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On Inhomogeneous Incompressible Fluids
and Reverse Hölder Inequalities

ARINA ARKHIPOVA - OLGA LADYZHENSKAYA

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXV (1997), pp. 51-67

1. - On a new proof of the global unique solvability for the two-dimensional
problems

In [ 1 ] for the system

and

in or 3, under the first boundary condition

and the initial conditions

the theorems on unique solvability, which are similar to the theorems estab-
lished in [2]-[5] for the case of homogeneous fluids (i.e. for p = const &#x3E; 0)
were proved. For the two- dimensional problems it was done in arbitrary
interval of time without any smallness restrictions on data. But for the three-
dimensional problems the time-interval of existence depended on the values
of some norms of data. The solutions { v, p, p} were found in the spaces
o 

_ 
0

x x = AT with q &#x3E; n. In [1] and in this paper Q
is a bounded domain. For unbounded domains S2 everything can be done using
similar techniques. The same results hold for the periodic boundary conditions
when S2 is a parallelepiped or a rectangle. In particular, there exists a unique
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global solution of the sys-
tem ( 1.1 k), k = 1, 2, for Q = (-1, Î) x (-1, 1 ) ë JR2, which satisfies the initial
condition ( 1.3k ), k = 1, 2, and the periodic boundary conditions

We suppose in this case that f , v° and p° are periodic functions in xj and x2
-- _2 _ --

with period 2 and , v° , p°) E x (0, T ) ) x x C1 (Q x [0, T ] ) for
any bounded domain Q c JR2. In this paper we use the notations which are
close to those from [ 1 ] and [4], [6]. Let us remind some of them.

Lq (Q) is the space of functions v : Q JRm for which I v Iq is Lebesque
integrable function on Q; II . is the norm in Lq (Q). If v E Lq (QT), and

1

QT = Q x (o, T), then _ (fQ I vex, t) Iq  00 for almost

T !
all t e (0, T ) and is the Sobolev space

with the norm I I . for natural I it is

and for other 1 the definitions of and 11 . can be found in [1] or [6].
The elements v of have the finite norm

and the elements p of Wi,O(QT) have the finite norm

: div v = 01 is a subspace of W2,1 (QT)- We use
also two subspaces of ,

and

satisfies the boundary conditions from ( 1.41 ) } , 1
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if Q is the square. is the space of continuously differentiable functions
v : QT - with the standard norm

C"(QT) is the space of Holder continuous functions on QT with the Holder
exponent a E (0, 1) and the standard norm 11 . 

We use for the norms in C(Q) and in the symbol 11 and
denote parabolic boundary of Q T as a’ Q T .

The aim of this paper is to simplify the considerations of [1] for the two-
dimensional case. It is attained with the help of the following results about
solutions { v, p { of linear problem

where p is a known continuous function satisfying the inequalities

THEOREM 1.1. Let { v, p } belong to x and satisfy the
system ( 1.5) with (D E Lq ( QT ), q &#x3E; 2, and p belonging to C" ( QT ), a &#x3E; 0, and

satisfying ( 1.6). Then there exists a number s E (2, q ] such that Vxx E Ls ( Q’) for
any Q’ C QT with dist(Q’, a’ QT) &#x3E; 0 and ~) vxx Q’ can be majorized by a number
determined by l~ ~ and [

- 

__ 
If, additionally, v - v I t=o E Jq (Q) and v satisfies a correct homogeneous

boundary condition, then vxx E Ls (Q T) and

where constant c is defined by and

some numerical characteristics of a SZ (these are C2-norm of a S2 for the boundary
condition (1.2) and the side lengths of the rectangle S2 for the periodic boundary
conditions).

Note, that the dimension of Q in Theorem 1.1 can be arbitrary. In Sec-
tion 2 we prove the first part of Theorem 1.1 and the second part for the
conditions (1.41). For conditions (1.2) the proof of (1.7) is more complicated.

In this section we explain how a global unique solvability for the two-
dimensional problems can be deduced using (1.7) and some results from [ 1 J .
According Section 4 of [ 1 ], it is enough to get for any solution { v, p, p } E AT,
q &#x3E; 2, of the problem the following apriori estimate
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in which Mo = + and M2 are the constants from (1.6),
M3 = 1 is a continuous nondecreasing function of indicated
arguments. We will denote the majorants of such type depending on the same
arguments by with different k.

We take from [ 1 ], Section 4, the estimates

and

with some a &#x3E; 0. Their derivation is comparatively easy.
Now we consider f v, p} as a solution of the linear system (1.5) with

and address (1.7). The norm can be estimated with the help of the
multiplicative inequality

It is true for any u E and Q C ([7], Ch. II).
0

We remind that for u E Wm (Q) number fl2 = 0 and fJ1 does not depend
on Q.

Besides (1.12) we use the following consequences of (1.9):

Due to ( 1.12) and ( 1.13 )
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Using (1.14) with m = s, we get

Taking into account (1.9), (1.10) and (1.15) we derive from (1.7)

This inequality with s = gives the estimate

with E (2, q] and ~6 under control.
From it the estimate

follows. It allows to address Lemma 1.3 of [ 1 ] and do the conclusion

To get a new information on px and vt we apply the operator div to the
system ( 1.11 ) and obtain

where h = p f , g = - ~ p ~ (Vt + ~ ’ Vv) - PVkxi and vk are the components
of vector-function v. It is easy to see that h(t) E Lq(Q) and g(t) E L2(S2) for
almost all t E (0, T ) and

In the case of boundary conditions ( 1.41 ) we represent p as a sum p + P2,
where pk are the solutions of following equations

and pk, pkx are periodic and
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For p 1 the estimate

is well known. It gives

For solution p2 of (1.222), (1.23) we have

This estimate and the embedding theorem W2’ (Q) in L, (Q) for all r  

allow to do the conclusion

(Here, as above, we don’t point out the dependence of majorants on the pa-
rameters contained in the definitions of norms.)

It follows from (1.25), (1.21) that

where 71 1 = + and j2 = The value
of ji is estimated by a majorant due to ( 1.14) with m = 2 and (1.9).
From ( 1.12) for u = vx, m = 2, and estimates (1.9), ( 1.13) it follows j2 :::; 
and therefore

Now for p = PI + p2 we derived from (1.24) and (1.27) an estimate for
and also the estimate

where s is the same as in ( 1.17).
To estimate we use system ( 1.11 ) and the fact that 

and can be estimated by some majorants /tl3 due to (1.14)
for 1 and (1.17).

Therefore

The information ( 1.17), (1.29) and (1.9) allows to conclude that

This fact is known and can be easily derived with the help of fundamental
solution of heat equation.

From equation (1.12) and (1.30), (1.19) it follows

We use also Theorem 2.1 from [ 1 ], in which the global unique solvability in
o 

, , 
_

x of the problem (1.5), (1.2), (1.31) with p E C1 (QT) and
zero initial data was proved. With the help of this theorem it is easy to prove
the following statement.
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THEOREM 1.2. Let p in (1.5) belong to and satisfy (1.6). Then for
0 

o2_l q .

any { ~, E Lq ( QT ) x Jq (S2), q &#x3E; 1, there exists a unique solution { v, p} E
o

x of problem (1.5), (1.2), and (1.31). For it the estimate

is valid with some constant c I depending only on T, Mi M2, p, Q T and

Analogously the next assertion is proved.

THEOREM 1.2’. Let in problem ( 1.5), ( 1.41 ), ( 1.31 ), Q = (-1, 1 ) x (-1, 1 ), p
belong to C 1 ( Q T ) and satisfy ( 1.6) and (1.42). Then for any { f, v° } E Lq ( Q T ) x
A2- £ A 

1(Q), q &#x3E; 1, there exists a unique solution { v, p } E x of
problem (1.5), ( 1.41 ), ( 1. 31 ). The estimate ( 1.32) is valid for it.

Let us take the pair { v, p } from the solution { v, p, p) under consideration.
This pair { v, p I is a solution of (1.5) with (D defined by (I.l l) and we can
apply Theorem 1.2 or 1.2’ correspondingly. Due to (1.6) and (1.19), (1.31)
the constant cl in (1.32) is a majorant under our control, therefore we denote
it by The norm can be estimated with the help of ( 1.14) for
m = q. Namely,

From (1.32) and the last inequality with 8 « 1 we derive

This estimate together with (1.19) and (1.31) supply estimate (1.8) with some
majorant JLI.

As is was said earlier, estimate (1.8) guaranties a global unique solvability
of the two-dimensional problems. In this paper we realized our program for
the boundary condition (1.4k), k = 1, 2.

2. - On the summability of vxx with power s &#x3E; 2

Let and

be a solution of
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under periodic boundary conditions

and initial condition

We assume

Function

is the solution of the heat equation, div C = 0 and , Moreover,

(see, for example, [6], Ch. IV). We put v - v = u and transform (2.1)-(2.3) to
the following problem with zero initial condition

where F = 4$ - + 
We will prove for this problem the following statement.
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THEOREM 2.1. Assume that F E Lq(QT), q &#x3E; 2, and p satisfies (2.4). Let

{u, pl E x be a solution of (2.8)-(2.10). Then there exists
s E (2, q] such that Uxx E Ls(QT) and

where is the Hölder constant of p in QT and the constant c depends on v,QT

M2 and T.

Let us prolong functions F, u and p on R 2 x (201300, T] as 2-periodic
functions in x = (XI, X2) and as zero for (x, t) E R~ x ( - oo, OJ . The function p
we prolong on R 2 x T] putting p (x , t ) = p (x , 0) for t E (-cxJ, 0] and
2-periodic in x. We preserve the notations for all these functions. It is easy
to see that {u, p} E Ji,I(Q) x p E Ca(Q) and F E Lq(Q) for any
bounded cylinder Q c I1~2 x (-oo, T] and {u, p} satisfies the system (2.8) for
almost all (x, t) E R2 x (-00, T).

We define parabolic cylinders

where j

= max( be the parabolic metric in 
Now we fix R~, in such a way that Q T C QR(z*), z * = (0, T), and put

For the solution E J2’j (Q) x W2"u(Q) of the system (2.8) we will
prove that for some s E (2, q] Vr(u) E Ls (Q’) and

where r (u) = rot u = · The constant c in (2.12) depends on Mi 1, v
and value l~o + 

Taking into account the periodicity of the data and the solution, from (2.12)
and the known estimate

for any periodic solenoidal field, we deduce (2.11).
So the proof of Theorem 2.1 has been reduced to the proof of esti-

mate (2.12). The last is based on two assertions, which are formulated below
as Lemma 2.1 and 2.2.

LEMMA 2.1. Let f u, p} be a J2’ (Q) X Wi 0
let F I and J in Q. Then

for any cylinder C Q and any 8 &#x3E; 0; the constant c depends on v, 
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PROOF. Let § = §(x) be a cut-off function for B 1 (o),  (x ) = 1 in B! (0),
2

I  ’ (x )   4. Then function §R(x) - ( R ) is the

cut-off function for BR(0) and

For any function V E and its "weighted" mean-value

we have

for any constant in particular for p = 2013. v dx.fBR(-"O)
We will also use some well-known relations for a vector-function w =

(WI, W2) and a scalar function ~o:

where r*(cp) = rot* cp = (CPX2’ T is a tangent to a 0 vector with IT I = 1;

Now we fix z° E Q and a cylinder such that C Q.
We rewrite system (2.8) as

where p = p (z°), and note that

Put

multiply system ( and integrate the
result over
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The first term in the derived equality can be written in the form of

Next term we transform with the help of twice integrating by parts

The integral with Vp will dissappear. All other terms we do not change. As
a result we get

Using the Cauchy inequality to estimate the right-hand side of the last

relation we come to the inequality

With 11 ’ 11 = 11 - 112, B2R (xo).
Applying to the right-hand side of (2.19) the Cauchy inequality with some

small 8 &#x3E; 0 we derive

To define a cut-off function in t we consider a smooth nondecreasing
function and /M = 1 We
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put ) and multiply (2.20) by X2R(t, to). After integration of
the result over 1 I where we have

It follows from (2.21) that

and

For estimating we have used here the inequality

which is the consequence of (2.14) and Poincare inequality. Besides in the case
of two variables the imbedding theorem of Wl (B2R) in L2(B2R) guarantees the
inequality

where r2R is the mean of r (u) over B2R and constant 0 does not depend on R.
From (2.14) and (2.24) it follows

Let ci be the constant from (2.21). The next chain of inequalities holds:
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Here to establish (a) we have used (2.23) for the couple of cylinders
Q2R(ZO), Q4R (z°) and (2.25). To install (b) we have used the Cauchy inequality
with a parameter 8 ~ 0.

Now from (2.22) it follows (2.13) in the couple of cylinders QR(z°) and

Let us denote I by g and rewrite (2.13) in the form of

where

Inequalities (2.26) are the reverse Holder inequalities for function g in the
parabolic cylinders with additional terms given by functions f and 1/1. Under
the conditions of Theorem 2.1 the norms (I g 112, Q ~ &#x3E; 2, and Ill, Q
are finite. In the case when g satisfies (2.26) with 1/1 == 0 or 1/1 E Lm ( Q),
m &#x3E; 1, the Gehring lemma ([8]) and its modifications ([9-12]) allow to state a
higher integrability of g in V Q’ C Q, 8(Q’, 8’Q) &#x3E; 0, and to get an estimate
for IIglls,Q’ with some s &#x3E; 2.

In our case we know about 1/1 only that 1/1 E Ll (Q). Nevertheless it is

appeared that if the integral in (2.26) is multiplied by Rfl with a

0 &#x3E; 0, then the statement about the higher integrability of g on Q’ C Q,
~ ( Q’, &#x3E; 0, also holds and &#x3E; 2, can be estimated by a majorant
depending only on ll* 11 I,Q, and [5(6~~6)]’~

Now we formulate the corresponding result in a suitable form.
Let x = P- = {(x, t) :1 xi = 1, ... , n, -a2 

t  0} be a half of parabolic cube in JRn+1 with parabolic boundary 8’P§ .
LEMMA 2.2. Let P = with an a &#x3E; 0 and for nonnegative functions g E

Ll (JP», 1 &#x3E; 1, f E Lm (P), m &#x3E; l, and 1/1 z° E P the inequalities

hold with some parameters Rl 1 &#x3E; 0, o &#x3E; 0, B &#x3E; 1, b &#x3E; 2, fl &#x3E; 0. There exists a
number 80 = ()o(l, b) E (0, 1 ) such that if (2.27) is true for o  oo then g E LS (P)
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for any I , with any ,

, ,

n+2 the constants c and 8 depend on n, l, m, a, b, B, B, and
c also depends on [8 (I~, 8’P)] ~ ~ .

Now we describe our proof of Lemma 2.2. First of all we prolong g, f, 1/1
as even functions from P = P§ on parabolic cube = { (x , t ) : ~ xi ~ [  a, i =

1,..., n, I t I  a 2 { . Note, that for prolonged functions g, f, 1/1 from (2.27)
the similar inequalities follow in the full cylinders {z = (x, t) :
x E It -  R 2 { . More exactly, there exist numbers b 1 &#x3E; b and

ci = cl (l, b) &#x3E; 1 such that for all z° E Pa inequalities

1

hold with x = 9 - C1, Bi = ci B, f = 1/11 = CI1/J.
Put 21 and fix 8  9o in (2.27), in (2.29). According

to well-known scheme we rewrite (2.29) for some normed functions G, ft, BII.
1

Namely, put M = + + and define normed functions by
equalities 

’ 

For them we have

and
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These inequalities are valid for and all

We introduce functions where and

where Using (2.30) we prove for h the

inequalities

where £ Constants co &#x3E; 1 and

ro &#x3E; 0 are defined by the parameters of (2.30). Functions h, Hl , H2 : [to, oo) --~
[0, oo) are nonincreasing and tend to zero for i - +00. The proof of (2.31)
demands a place and we omit it here. Due to lemma on the Stieltjes integral
proved by Gehring in [8], from (2.31) with 1 = a + 1 it follows

with a . Taking into account the equality

one can deduce from (2.32) that Go belongs to for some

1 = a + 1) and the estimate holds

with the constant c &#x3E; 0 depending on co, a and 8 (P’, 8Pa) &#x3E; 0.

Remark that inequality y  f£ in (2.32) provides the restriction s 
1-1 

co

1 + with co from (2.31 ). Moreover, to guarantee in (2.32) the finiteness of
co-

integrals containing H, and H2 we need to require: s  m and s  1 + 
As G, F, B11 are normed functions g, fl and we get from (2.33)

with constant c depending on
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1

Recalling that fl - C [ f ,1/11 = cI’Ýf and g, are the even function in
we deduce from (2.34) the desirable inequalities (2.28).
Complete proof of Lemma 2.2 and some of its generalizations will be

published in an other paper.
According to Lemma 2.1 function g = ~ I satisfies the reverse Holder

inequalities (2.27) in Q with 1 = 2, n = 2, f = C F, 1/1 = 1 2,
m = q &#x3E; 2, p = 2a, b = 4. From this fact and Lemma 2.2 it follows the
estimate

with some S E (2, q ], s  2 -~--~a, and constant c depending on the value 
This estimates coincides with (2.12). As it was pointed above, inequality (2.12)
yields (2.11).

Theorem 2.1 has been proved for the function ~c = v - ~, where v is a
solution of (2.1)-(2.3). As a consequence of this theorem we get estimate (1.7)
for v. It means that the second part of Theorem 1.1 is stated in the case of
the periodic boundary conditions.

Besides, in reality, we have also proved the first part of Theorem 1.1 about
local estimate of vxx in More exactly, if i v, ( Q T ) x 
is a solution of system (2.1), where p satisfies (2.4) and (D E &#x3E; 2,
then there exists a number s E (~, ~ ) such that V Q’ C Cr.
~(Q’~ ~’Qz~) &#x3E; ~~ and 

"

with a constant c &#x3E; 0 depending on v, Mi 1, T and [~(6~ 
To prove this result we note that for v the assertion close to Lemma 2.1

is valid.

LEMMA 2 , l~ . For the solution I v, p) of (~.1 ~ the following inequality holds

for cylinders S

If to attract Lemma 2.2 then from (2.36) it is easy to deduce the estimate
of which is similar to (2.12). From that estimate (2.35) follows.


