) for any \(\varepsilon \in (0, \gamma - 1) \). By Lemma 3 (ii) we conclude \(F \in H^{\gamma - 1}_{\text{loc}}(\Omega) \) and since \(\gamma > n \), the function \(F \) is locally bounded. Now we see that above we can take \(p_1 = \infty \) and therefore the right-hand side of (3) is in \(H^{\gamma - 1}_{\text{loc}}(\Omega) \), which by Lemma 3 (i) gives us the desired result.

In the remaining case (a) we take \(p_1 > \gamma/(\gamma - 1) \) and assume that \(F \in L^{p_1}_{\text{loc}}(\Omega, dx) \). Then instead of (4) and (10) we define

\[
r := r(p_1) := \frac{\gamma p_1}{\gamma + p_1}, \quad q := q(p_1) := \frac{n y}{n + y p_1} + p_1 \vee 1.
\]
and observe that owing to $p_1 > \gamma / (\gamma - 1)$ we have $r > 1$, which (because $p_1^{-1} + \gamma^{-1} = r^{-1}$) allows us to apply Hölder's inequality starting with $|BF| = |B|^r|F|^r$ to conclude that (5) holds. Since $c \in L^1_{\text{loc}}(\Omega, \mu)$, resp. $\frac{n\gamma}{n + \gamma} > 1$ and \(\left(\frac{n\gamma}{n + \gamma} \right)^{-1} + p_1^{-1} = q^{-1} \), we also have that $cF \in L^q_{\text{loc}}(\Omega, dx)$. Obviously, $q < n$. As in part (ii) this yields that $cF \in H^{q/(n-q),-1}_{\text{loc}}(\Omega)$ if $q > 1$ and $cF \in H^{r,-1}_{\text{loc}}(\Omega)$ for any $s \in (1, n/(n - 1))$ if $q = 1$. We claim that (8) holds (with $r = r(p_1)$ as in (11) for all $p_1 > \gamma / (\gamma - 1)$, $p_1 \neq n\gamma / (n\gamma - n - \gamma)$).

Indeed, if $q > 1$, then $nq/(n-q) = r$. If $q = 1$, then $p_1 \leq n\gamma / (n\gamma - n - \gamma)$. But since $p_1 \neq n\gamma / (n\gamma - n - \gamma)$, we have $p_1 < n\gamma / (n\gamma - n - \gamma)$, which is equivalent to the inequality $r < n/(n - 1)$.

Thus, since $v \in L^{n\gamma/(n+\gamma)}_{\text{loc}}(\Omega, dx) \subset H^{\gamma,-1}_{\text{loc}}(\Omega) \subset H^{r,-1}_{\text{loc}}(\Omega)$ (because $r < \gamma$), it follows by Lemma 2 (i) that:

\[
(12) \quad \left(p_1 > \frac{\gamma}{\gamma - 1} \text{ and } p_1 \neq \frac{n\gamma}{n\gamma - n - \gamma} \right) \Rightarrow F \in H^{r,-1}_{\text{loc}}(\Omega).
\]

Provided $r < n$ the latter in turn by Lemma 3 (ii) implies that $F \in L^p_{\text{loc}}(\Omega, dx)$. Summarizing we have thus shown:

\[
(13) \quad \left(p_1 > \frac{\gamma}{\gamma - 1} \text{ and } p_1 \neq \frac{n\gamma}{n\gamma - n - \gamma} \right) \Rightarrow F \in L^p_{\text{loc}}(\Omega, dx),
\]

where

\[
p_2 := \frac{nr}{n - r} = \frac{n\gamma p_1}{n\gamma - (\gamma - n)p_1} > \frac{n\gamma}{n\gamma - (\gamma - n)} p_1.
\]

Also notice that $\gamma / (\gamma - 1) < n/(n - 1) < \frac{n\gamma}{\gamma n - n - \gamma}$ so that by (i) we can take a p_1 to start with. Then starting with p_1 close enough to $n/(n - 1)$, by iterating (13) we always increase p by a certain factor > 1. While doing so we can obviously choose the first p so that the iterated p's will be never equal to $n\gamma / (n\gamma - n - \gamma)$ and the corresponding r's will not coincide with n. Then after several steps we shall come to the situation where $r > n$, and then we conclude from (12) that F is locally bounded (one cannot keep iterating (13) infinitely having the restriction $r < n$). As in case (b) one can now easily complete the proof.

Remark 4 (i) For sufficiently regular F with no zeros operators of the type considered above become special cases of operators $L = \sum_{i,j} \partial_i (a_{ij} \partial_j) + q$. Additional information (including further references) about the essential self-adjointness of such operators, however, considered on $L^2(R^n, dx)$ can be found in [8], [15].

(ii) In a forthcoming paper the parabolic case will be studied. It is, however, immediate from Theorem 1 that if $t \mapsto \mu_t$ is differentiable such that $\frac{\partial}{\partial t} \mu_t$ is a
Radon measure, then for fixed \(t \) the densities \(F_t \) of \(\mu_t \) w.r.t. \(dx \) exist and all respective assertions in Theorem 1 hold for \(F_t \).

(iii) Note that the only property of the operator \(L_0 := \Delta \) used above was the one mentioned in Lemma 3 (i), i.e., that \(u \in H^{n,r+2}_{\text{loc}}(\Omega) \) provided \(L_0 u \in H^{n,r}_{\text{loc}}(\Omega) \). It is known (see, e.g., [21, p. 270]) that this holds for arbitrary non-degenerate second order elliptic operators with smooth coefficients. Therefore, Theorem 1 remains valid if we replace \(\Delta \) by any non-degenerate second order elliptic operator \(L_0 \) with smooth coefficients. Moreover, as a thorough inspection of the proof of Theorem 4.2.4 in [22] shows, one can relax the assumption about the smoothness of the coefficients of \(L_0 \) here even more. Note, in particular, that Theorem 1 extends to elliptic second order operators on smooth Riemannian manifolds with non-degenerate smooth second order parts.

(iv) It should be noted that the elliptic equations discussed here cannot be reduced to those considered e.g. in [10], [13], [18], [24]. There are two major differences. The first is that the solutions considered there by definition are supposed to be in \(H^{n+1}_{\text{loc}}(\mathbb{R}^n) \). Secondly, our integrability conditions for \(B \) are w.r.t. a measure \(\mu \) which is a solution of our equation. For this reason, \(B \) need not be locally Lebesgue integrable; e.g. if \(\mu \) is given by the density \(x^2 \exp(-x^2) \) on \(\mathbb{R} \), then it solves our elliptic equation with \(B(x) = \beta(x) = -2x + 2/x \). Of course, Theorem 1 (iii) shows that under sufficient integrability conditions our solutions become solutions also in the sense of the above mentioned references. However, in general we get a wider class of solutions. Note also that in our setting due to the weak assumptions on \(B \) the elliptic regularity does not imply that solutions belong to the second Sobolev class \(H^{2,1}_{\text{loc}} \) (e.g. any \(\mu = \rho dx \) with \(\rho \in H^{1,1}_{\text{loc}} \) satisfies (1) with \(B := \nabla \rho / \rho \), \(c := 0 \), \(v := 0 \)).

The next example shows that assertion (iii) of Theorem 1 fails if \(n + \varepsilon \) is replaced by \(n - \varepsilon \). (Then \(F \) does not even need to be in \(H^{2,1}_{\text{loc}}(\Omega) \).)

Example 5. Let \(n > 3 \) and

\[
L^* F(x) = \Delta F(x) + \alpha(x^1|x|^{-2}F)_{x^1}(x) - F(x),
\]

where \(\alpha = n - 3 \). Then the function \(F(x) = (e^r - e^{-r}) r^{-(n-2)} \), \(r = |x| \), is locally \(dx \)-integrable and \(L^* F = 0 \) in the sense of distributions, but \(F \) is not in \(H^{2,1}_{\text{loc}}(\mathbb{R}^n) \). Here \(B(x) = -\alpha x \|x\|^{-2} = \nabla(|x|^{-\alpha})/|x|^{-\alpha} \) and \(|B| \in L^{n-\varepsilon}_{\text{loc}}(\mathbb{R}^n, dx) \) for all \(\varepsilon > 0 \). In a similar way, if there is no """"F"""" in the equation above, then the function \(F(x) = r^{-(n-3)} \) has the same properties.

Proof. Observe that \(F_{x^i}, F_{x^i x^j} \) are locally \(dx \)-integrable. Therefore, the equation \(L^* F = 0 \) follows easily from the equation on \((0, \infty)\)

\[
f'' + \frac{(n-1+\alpha)}{r} f' + \frac{n-2}{r^2} f = f = 0,
\]

which is satisfied for the function \(f(r) = (e^r - e^{-r}) r^{-(n-2)} \). It remains to note that \(F, \nabla F \) and \(\Delta F \) are locally \(dx \)-integrable, since \(f(r)r^{n-1}, f'(r)r^{n-1}, \)
Local boundedness of $f''(r)r^{n-1}$ and non-square-integrability of ∇F at the origin.

Remark 6. Applying the regularity result in Theorem 1 (ii) above to the case $c = 0 = \nu$ we get, in particular, the existence of a density in $H_{\text{loc}}^{0,1}(\mathbb{R}^n)$, for $p \in \left[1, \frac{n}{n-2}\right)$, for any invariant measure μ of a diffusion ξ_t driven by the stochastic differential equation $d\xi_t = dw_t + B(\xi_t)dt$, where the drift B is assumed to be in $L_{\text{loc}}^{1+\delta}(\mathbb{R}^n, \mu)$. This is true for any interpretation of a solution which implies (1) for invariant measures. Thus, we get an improvement of a part of a theorem in [3], [4] (see also [2] for the case of a non-constant second order part). In [3], [4] under the a priori assumption that μ is a probability measure and assuming that $|B|$ is globally in $L^2(\mathbb{R}^n, \mu)$, it was shown that μ admits a density in $H^{1,1}(\mathbb{R}^n)$. (We would like to mention that under these stronger conditions the latter result can also be deduced from [6]).

We say that a measurable function f on \mathbb{R}^n is **locally uniformly positive** if $\inf_U f > 0$ for every ball $U \subset \mathbb{R}^n$.

Theorem 7. Let $n \geq 2$ and let μ be a measure on \mathbb{R}^n with density $\rho := \phi^2$, $\phi \in H_{\text{loc}}^{2,1}(\mathbb{R}^n)$, which is locally uniformly positive. Assume that $|\beta| \in L_{\text{loc}}^{\gamma}(\mathbb{R}^n, \mu)$, where $\beta := \nabla \rho / \rho$ and $\gamma > n$. Then the operator

$$L\psi = \Delta \psi + \langle \nabla \psi, \beta \rangle$$

with domain $C_0^\infty(\mathbb{R}^n)$ is essentially selfadjoint on $L^2(\mathbb{R}^n, \mu)$.

Proof. First we note that since μ satisfies (1) with $B := \beta$, $c := 0$, $\nu := 0$, it follows by Theorem 1 (iii), part (b), that ρ is continuous, hence locally bounded. Assume that there is a function $g \in L^2(\mathbb{R}^n, \mu)$ such that

$$\int (L - 1)\xi(x)g(x)\mu(dx) = 0 \quad \forall \xi \in C_0^\infty(\mathbb{R}^n). \quad (14)$$

Recall that by definition $\beta = 0$ on the set $\{\rho = 0\}$ (which is reasonable since $\nabla \rho = 0$ dx-a.e. on $\{\rho = 0\}$). Clearly, $|\beta| \in L_{\text{loc}}^{\gamma}(\mathbb{R}^n, dx)$. Consequently, by Theorem 1 (iii), Part (a), $F \in H_{\text{loc}}^{0,1}(\mathbb{R}^n)$. In particular, F is continuous and locally bounded. Then $g = F/\rho \in H_{\text{loc}}^{0,1}(\mathbb{R}^n) \cap L_{\text{loc}}^{\infty}(\mathbb{R}^n)$, $g|\beta| \in L_{\text{loc}}^{\gamma}(\mathbb{R}^n, dx)$. Therefore, we can integrate by parts in equality (14) which yields for every $\xi \in C_0^\infty(\mathbb{R}^n)$

$$0 = \int \langle \nabla \xi, \nabla g \rangle d\mu - \int \langle \nabla \xi, \beta \rangle g d\mu + \int \langle \nabla \xi, \beta \rangle g d\mu - \int \xi g d\mu \quad (15)$$

$$= -\int \langle \nabla \xi, \nabla g \rangle d\mu - \int \xi g d\mu.$$
Now let \(\psi \in C_0^\infty(\mathbb{R}^n) \) and \(\varphi \in H^{2,1}_{\text{loc}}(\mathbb{R}^n) \). Then by the product rule

\[
(\nabla \varphi, \nabla (\psi \varphi)) = (\nabla (\psi \varphi), \nabla \varphi) - \varphi (\nabla \psi, \nabla \varphi) + g(\nabla \varphi, \nabla \psi) .
\]

Since equality (15) extends to all \(\zeta \) in \(H^{2,1}(\mathbb{R}^n) \) with compact support, we can apply (15) to \(\zeta := \psi \varphi \) and use (16) to obtain

\[
\int (\nabla \varphi, \nabla (\psi \varphi)) \, d\mu + \int \varphi \psi g \, d\mu
\]

\[
= \int (\nabla (\psi \varphi), \nabla \varphi) \, d\mu - \int \varphi (\nabla \psi, \nabla \varphi) \, d\mu
\]

\[
+ \int g(\nabla \varphi, \nabla \psi) \, d\mu + \int \varphi \psi g \, d\mu
\]

\[
= \int \varphi (\nabla \psi, \nabla g) + \int g(\nabla \varphi, \nabla \psi) \, d\mu .
\]

Taking \(\varphi := \psi g \), one gets

\[
\int (\nabla (\psi g), \nabla (\psi g)) \, d\mu + \int (\psi g)^2 \, d\mu
\]

\[
= - \int \psi g (\nabla \psi, \nabla g) \, d\mu + \int g(\nabla (\psi g), \nabla \psi) \, d\mu
\]

\[
= \int g^2(\nabla \psi, \nabla \psi) \, d\mu .
\]

Hence, we get

\[
(17) \quad \int (\psi g)^2 \, d\mu \leq \int g^2|\nabla \psi|^2 \, d\mu .
\]

Taking a sequence \(\psi_k \in C_0^\infty(\mathbb{R}^n), k \in \mathbb{N} \), such that \(0 \leq \psi_k \leq 1 \), \(\psi_k(x) = 1 \) if \(|x| \leq k \), \(\psi_k(x) = 0 \) if \(|x| \geq k + 1 \), and \(\sup_k |\nabla \psi_k| = M < \infty \), we get by Lebesgue's dominated convergence theorem that the left hand side of (17) tends to \(\|g\|_2^2 \), while the right hand side tends to zero. Thus, \(g = 0 \). By a standard result (see, e.g., [12]) this implies the essential self-adjointness of \((L, C_0^\infty(\mathbb{R}^n)) \) on \(L^2(\mathbb{R}^n, \mu) \).

Corollary 8. The assertion of the previous theorem holds true if \(\mu \) is a measure on \(\mathbb{R}^n \) with density \(\rho := \varphi^2, \varphi \in H^{2,1}_{\text{loc}}(\mathbb{R}^n) \), and \(|\beta| \in L^\gamma_{\text{loc}}(\mathbb{R}^n, dx) \), where \(\beta := \nabla \rho/\rho \) and \(\gamma > n \).

Proof. Note that \(\rho \) admits a continuous strictly positive modification. Indeed, if \(f_n := \log(\rho + \frac{1}{n}) \), \(n \in \mathbb{N} \), then \(f_n \xrightarrow{n \to \infty} \log \rho \) in \(L^1_{\text{loc}}(\mathbb{R}^n, dx) \), which easily follows from the fact that \(\log \rho \in L^1_{\text{loc}}(\mathbb{R}^n, dx) \). The latter in turn follows from [3, Lemma 6.4]. Consequently by the Poincaré inequality, the sequence \((f_n)_{n \in \mathbb{N}} \) is bounded in \(H^{\gamma,1}(U) \) for every open ball \(U \subset \mathbb{R}^n \). By the compactness of the embedding \(H^{\gamma,1}(U) \hookrightarrow C(U) \), a subsequence of the sequence of the continuous modifications of \((f_n)_{n \in \mathbb{N}} \) converges locally uniformly to \(\log \rho \). Whence \(\rho \) is continuous and strictly positive. In particular, \(|\nabla \rho/\rho| \in L^\gamma_{\text{loc}}(\mathbb{R}^n, \mu) \).
Remark 9. If \(\mu = \rho \, dx \) with \(\rho = \varphi^2 \) and \(\varphi \in H^{2,1}_{\text{loc}}(\mathbb{R}^n) \), the so-called Markov uniqueness (i.e., the uniqueness of a Markovian semigroup on \(L^2(\mathbb{R}^n, \mu) \) with generator given by \(Lf = \Delta f + (\nabla f, \beta) \) on \(C^\infty_0(\mathbb{R}^n) \)) always holds with \(\beta := \nabla \rho / \rho \) (see [16], [17]). However, in general Markov uniqueness is weaker than the essential self-adjointness of \((L, C^\infty_0(\mathbb{R}^n)) \) on \(L^2(\mathbb{R}^n, \mu) \). (see [7]). Optimal (local or global) conditions for the essential self-adjointness remain unknown except for the one-dimensional case investigated in [25] and [7]. In fact, recently in [7] a complete characterization of the essential self-adjointness for Dirichlet operators has been given in the case \(n = 1 \).

Acknowledgement. Financial support of the Sonderforschungsbereich 343 (Bielefeld), EC-Science Project SC1*CT92-0784, the International Science Foundation (Grant No. M38000), and the Russian Foundation of Fundamental Research (Grant No. '94-01-01556) is gratefully acknowledged.

REFERENCES

Department of Mechanics and Mathematics
Moscow State University
119899 Moscow
Russia

School of Mathematics
University of Minnesota
Minneapolis, MN 55455
USA

Fakultät für Mathematik
Universität Bielefeld
D-33501 Bielefeld
Germany