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Rectifiability and Parameterization of Intrinsic
Regular Surfaces in the Heisenberg Group

BERND KIRCHHEIM – FRANCESCO SERRA CASSANO

Abstract. We construct an intrinsic regular surface in the first Heisenberg group
H

1 ≡ R
3 equipped wiht its Carnot-Carathéodory metric which has Euclidean

Hausdorff dimension 2.5. Moreover we prove that each intrinsic regular surface
in this setting is a 2-dimensional topological manifold admitting a 1

2 -Hölder con-
tinuous parameterization.

Mathematics Subject Classification (2000): 28A75 (primary); 28A78, 22E25
(secondary).

1. – Introduction

In this paper we investigate Euclidean rectifiability and existence of Hölder
parameterization for H-regular surfaces, a class of intrinsically regular surfaces
in the Heisenberg group H

1, which can be represented as C×R ≡ R
3 endowed

with a left invariant metric d equivalent to its Carnot-Carathéodory metric (see
Section 2 for a precise definition). This notion of intrinsically regular surface
was introduced in order to study in the setting of Carnot groups, of which H

1

is the simplest example, the classical problem in Geometric Measure Theory
(GMT) of defining regular hypersurfaces (i.e. topological submanifold of codi-
mension 1) and different reasonable surface measures on them (see [48], [47],
[46], [58], [10] [34], [36] [31], [14], [25], [30], [13], [1], [2], [26], [49], [44],
[27], [38], [29] and [39]). Throughout this paper, we shall denote the points
of H

1 by P = [z, t] = [x + iy, t], z ∈ C, x, y ∈ R, t ∈ R. If P = [z, t],
Q = [ζ, τ ] ∈ H

1 and r > 0, following the notations of [57], where the reader
can find an exhaustive introduction to the Heisenberg group, we define the group
operation

(1) P · Q := [z + ζ, t + τ + 2�m(zζ̄ )]
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and a family of non isotropic dilations

(2) δr (P) := [r z, r2t], for r > 0 .

Moreover H
1 can be endowed with the homogeneous norm

(3) ‖P‖∞ := max{|z|, |t |1/2}
and the distance d we shall deal with will be defined as

(4) d(P, Q) := ‖P−1 · Q‖∞ .

It is known that H
1 is a Lie group of topological dimension 3, whereas the

Hausdorff dimension of (H1, d) is 4 (see Proposition 2.1). This phenomenon
is already evident from the intrinsic isoperimetric inequality in H

1 proved first
by P. Pansu (see [48] and [47]), and then in a different form but in the general
framework of Carnot-Carathéodory spaces by several authors (see, e.g., [60],
[61], [11], [23], [10], [30], [32] and for a general discussion on the geometry
of Carnot-Carathéodory spaces consult also [31] and [7]).

H
1 provides the simplest example of a metric space that is not Euclidean,

even locally, but is still endowed with a sufficiently rich underlying structure,
due to the existence of intrinsic families of translations and dilations. Indeed,
the geometry of H

1 is noneuclidean at every scale, since it was proved by
S. Semmes ([54]) that there are no bilipschitz maps from H

1 to any Euclidean
space. This fact relies on deep interlacing algebraic and metric properties related
to the non-commutativity of H

1 through a Rademacher type theorem due to
P. Pansu ([46]). Our interest can be viewed in the framework of the general
project meant to develop GMT in the setting of metric spaces. Such a project,
already embrionically contained in Federer’s book [22], has been explicitly
formulated and carried on in the last few years by De Giorgi ([19], [20], [21]),
Preiss and Tisěr ([50]), Kirchheim ([34]), David & Semmes ([14]), Ambrosio
& Kirchheim ([1], [2]) and Lorent ([37]).

It is well known that the Lie algebra of left invariant vector fields in H
1

is (linearly) generated by

(5) X = ∂

∂x
+ 2y

∂

∂t
, Y = ∂

∂y
− 2x

∂

∂t
, T = ∂

∂t
,

the only non-trivial commutator relations being

(6) [X, Y ] = −4T .

Throughout this paper, we shall identify vector fields and associated first order
differential operators; thus the vector fields X, Y generate a vector bundle on
H

1, the so called horizontal vector bundle HH
1 according to the notation of

Gromov, (see [31] and [36]), that is a vector subbundle of TH
1, the tangent

vector bundle of H
1. Since each fiber of HH

1 can be canonically identified
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with a vector subspace of R
3, each section φ of HH

1 can be identified with
a map φ : H

1 → R
3. At each point P ∈ H

1 the horizontal fiber is indicated
as HH

1
P and each fiber can be endowed with the scalar product 〈·, ·〉P and the

associated norm | · |P that make the vector fields X, Y orthonormal. Hence
we shall also identify a section of HH

1 with its canonical coordinates with
respect to this moving frame. In this way, a section φ will be identified with a
function φ = (φ1, φ2) : H

1 → R
2. Analogously, if f is a real function defined

in an open subset � ⊂ H
1, its H-gradient is the section of HH

1 defined by
∇H f = (X f, Y f ).

To introduce our results, let us start by recalling some related notions
already existing in the literature.

The first key point we want to stress here deals with the meaning of
rectifiability in H

1. Basically, in the Euclidean framework, a set F ⊂ R
n

is (countably) (n − 1)-rectifiable (from now on, we shall say only ‘Euclidean
rectifiable’) if, roughly speaking, it is, up to a Hn−1-negligible set, a countable
union of compact subsets Kj of good hypersurfaces (i.e. Lipschitz or continously
differentiable hypersurfaces) where Hm denotes the Euclidean m-dimensional
measure on R

n . Looking for a similar statement in the setting of the Heisenberg
group (or, in general, of a metric space), we must ask preliminarily what are
the good hypersurfaces in H

1. In fact, there is a classical notion of rectifiability
in a metric space that goes back to Federer (see [22], 3.2.14) that has been
recently used by Ambrosio & Kirchheim (see [1], [2]) in the framework of a
theory of currents in metric spaces (as for the rectifiability in metric spaces see
for instance [34], [50] and also the monograph [42] and the references therein).
According to this notion, a good surface in a metric space should be the image
of an open subset of an Euclidean space via a Lipschitz map. Unfortunately,
such a notion does not fit the geometry of the Heisenberg group, that indeed
would be, according with this definition, purely unrectifiable (see [1]). On the
other hand, in the Euclidean setting R

n , a C1-hypersurface can be equivalently
viewed as the (local) set of zeros of a function f : R

n → R with non-vanishing
gradient. Such a notion can be easily transposed to the Heisenberg group, since
there is an intrinsic notion of C1

H
-functions: we can say that a continuous real

function f on H
1 belongs to C1

H
if ∇H f (in the sense of distributions) is a

continuous vector-valued function. Thus, an H-regular surface S will be locally
defined as the set of points P ∈ H

1 such that f (P) = 0, provided that ∇H f �= 0
on S (see Definition 2.21). A few comments are now in place to point out
similar geometric properties (in the measure theoretical sense) of the H-regular
surfaces and classical (Euclidean) regular surfaces and to mention some of their
applications.

First of all, we emphasise that the class of H-regular surfaces is differ-
ent from the class of Euclidean regular surfaces, in the sense that there are
H-regular surfaces that are not Euclidean continuously differentiable submani-
folds, and conversely there are continuously differentiable 2-submanifolds in R

3

that are not H-regular hypersurfaces (see [26], Remark 6.2 and Example 2).
We notice that Euclidean continuously differentiable 2-manifolds are H-regular
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surfaces provided they do not contain characteristic points, i.e. points P such
that the Euclidean tangent space at P coincides with the horizontal fiber HH

1
P

at P . Frobenius theorem yields that, for a general smooth manifold, the set
of characteristic points has empty interior; in fact there are few characteristic
points ([13], [4], [39]). On the other hand the boundary of a smooth bounded
set with trivial topology in H

1 does always contain characteristic points. The
fact that these points should not be allowed in H-regular submanifolds is not
surprising: for example it is already well known from the theory of subelliptic
pde’s that characteristic points of the boundary can behave like cusps for the
Laplace operator.

Another important point supporting the choice of the notion of H-regular
surfaces is the fact that this definition fits with an Implicit Function Theorem,
proved in [26] for the Heisenberg group and in [27] for a general Carnot group,
so that a H-regular manifold S has a local continuous parameterization

(7) � : I ⊂ (R2, | · |) → (S, d)

for a suitable rectangle I ⊂ R
2 (see Theorem 2.23 below). In general, such a

parameterization is not continuously differentiable or even Lipschitz continuous
(see [26], Example 3), but from � we see that S is a topological submanifold
of dimension 2 in (H1, d). On the other hand, by using again the Implicit
Function Theorem and the Blow-Up theorem (see Theorem 2.24), an area type
formula for the 3-dimensional spherical Hausdorff measure S3

d in (H1, d) and
the existence of the tangent group in the sense of GMT for H-regular surfaces
were established (see [26] and [27]).

More precisely, a local representation of S3
d (S) was given in terms of the

parameterization defined in (7) and with respect to the 2-dimensional Lebesgue
measure on R

2 (see Theorems 2.23 (vi) and 2.24 (ii)). In particular, we infer
that the Hausdorff dimension of S in (H1, d) equals 3. Moreover, if we define
the tangent group T g

H
S(P) to S = { f = 0} at P as

T g
H

S(P) := {[x + iy, t] ∈ H
1 : X f (P)x + Y f (P)y = 0} ,

then it is a proper subgroup of H
1 and

lim
r→0

S3
d (S ∩ U (P, r))

r3
= H2(T g

H
S(P) ∩ U (0, 1)) = 4

exists for every P ∈ S being U (P, r) the open ball centered at P with radius
r > 0 with respect to the distance d (see Theorem 2.24).

Based on this, also the notion of H-rectifiability was introduced: a set
� ⊂ H

1 is said 3-dimensional H-rectifiable if there exists a sequence of H-
regular surfaces (Si )i in H

1 such that S3
d (� \ ∪i∈NSi ) = 0. This intrinsic notion

of rectifiability has been proven particularly useful to obtain in [26] an analog of
De Giorgi’s structure theorem for sets of intrinsic finite perimeter in the setting
of Heisenberg group, and more recently in the setting of a general Carnot group
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of step 2 ([28] and [29]). The notions of Euclidean and H-rectifiability have
been compared in [5], generalizations of this notion of rectifiability recently
have been studied by V. Magnani in [39] for general Carnot groups.

In this paper we will stress another aspect of the deep difference between
the Euclidean and Carnot-Carathéodory geometry from GMT’s point of view.
In fact, we will exhibit an H-regular surface S0 ⊂ H

1 ≡ R
3 which looks as an

Euclidean fractal set. Indeed it has Hausdorff dimension 2.5 in (R3, | · |) and,
consequently, is not Euclidean 2-rectifiable (see Theorem 3.1). Notice that an
example of a set F ⊂ H

1 having Hausdorff dimension 2 in (H1, d) which looks
like an Euclidean fractal set was already constructed by R. Strichartz ([58]) but
it is not a topological surface set because its topological dimension cannot be 2
(see Remark 3.2 and also [6]).

Finally, we will improve the regularity of the parameterization in (7) given
by the Implicit Function Theorem. We will actually prove it is locally Hölder
continuous of order 1/2 and this result is in some sense sharp. Indeed, there are
H-regular surfaces not admitting Hölder parameterization of order better than
1/2 (see Theorem 4.1).

Let us recall that the problem of good parameterizations of hypersurface-
type set in Euclidean spaces was studied in [51], [52], [53], [59], [15] (see
also [54] and [55] for the problem in a general metric space). In particular the
problem of the best Hölder parameterization for an Ahlfors regular subset of
R

n has been studied in [40] and [41], while for a (Euclidean) submanifold in
a Carnot group it arose in [31]. Eventually, the problem of characterizing H-
regular surfaces as images under Lipschitz maps of a suitable “sample” metric
space having 3-dimensional positive and finite Hausdorff measure has been
proposed in [26] and it is essentially open. A partial answer has been given
in [49] by S. Pauls for some hypersuperfaces of special Carnot groups but it
does not apply to the Heisenberg group H

1.

Acknowledgments. We wish to thank R. Peirone for some hints on the
construction of a prelimary version of the example in Theorem 3.1. We also
thank Z. Balogh, B. Franchi and R. Serapioni for useful discussions on the
subject. Finally we are grateful to the referee for valuable comments and
suggestions. In particular for the proposed conjecture in Remark 4.3 we were
not able to answer.

2. – Notations and preliminary results

In this section we introduce the basic notation and recall some known
results. We denote by τP : H

1 → H
1 the left-translation by P defined as

Q �→ τP(Q) := P · Q
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for any fixed P ∈ H
1 where “·” denotes the group law defined in (1). We

denote as P−1 := [−z, −t] the inverse of P and as 0 the origin of R
3. For

further reference, we explicitely state that

Proposition 2.1. The function d defined by (4) is a distance in H
1 and the

usual invariance and scaling properties related to translations and dilations hold,

i.e. ∀P, Q, Q′ ∈ H
1 and ∀r > 0

(8) d(τP Q, τP Q′) = d(Q, Q′) and d(δr Q, δr Q′) = r d(Q, Q′) .

In addition, for any bounded subset � of H
1 there exist positive constants c1(�),

c2(�) such that

(9) c1(�)|P − Q|
R3 ≤ d(P, Q) ≤ c2(�)|P − Q|1/2

R3

for P, Q ∈ �. In particular, the topologies defined by d and by the Euclidean
distance coincide on H

1.

Remark 2.2. We stress that, because the topologies defined by d and by
the Euclidean distance coincide, the topological dimension of H

1 is 3. On the
contrary, the Hausdorff dimension of (H1, d) is 4.

From now on, U (P, r) will be the open ball with centre P and radius r
with respect to the distance d.

It is well-known that the 3-dimensional Lebesgue measure L3 on H
1 ≡ R

3

is left (and right) invariant and it is the Haar measure of the group. If E ⊂ H
1

then we write |E | for its Lebesgue measure.

Definition 2.3. We shall denote respectively by Hm and Sm the m-
dimensional Hausdorff and the spherical Hausdorff measure obtained from the
Euclidean distance | · | in R

3 ≡ H
1 according to their classical definitions

(see [22]). Instead of, we shall denote respectively by Hm
d and Sm

d the m-
dimensional Hausdorff and the spherical Hausdorff measure obtained from the
distance d in H

1 according to the definition given in [42] for a general metric
space.

Translation invariance and homogeneity under dilations of the Hausdorff
measure follow as usual from (8), more precisely we have

Proposition 2.4. Let A ⊆ H
1, P ∈ H

1 and m, r ∈ (0, ∞). Then

Hm
d (τP A) = Hm

d (A)

Hm
d (δr (A)) = rmHm

d (A) .

In the following we shall identify the vector fields and the associated first
order differential operators. The vector fields X, Y define a vector bundle on
H

1 (the horizontal vector bundle HH
1) that can be canonically identified with a

vector subbundle of the tangent vector bundle of R
3. Since each fiber of HH

1

can be in a canonic way understood as a vector subspace of R
3, each section
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φ of HH
1 is associated with a map φ : H

1 → R
3. At each point P ∈ H

1

the horizontal fiber is indicated as HH
1
P and each fiber can be endowed with

the scalar product 〈·, ·〉P and the norm | · |P that make the vector fields X, Y
orthonormal. Hence we shall also identify a section of HH

1 with its canonical
coordinates with respect to this moving frame. In this way, a section φ will
be identified with a function φ = (φ1, φ2) : H

1 → R
2. As it is common in

Riemannian geometry, when dealing with two sections φ and ψ whose argument
is not explicitely written, we shall drop the index P in the scalar product writing
〈ψ, φ〉 for 〈ψ(P), φ(P)〉P . The same convention shall be adopted for the norm.

For sake of completness, let us recall here the definition of the Carnot–
Carathéodory metric associated with X, Y . In fact, this definition has been
developed in a much more general setting (see, e.g., [45]).

Definition 2.5. We say that an absolutely continuous curve γ : [0, T ] →
H

1 is a sub-unit curve with respect to X, Y if there exist real measurable
functions a1(s), a2(s), s ∈ [0, T ] such that a2

1 + a2
2 ≤ 1 and

γ̇ (s) = a1(s)X (γ (s)) + a2(s)Y (γ (s)), for a.e. s ∈ [0, T ] .

If P1, P2 ∈ H
1, their Carnot–Carathéodory distance dC(P1, P2) is

dC(P1, P2)

= inf{T >0 : there is a subunit curve γ : [0, T ] → H
1, γ (0) = P1, γ (T ) = P2} .

Notice that the above set of curves joining P1 and P2 is not empty, by Chow’s
theorem, since by (6) the rank of the Lie algebra generated by X, Y is 3, and
hence dC is a distance on H

1.

Remark 2.6. Alternatively, sub-unit curves can be defined as absolutely
continuous functions γ such that γ̇ is a measurable section of HH

1 such that
|γ̇ (s)|γ (s) ≤ 1 for a.e. s.

The following results are well known: see, for instance, [7], [61].

Proposition 2.7. The Carnot–Carathéodory distance dC is (globally and
bilipschitzly) equivalent to the distance d defined in (4).

Proposition 2.8.

(10) L3 = cS(d)S4
d = cH (d)H4

d .

In particular (as proved in [43] and [48]) the Hausdorff dimension of (H1, d) and
(H1, dC) is 4.

Due to its definition and normalization, the Q-dimensional spherical mea-
sure always has on a homogeneous group of dimension Q as the Heisenberg
group density 1, so it easily follows that cS(d) = L3(Ud(0, 1)). It is also well
known that cH (d) > cS(d).
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If � is an open subset of H
1 and k ≥ 0 is a non negative integer, the

symbols Ck(�), C∞(�) indicate the usual spaces of real valued functions which
are (sufficiently often) continuously differentiable in the Euclidean sense. We
denote by Ck(�, HH

1) the set of all Ck-sections of HH
1 where the Ck reg-

ularity is understood as regularity between smooth manifolds. The notions of
Ck

0(�, HH
1), C∞(�, HH

1) and C∞
0 (�, HH

1) are defined analogously.
The similar structure of some statements in H

1 with others in R
3 becomes

transparent using the intrinsic notions of a gradient for functions H
1 → R and

of divergence for sections of HH
1.

Definition 2.9. If � is an open subset of H
1, f ∈ C1(�) and φ =

(φ1, φ2) ∈ C1(�, HH
1), define

(11) ∇H f := (X f, Y f )

and

(12) divH φ := Xφ1 + Yφ2 .

Alternatively ∇H f can be defined as the section of HH
1

∇H f := X f X + Y f Y

whose canonical coordinates are (X f, Y f ). This is consistent with the the
already mentioned identification of sections and their coordinates.

A natural definition of functions of bounded variation and of sets of finite
perimeter in H

1 was the first time introduced in [10]. There are, however,
several ways to define functions of bounded variation associated with a vector
subbundle of TR

d generated by a family of vector fields; these definitions
have been proposed independently over the last few years by different authors
(see [9], [8], [30], [24]). All these definitions are in fact equivalent, as it
is proved in [24]: see in particular the beginning of Section 2 in [24] for a
discussion. Following one of these definitions we shall say that E ⊂ H

1 has
locally finite H-perimeter (or, following De Giorgi, E is a H-Caccioppoli set) if
for any bounded open set � ⊆ H

1

(13) |∂ E |H(�) := sup
{∫

E
divH φ dL3 : φ ∈ C1

0(�, HH
1), |φ(P)|P ≤ 1

}
<∞ .

In such a way, |∂ E |H defines a Radon measure in H
1. If ∂ E is an Euclidean

regular manifold with outward unit normal n, then

|∂ E |H =
(
〈X, n〉2 + 〈Y, n〉2

)1/2
H2� ∂ E ,

see [10] and [24].
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Now, Riesz’ representation theorem yields the existence of a |∂ E |H-mea-
surable section νE of HH

1 such that |νE (P)|P = 1 for |∂ E |H-a.e. P and for all
φ ∈ C1

0(H
1, HH

1) (13) ? we have

−
∫

E
divH φ dL3 =

∫
H1

〈νE , φ〉 d|∂ E |H .

We shall call νE the generalized inward normal to E .

Definition 2.10. Let [z, t], P0 ∈ H
1 with z = x + iy be given. We set

πP0([z, t]) = x X (P0) + yY (P0) .

The map P0 → πP0([z, t]) is a smooth section of HH
1.

Let us give now some elementary definitions and results concerning intrinsic
differentiability in the Heisenberg group. These results are basically due to
P. Pansu ([46]), or are inspired by his ideas. All proofs of the results below
can be found in [26]. Extensions of these intrinsic differentiability’s results to
Carnot groups have been carried out in [34], [62], [38], [35], [3] and [29].

Definition 2.11. We shall say that a map L from H
1 to R is H-linear

if it is a homomorphism and if it is positively homogeneous of degree 1 with
respect to the dilations of H

1.

Definition 2.12. Let � be an open set in H
1. We shall say f : � → R

is Pansu-differentiable (differentiable in the sense of Pansu: see [46] and [36])
at P0 if there exists a H-linear map L from H

1 to R such that

lim
P→P0

f (P) − f (P0) − L(P−1
0 · P)

d(P, P0)
= 0 .

Remark 2.13. The above definition is equivalent to the following one:
there exists a homomorphism L from H

n to R such that

lim
λ→0+

f (τP0(δλv)) − f (P0)

λ
= L(v)

locally uniformly in H
1. In particular, L is unique and we shall write L =

dH f (P0).

Proposition 2.14. A map L from H
1 to R is H-linear if and only if there exists

(a, b) ∈ R
2 such that, if v = [x + iy, t] ∈ H

1, then L(v) = 〈(a, b), (x, y)〉
R2 .
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Definition 2.15. With the notations of Definition 2.12 we shall say that f
is differentiable along X (Y ) at P0 if the map λ �→ f (τP0(δλe1)) (respectively:
λ �→ f (τP0(δλe2))) is differentiable at λ = 0, where ek is the k-th vector of the
canonical basis of R

3.

Clearly, if f ∈ C1(�) then f is differentiable along X and Y at all points
of �. Hence, if we set for each f differentiable along X and Y at P0 the
horizontal gradient to be

(14) ∇H f = X f X + Y f Y

then this definition naturally extends the one given for (classically differentiable
functions) in (11) of Definition 2.9.

Proposition 2.16. With the notations of Definition 2.12 and Proposition 2.14,

if f is Pansu-differentiable at P0, then it is differentiable along X and Y at P0, and

(15) dH f (P0)(v) = 〈∇H f , πP0(v)〉P0 .

Definition 2.17. If � ⊂ H
1, we shall denote by C1

H
(�) the set of con-

tinuous real functions in � such that ∇H f is continuous in �. Moreover, we
shall denote by Lip

H
(�) the set of all Lipschitz functions f : (�, d) → R.

Analogously, the space Lip
H,loc(�) is defined in the usual way.

Proposition 2.18. With the notations of Definition 2.17, a continuous function
belongs to C1

H
(�) if and only if its distributional derivatives X f, Y f are continuous

in �.

Remark 2.19. C1(�) ⊂ C1
H
(�), and the inclusion is strict (see [26],

Remark 5.9).

Theorem 2.20. If f ∈ C1
H
(�) then f is Pansu-differentiable at any point

P0 ∈ �. Moreover C1
H
(U ) ⊂ Lip

H,loc(�).

Definition 2.21. We shall say that S ⊂ H
1 is an H-regular hypersurface

if for every P ∈ S there exist an open ball U (P, r) and a function f ∈
C1

H
(U (P, r)) such that

S ∩ U (P, r) = {Q ∈ U (P, r) : f (Q) = 0} ;(i)

∇H f (P) �= 0 .(ii)

Definition 2.22. If S ⊂ H
1 is a H-regular hypersurface and P ∈ S, we

define the tangent group T g
H

S(P) to S at P as follows

T g
H

S(P) := {Q : 〈∇H( f ◦ τP)(0), π0(Q)〉0 = 0} .
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By (ii) of Definition 2.21, T g
H

S(P) is a proper subgroup of H
1. Then the

tangent plane to S at P is the lateral

THS(P) := P · T g
H

S(P) .

Once more, observe that this is a good definition. Indeed the tangent plane
does not depend on the particular function f defining the surface S because of
points (i) and (iv) of Theorem 2.23 below.

Finally, let us recall three useful results on H-regular surfaces proved in [26]
in the setting of the Heisenberg group and in [27] and [29] in for general Carnot
group.

Theorem 2.23 [Implicit Function Theorem]. Let � be an open set in H
1,

0 ∈ �, and let f ∈ C1
H
(�) be such that |X f (0)| = X f (0) > 0, f (0) = 0. Then, if

we put

E = {[z, t] ∈ � : f ([z, t]) < 0}, S = {[z, t] ∈ � : f ([z, t]) = 0} ,

there exists a connected open neighbourhood U of 0, such that

E ∩ U is connected ;(i)

E has finite H-perimeter in U ;(ii)

∂ E ∩ U = S ∩ U ;(iii)

νE (P) = ∇H f (P)/|∇H f (P)|P for all P ∈ S ∩ U .(iv)

If we put now I = [−δ, δ] × [−δ2, δ2], J = [−h, h], then there exists a unique
continuous function

φ = φ(η, τ ) : I → J

such that the following parameterization of S and integral representation of the
perimeter hold

(v) S ∩ Ū ={[x + iy, t] ∈ Ū : y =η, x =φ(η, τ ) , t =2φ(η, τ )η + τ, (η, τ ) ∈ I };

(vi) |∂ E |H(U) =
∫

I

|∇H f |
X f

(�(η, τ )) dη dτ ,

where

(16) �(η, τ) = (φ(η, τ ), η, 2φ(η, τ )η + τ) .

Theorem 2.24 [Blow-up Theorem]. Let � be an open set in H
1, let E ⊂ H

1

be such that ∂ E ∩� = S ∩� where S ⊂ H
1 is a H-regular surface. If P0 ∈ H

1 and
r > 0 denote

EP0,r :=
{

P ∈ H
1 : P0 · δr (P−1

0 · P) ∈ E
}

.
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Then

(i)
lim
r→0

|∂ EP0,r |H(U (0, 1))

r3
= lim

r→0

|∂ E |H(U (P0, r))

r3

= H2(T g
H

S(P0) ∩ U (0, 1)) = 4 if P0 ∈ S ∩ � ;

(ii) |∂ E |H� � = 4S3
d� (S ∩ �) .

Theorem 2.25 [Whitney Extension Theorem]. Let F ⊂ H
1 be a closed set,

and assume f : F → R, k : F → HH
1 are continuous functions. We set

R(P ′, P) := f (P ′) − f (P) − 〈k(P), πP(P−1 · P ′)〉P

d(P, P ′)
,

and, if K ⊂ F is a compact set,

(17) ρK (δ) := sup{|R(P ′, P)| : P, P ′ ∈ K , 0 < d(P, P ′) < δ} .

If ρK (δ) → 0 as δ → 0 for every compact set K ⊂ F, then there exist f̃ : H
1 → R,

f̃ ∈ C1
H
(H1) such that

f̃|F ≡ f, ∇H f̃|F ≡ k .

3. – H-Regular surfaces as Euclidean fractal sets

In this section we construct an example of an H-regular surface in H
1

which has the Euclidean Hausdorff dimension 5/2 and, hence, is more of a
fractal structure.

Theorem 3.1. There exists an H-regular surface S ⊂ H
1 such that

(18) H(5−ε)/2(S) > 0 for all ε ∈ (0, 1) .

In particular, S is not 2- Euclidean rectifiable.

Remark 3.2. An interesting example of Euclidean fractal set F in (H1, d)

with Hausdorff dimension 2 was constructed by R. Strichartz in [58]. However
it cannot be a H-regular surface or even a topological surface, i.e. a submanifold
of topological dimension 2 in (H1, d) (see also [6] for a simpler computation).
In fact Gromov proved that a topological surface in (H1, d) always has Hausdorff
dimension larger or equal than 3 (see [31], Section 2).

Remark 3.3. By Theorem 1.1 in [5] which states that for every α ≥ 0

Hmin{α,1+ α
2 } � Hα

d on R
3
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it follows 1
2 is the smallest possible jump between the Euclidean and Carnot-

Carathéodory Hausdorff dimension of such subsets of R
3.

In the proof of Theorem 3.1 we will use two auxiliary results. Before its
proof we will need two preliminary technical lemmas. The first is contained in
a paper by Z. Balogh (see [4], Theorem 4.1), where it was used to construct
euclidean surfaces with large sets of characteristic points. The more precise
modulus of continuity of the gradient which we state and use here can, however,
only be found at the end of the proof of this theorem in [4]. It states that the
“pointwise curl” of almost twice differentiable functions can be nonzero on a
quite large set.

Lemma 3.4. There is a C1-function g = g : Q = [0, 1]2 → R and a constant
K < ∞ such that

L2(Ag) > 1/2 where Ag := {(x, y) ∈ Q : ∇g((x, y)) = (2y, −2x)}(19)

|∇g(z) − ∇g(w)| ≤ K (1 + | log(|z − w|)|)K |z − w| for all z, w ∈ Q .(20)

The other ingredient is a construction of functions of a prescribed Hölder
type continuity which have all level sets of maximal Hausdorff dimension.

Lemma 3.5. There is a function h : R → R such that

(i) for all t ∈ [0, 1] is the (Euclidean) Hausdorff dimension of h−1(t) ∩ [0, 1] at
least 1

2 ,
(ii) for each m ≥ 1 we have

(21) lim
r→0+

log
((

1

r

))m

r1/2
sup{|h(x) − h(y)| , |x − y| ≤ r} = 0 .

A variety of similar constructions can be found in the literatur, however,
in order to obtain in Theorem 3.1 an example which is indeed of maximal
dimension, we need a very precise version of such an construction which seems
new. A question concerning the optimality of this construction will be discussed
after its presentation and the proof of Lemma 3.5 given below.

Construction 3.6. We consider the following construction whose only
parameter is the sequence {pn}∞n=1 of integers satisfying 0 ≤ pn ≤ 2n − 2.
Given this, we set

rn = 22n−2−pn for n ≥ 1(22)

ln = 22n−1 − 1

24n−2(2rn + 1)
ln−1 for n ≥ 1, with l0 = 1(23)

vn = 2−n2
for n ≥ 0 ,(24)
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and define the families Ck of “oriented” (closed) rectangles ((x1, y1), (x2, y2))

where x1, x2, y1, y2 ∈ [0, 1], x1 < x2 and which represents the rectangle [x1, x2]×
{y1, y2}conv with “entrance” (x1, y1) and “exit” (x2, y2). (The intuition behind
this notation is that once we have finished our construction, we will have found
a function h : [0, 1] → [0, 1] whose graph enters and leaves these rectangles at
the corresponding points.)

We start out with C0 = {((0, 0), (1, 1))} and suppose that for some n ≥ 1
we are given a finite family Cn−1 of oriented rectangles such that

• card([x1, x2] ∩ [x ′
1, x ′

2]) ≤ 1 if ((x1, y1), (x2, y2)), ((x ′
1, y′

1), (x ′
2, y′

2)) ∈ Cn−1
are different and moreover if xi = x ′

3−i then yi = y′
3−i if i = 1, 2;

• for ((x1, y1), (x2, y2)) ∈ Cn−1 either y1 = y2 or |y1 − y2| = vn−1 and then
x2 − x1 = ln−1.

Now, fixing such an element R = ((x1, y1), (x2, y2)) of Cn−1, we define
the next generation to be Cn(R) = {R} if y1 = y2. In the nondegenerate case
y1 �= y2 we first pick the two degenerate rectangles

R− = ((x1, y1), (x1 + 2−2nln−1, y1)) and R+ = ((x2 − 2−2nln−1, y2), (x2, y2)) ,

and for

k = 22n−1m + q where m ∈ {0, . . . , 2rn}, q ∈ {1, . . . , 22n−1}

we set Rk = ((xk
1 , yk

1), (xk
2 , yk

2)) with

xk
1 = x1 + 2−2nln−1 + (k − 1)ln ,

xk
2 = xk

1 + ln ,

yk
1 =

{
(q − 1)2−2n+1(y2 − y1) + y1 if m is even

(q − 1)2−2n+1(y1 − y2) + y2 if m is odd
, and

yk
2 = yk

1 + (−1)m2−2n+1(y2 − y1) .

(Notice that |yk
2 − yk

1 | = 2−2n+1vn−1 = vn and yk
2 = yk+1

1 for all k.) Then we
set

Cn(R) = {R−,R+} ∪ {Rk : k = 1, . . . , 22n−1(2rn + 1)} .

Having this defined for all R ∈ Cn−1, we put

Cn =
⋃

{Cn(R) : R ∈ Cn−1}

and introduce also the compact union of rectangles

Cn =
⋃

{[x1, x2] × {y1, y2}conv : ((x1, y1), (x2, y2)) ∈ Cn} .
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We observe that for nondegenerate rectangles R = ((x1, y1), (x2, y2)) ∈ Cn−1
the family Cn(R) satisfies the properties stated for Cn−1 above and

• Cn(R) = ⋃{[x ′
1, x ′

2] × {y′
1, y′

2}conv : ((x ′
1, y′

1), (x ′
2, y′

2)) ∈ Cn(R)} is a
compact subset of [x1, x2] × {y1, y2}conv ⊂ Cn−1,

• proj1(Cn(R)) = [x1, x2] and [x1, x2] is covered in a non-overlapping way,
note that xk

2 = xk+1
1 and that due to (23) the last xk

2 is just the x-coordinate
of the entrance into R+,

• each vertical slice of Cn(R) is of diameter at most 2vn .

So Cn = ⋃
R∈Cn−1

Cn(R) is a compact subset of Cn−1 and proj1(Cn) =
[0, 1] for each n. From this it is clear that C∞ = ⋂∞

n=1 Cn is the graph of a
function h : [0, 1] → [0, 1], which is continuous as its graph is compact. Now,
we state the following crucial properties of this function.

Proposition 3.7. The function h = h{pn} constructed above satisfies:

(i) if for some d > 0 the bound

lim inf
n→∞

n∑
k=1

[(1 − 2d)(2k + 1) − (1 − d)(pk + 3)] > −∞

holds then Hd(h−1(t)) > 0 for all t ∈ [0, 1].
(ii) if lim supn→∞ pn/n < 2 then for some c = c{pn} < ∞ and all n ≥ 1 with

pk ≥ 2 for k ≥ n we have the inequality

|h(x)−h(y)| ≤ c 2−
∑n

k=1(pk−2)/2
√|x − y| if x, y ∈ [0, 1] and |x − y| ≤ ln .

Proof. Throughout the whole proof, the corners of the rectangles con-
structed above will play an important rôle, therefore we need some special
notations for them. For this purpose let

Gn =
⋃

((x1,y1),(x2,y2))∈Cn

{(x1, y1), (x2, y2)}, Gi
n = proji (Gn) for i = 1, 2 .

Thus Gk ⊂ Gk+1 ⊂ C∞ and
⋃

k Gk is dense in C∞.
We turn to the proof of (i). Given a d satisfying the assumption it is easy

to check that d ≤ 1/2. We set fn = rn(ln/ ln−1)
d , and using (23) we compute

fn = rn

(
22n−1 − 1

24n−2(2rn + 1)

)d

≥ r1−d
n

(
22n−1 − 1

24n

)d

= 2(2n+1)(1−2d)−(pn+3)(1−d)(1 − 21−2n)d .

Because
∏∞

n=1(1 − 21−2n) > 0, we see that our assumption on d and {pn}∞1
ensures

(25) lim inf
n→∞

n∏
k=1

fk > 0 .
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Following the usual pattern of lower estimates for Hausdorff measure, we estab-
lish (i) by turning (25) into a Frostman type estimate for a suitably choosen mea-
sure on h−1(t) (see, for instance, Theorem 8.8 in [42]). We can of course sup-
pose that t /∈ ⋃

k G2
k because the construction of h implies that for t ∈ G2

k there
are x1 < x2 with ((x1, t), (x2, t)) ∈ Cl for all l > k and hence (x1, x2) ⊂ h−1(t).
It is also clear from the way we selected the Ck’s that we can construct a
sequence of subsets Cn(t) ⊂ {x ∈ [0, 1] : (x, t) ∈ Cn} (n = 1, 2, . . . ) such that
h−1(t) ⊃ ⋂∞

k=0 Ck(t) where

a) C0(t) = [0, 1] ⊃ C1(t) ⊃ C2(t) ⊃ . . .

b) each Cn(t) is the union of a finite system Cn(t) of disjoint intervals of
length ln ,

c) for each n ≥ 1 and I ∈ Cn−1(t) Cn(t, I ) is the family of all J ∈ Cn(t)
that are contained in I of cardinality rn and the distance between any two
different intervals in Cn(t, I ) is at least (22n − 1)ln .

We consider the canonical “uniformly” distributed probabilities

µn =
(

n∏
k=1

rk

)−1 ∑
J∈Cn(t)

1

ln
(H1� J )

and note that µn(I ) = rn(
∏n

k=1 rk)
−1 = µn−1(I ) for I ∈ Cn−1(t), so µn ⇀∗ µ,

a probability measure living on h−1(t). We will show that

(26)

(
inf

m≥n

m∏
k=1

fk

)
µ(I ) ≤ 2|I |d if I is a compact interval with |I | ≤ ln .

The considerations of covers approximating the d-dimensional Hausdorff mea-
sure of

⋂
n Cn(t) then gives, using a constant cd > 0 determined by our choice

of normalization of the Hausdorff measure, that Hd(h−1(t)) ≥ cd lim infn→∞∏n
k=1 fk , so (i) would follow from (25).

To verify (26), we first note that due to the distance required in c) it is
enough to establish this inequality assuming that I ⊂ J ∈ Cn(t). Obviously,
we can also suppose the following to hold, as it can always be achieved by
modifications making the inequality (26) even sharper

d) min I, max I ∈ ⋂
k Ck(t)

e) n ≥ 1 is the largest number of all ñ for which an Ĩ ∈ Cñ(t) containing I
does exist.

We claim that
µ(I )|I |−d ≤ 2µn(J )|J |−d .

Indeed, d) and e) ensure that for some q ∈ {2, . . . , rn+1} the interval I intersects
precisely q intervals from Cn+1(t, J ). This yields

• µ(I ) ≤ qµn+1(J ′) = qµn(J )/rn+1 for any J ′ ∈ Cn+1(t)
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• diam(I ) ≥ (q − 1)(22n+2 − 1)ln+1, compare with c) above

and allows us to estimate that

µ(I )

|I |d ≤ µn(J )

|J |d
q

(q − 1)d

ld
n

rn+1((22n+2 − 1)ln+1)d

≤ µn(J )

|J |d 2r1−d
n+1

ld
n

rn+1(ln/rn+1)d
≤ 2

µn(J )

|J |d .

It remains to observe that

µn(J )

|J |d =

 n∏

j=1

r−1
j


 n∏

j=1

(
lj−1

lj

)d

=
n∏

j=1

ld
j−1

ld
j rj

=

 n∏

j=1

f j




−1

and (26) follows.
So we can turn to the proof of statement (ii) in the proposition, without

loss of generality x < y. First, we assume in addition that

(27) there is a k ≥ n with G1
k ∩ (x, y) = ∅ but card(G1

k+1 ∩ [x, y]) ≥ 2 .

Let x ′ = min(G1
k+1 ∩ [x, y]), y′ = max(G1

k+1 ∩ [x, y]), thus y′ = x ′ + q0lk+1,
q0 ≥ 1. We also notice that there are a, b ∈ G1

k with b − a = lk and [x, y] ⊂
(a, b). Since the construction of h implies that

osc(h, [s1, s2]) ≤ vm if s1, s2 ∈ G1
m and s2 − s1 = lm ,

we infer
|h(x) − h(y)| ≤ min(vk, (2 + q0)vk+1) ≤ min(vk, 3q0vk+1)

≤ min
(

vk, 3
|x − y|

lk+1
vk+1

)
.

This implies

|h(x) − h(y)|√
y − x

≤ min

(
vk√|x − y| ,

3
√|x − y|

lk+1
vk+1

)
≤

√
3
vkvk+1

lk+1

≤
√

3
vk+1

lk+1
≤

k∏
m=1

(
vm+1

vm−1

lm

lm+1

)1/2 √
3
v0 v1

l1

≤ c1

k∏
m=1

(
2−(m+1)2+(m−1)224m+2(2rm+1 + 1)

(22m+1 − 1)

)1/2

≤ c1

k∏
m=1

(
(2−4m)24m+2(22m−pm+1+1 + 1)

22m+1 − 1

)1/2

≤ c2

k∏
m=1

(
22−pm+1

1 + 2−1−2m+pm+1

1 − 2−2m−1

)1/2

≤ c32−
∑k

m=1(pm+1−2)/2 ≤ c32−
∑n

m=1(pm−2)/2
,
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because our assumption in statement (ii) implies for c4 sufficienly large and
m > c4 the estimate 1+2−1−2m+pm+1 < 1+2−m/c4 , we see that c3 = c{pn} < ∞.

To finish, we drop our additional assumption (27) and choose the maximal
k such that (x, y) ∩ G1

k = ∅. If k satisfies (27) anyhow, then we are done.
Otherwise, we pick z ∈ G1

k+1 ∩ (x, y) and notice that necessarily {z} = G1
k+1 ∩

(x, y) as else lk+1 < |x − y| would imply k ≥ n and (27) would hold true. We
consider now the interval [x, z] and it is easily checked that the maximal k ′ with
(x, z)∩G1

k′ = ∅ satisfies (27) and therefore gives the desired inequality for x, z.
Since the same argument works for z, y and as

√
z − x +√

y − z ≤ √
2

√
y − x ,

our proof is finished.

Proof of Lemma 3.5. We choose the sequence {pn}∞n=1 by the simple rule
pn = 4 for all n ≥ 3 and consider on [0, 1] the function h = h{pn} as obtained
in Construction 3.6. We note that h(0) = 0, h(1) = 1 and extend the function
to all of R by requiring h(x + k) = h(x) + k for all k ∈ Z and x ∈ [0, 1]. Now
it is easy, that in order to verify the statements (i) and (ii) we can restrict to
the cases when t, x, y ∈ [0, 1].

Concerning (i), each d < 1/2 obviously satisfies the assumption of Propo-
sition 3.7 (i) and so Hd(h−1(t)) > 0 for all t ∈ [0, 1], d < 1/2 which just says
dimH (h−1(t)) ≥ 1/2.

Considering (ii), we have
∑n

3(pk − 2)/2 = n − 2 and we see from (23)
that 1 > ln/ ln−1 ≥ 22n−2/24n−24rn ≥ 2−4n and thus ln ≥ 2−2n(n+1). Hence, if
r ∈ [ln+1, ln) then log(1/r) ≤ log(2)2(n + 2)2. Now, given the m ≥ 1 we infer
from Proposition 3.7 (ii) that for |x − y| ≤ r ∈ [ln+1, ln)

|h(x) − h(y)| ≤ c
√

r2−n ≤ √
r

1

n(2 log(2)(n + 2)2)m
≤ 1

n

√
r

(log(1/r))m

provided n is sufficiently large. This finishes the proof of the lemma.

Remark 3.8. The construction presented above looks quite complicated, but
as a compensation it does not only allow to control the modulus of continuity
of the 1

2 -Hölder-functions involved up to the order of logarithmic terms but it
also gives examples with optimal level set dimension for any Hölder exponent
between 1

2 and 1. Indeed, choosing pk to be the integer part of c k with fixed
c ∈ (0, 2) we easily calculate from Proposition 3.7 that the resulting h has an
Hölder exponent 2

4−c and all level sets of dimension at least 2−c
4−c . On the other

hand, if f : [0, 1] → [0, 1] is α-Hölder, then it is lipschitz on the 1
α

-dimensional
space [0, 1] with the metric �(x, y) = √

[α]|x − y|. Hence by the Eilenberg-
Fubini type result given in 2.10.25 of [22] we see that almost all level sets
of f are of dimension at most α−1 −1 metric � and at most 1−α dimensional
in the euclidean distance.

However, even our fine tuned construction could not answer the following
natural question.

Can one find α-Hölder functions such that all level sets f −1(t) (or at least
for all t from a set of positive measure) are of positive 1 − α-dimensional
Hausdorff measure?
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In the main application of our construction the 1
2 -dimensional measure is

obviously zero since we have a “better” modulus of continuity then
√|x − y|.

But we were not able to improve the construction for the case of general 1
2 -

Hölder functions nor to give a (presumably more likely) proof that level sets
are always zero.

Proof of Theorem 3.1. Let g be a function as in Lemma 3.4, so we have

(28)
|g(z) − g(w) − 〈∇g(w) , z − w〉| ≤ K ′ |z − w|2(1 + | log(|z − w|)|)K

∀z, w ∈ Q .

We can, of course, moreover require that ‖g‖∞ ≤ 1. Next we choose the
function h from Lemma 3.5 and set F∗ := Ag × [−1, 2]. Now we can define
the function f ∗ : F∗ → R by

f ∗([z, t]) := h(t − g(z)) if [z, t] ∈ F∗

and the section k∗ : F∗ → HH
1 ≡ R

2 as

k∗([z, t]) := (0, 0) if [z, t] ∈ F∗ .

We claim now that the hypotheses of Theorem 2.25 are satisfied for F = F∗,
f = f ∗ and k = k∗. As the continuity of f ∗ and k∗ is straightforward, we
only have to show that

(29) lim
δ→0

ρF (δ) = 0

where ρF is the function defined in (17) just without localization to compact
subsets. For this purpose consider any P = [z, t], P ′ = [w, s] in F∗ and
observe first that

|g(w) − g(z) + 2�m(wz̄)| = |g(w) − g(z) − 2�m(−wz̄)|
= |g(w) − g(z) − �m(−2z̄(w − z))|
= |g(w) − g(z) − 〈∇g(z), w − z〉

R2 |, as z ∈ Ag ,

≤ K ′ |z − w|2(1 + | log(|z − w|)|)K .

Moreover, (P ′)−1 · P = [z − w, t − s − 2�m(wz̄))] and hence our definition of
norm as given in (3) and (4) ensures that

|g(w)−g(z)+2�m(wz̄)|, |t−s−2�m(wz̄)| ≤ K ′d(P, P ′)2(1+| log(d(P, Q))|)K .

This shows that also

|(t − g(z)) − (s − g(w))| ≤ 2K ′d(P, P ′)2(1 + | log(d(P, P ′))|)K ,
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and now (21) implies that

| f ∗(P) − f ∗(P ′)| = |h(t − g(z)) − h(s − g(w))|

≤ K̃
d(P, P ′)(1 + | log(d(P, P ′))|)(K/2)

| log(d(P, P ′)(1 + | log(d(P, P ′))|)(K/2))|(K+1)

and therefore
| f ∗(P) − f ∗(P ′)|

d(P, P ′)
→ 0 if P, P ′ ∈ F and d(P, P ′) → 0 ,

thus (29) follows.
Therefore applying Theorem 2.25 we can extend f ∗ : F∗ → R to a function

f̃ ∗ : H
1 → R, f̃ ∗ ∈ C1

H
(H1) such that

(30) ∇H f̃|F∗ ≡ 0 .

Define now f : H
1 → R as

f (x, y, t) := f̃ ∗(x, y, t) − x .

Then by construction and (30), since

|∇H f |P = |(−1, 0)|
R2 = 1 ∀P ∈ F∗

there is an open set � ⊃ F∗ such that

|∇H f |P �= 0 ∀P ∈ � .

Let
S := � ∩ { f = 0} ,

then S is an H-regular surface. Let us prove (18).
Observe that

(31) S ⊃ A :=
⋃

(x,y)∈Ag

(
{(x, y)} × ((h−1(x) + g((x, y)) ∩ [−1, 2]))

)
.

By the coarea inequality (see [22] 2.10.27)

(32)

∫
Ag

H(1−ε)/2(h−1(x) ∩ [0, 1]) dxdy

≤
∫

Ag

H(1−ε)/2((h−1(x) + g(x, y)) ∩ [−1, 2]) dxdy

≤ cεH(5−ε)/2(A) .

Denote by Ag,y := {x ∈ [0, 1] : (x, y) ∈ Ag}, the horizontal slice of Ag at
height y. Since L2(Ag) > 0, there exists a suitable measurable set I ⊂ [0, 1]
of positive measure so that L1(Ag,y) > 0 for y ∈ I . Since ε > 0 it follows
from statement (i) of Corollary 3.5

(33)

∫
Ag

H(1−ε)/2(h−1(x) ∩ [0, 1]) dxdy

≥
∫ 1

0
dy

∫
Ag,y

H(1−ε)/2(h−1(x) ∩ [0, 1]) dx > 0 .

Thus (31), (32) and (33) yield (18).
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4. – Hölder parameterization of H-regular surfaces

In this section we will prove that each H-regular surface S ⊂ H
1 can be

locally parameterized by means a Hölder continuous map of order 1
2 and this

parameterization is in some sense sharp. More precisely

Theorem 4.1. Let S ⊂ H
1 be an H-regular surface then for each P0 ∈ S

there exist constants δ, r0, L > 0, an open neigborhood U of P0 and a 1-to-1 map
� : I := [−δ, δ] × [−δ2, δ2] → H

1 such that, if α = 1
2 ,

d(�(u), �(v)) ≤ L |u − v|α ∀u, v ∈ I ;(i)

�(I ) = S ∩ Ū .(ii)

Moreover the H-regular surface S = {(x, y, t) : x = 0} cannot be locally parame-
terized by means any Hölder continuos map of order 1

2 < α ≤ 1 (i.e. by any map �

satisfying (i) with 1
2 < α ≤ 1).

Remark 4.2. In particular H-regular surfaces cannot be seen as image
through Lipschitz maps of a subspace of (R2, | · |2/3).

Remark 4.3. Let S ⊂ H
1 be a H-regular surface. An interesting open

question is wether there locally exists a map � : � ⊂ R
2 → S such that

� ∈ W 1,4(� : H
1). Here W 1,p(� : H

1) denotes the Sobolev class of metric-
space valued functions between (�, | · |) and (H1, d) studied in [33]. The
exponent p = 4 should be natural according to the Sobolev embedding W 1,p(� :

H
1) ⊂ C

0,1− 2
p

loc (�; H
1) for p > 2 = dim � proved in [33].

Lemma 4.4. Let P, v = (v1, v2, v3) ∈ H
1 and denote by γP,v : [0, 1] → H

1

the curve
γP,v(s) = P · (s v1, s v2, v3) .

Then

γP,v is a horizontal curve ;(i)

if P, Q ∈ U
(

P0,
r0

4

)
and v := P−1 · Q then γP,v([0, 1]) ⊂ U (P0, r0) ;(ii)

for every g ∈C1
H
(U (P0, 2r0)), and P, Q ∈ U

(
P0,

r0

4

)
with v := P−1 · Q,(iii)

there is some s̄ ∈ [0, 1] such that

g(γP,v(1)) − g(γP,v(0)) = v1 Xg(γP,v(s̄)) + v2 Y g(γP,v(s̄)) .

Proof of Lemma 4.4. Observe that for every s ∈ [0, 1]

(34)
γ̇P,v(s) = (v1, v2, 2 (v1 P2 − v2 P1))

= v1 X (γP,v(s)) + v2 Y (γP,v(s)) ∈ HH
1
γP,v(s)
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then the statement (i) follows at once. Statement (ii) easily follows by means
a simple calculations too. Thus let us prove (iii). First suppose that g ∈
C1(U (P0, r0)) and put G(s) := g(γP,v(s)) if 0 ≤ s ≤ 1. Now observe that
by (34)

(35)
G ′(s) = 〈∇g(γP,v(s)), v1 X (γP,v(s)) + v2 Y (γP,v(s))〉R3

= v1 Xg(γP,v(s)) + v2 Y g(γP,v(s)) .

On the other hand there exists s̄ ∈ [0, 1] such that

G(1) − G(0) = G ′(s̄)

and then by (35) the thesis follows in the case when g ∈ C1(U (P0, r0)). In the
general case we can approximate g ∈ C1

H
(U (P0, 2 r0)) by a family of functions

gε ∈ C1(U (P0, r0) such that

(36) gε → g, Xgε → Xg, Y gε → Y g uniformly in B(P0, r0)

(see, for instance, [26], step 1 of proof of Theorem 6.5). Then we can apply
previous step to gε and then there exists s̄ε ∈ (0, 1) such that

(37) gε(γP,v(1)) − gε(γP,v(0)) = v1 Xgε(γP,v(s̄ε)) + v2 Y gε(γP,v(s̄ε)) .

On the other hand we can suppose that s̄ε → s̄ ∈ [0, 1] and so (36) and (37)
yield the thesis.

Proof of Theorem 4.1. Without loss of generality we can assume that
P0 = 0 and

S ∩ � = { f = 0} ∩ �

with � = U (0,
r0
4 ), f ∈ C1

H
(U (0, 2 r0)), f (0) = 0, X f > 0 on U (0, 2 r0). Then

applying Theorem 2.23 and using the same notations there exists a 1-to-1, onto
and continuous parameterization � : I := Iδ → U ∩ S of the type (16) with
φ : I → J .

Let us prove that there exists a positive constant L1 such that

(38) |φ(u) − φ(u′)| ≤ L1 |u − u′|1/2 ∀ u, u′ ∈ I .

Let u = (η, τ ), u′ = (η′, τ ′) ∈ I , P = �(η, τ), Q = �(η′, τ ′) ∈ U∩S. Applying
Lemma 4.4 with g = f and

v = (v1, v2, v3) = P−1 · Q

= (
φ(η′, τ ′) − φ(η, τ ), η′ − η, τ ′ − τ + 2(φ(η′, τ ′) + φ(η, τ ))(η′ − η)

)
0 = f (Q) − f (P) = ( f (γP,v(1)) − f (γP,v(0)) + ( f (γP,v(0)) − f (P))

= X f (γP,v(s̄)) v1 + Y f (γP,v(s̄)) v2 + ( f (P · (0, 0, v3)) − f (P))
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and then

(39) |v1| ≤
∣∣∣∣ Y f (γP,v(s̄))

X f (γP,v(s̄))

∣∣∣∣ |v2| + 1

|X f (γP,v(s̄))| | f (P · (0, 0, v3)) − f (P)| .

Notice now because X f, Y f ∈ C0(U (0, 2 r0)), φ : I → R is continuous, by
Theorem 2.20 and (9)

M1 = sup
U (0,r0)

|Y f |
|X f | < ∞, M2 = sup

U (0,r0)

1

|X f | < ∞

M3 = sup
R �=S∈U (0,r0)

| f (R) − f (S)|
|R − S| 1

2

< ∞, M4 = sup
I

|φ| < ∞ .

From (39)

|φ(u′) − φ(u)| ≤ M1 |η′ − η| + M2 M3
(|τ ′ − τ | + 4 M4 |η′ − η|) 1

2

and then (38) for a suitable constant L1 > 0. Then simple calculations yield
the estimate (i) for a suitable constant L > 0.

Let us prove now the remaining part of the theorem. Let us denote by
I ⊂ R

2 a general open set. Suppose, by contradiction, the existence of a
mapping � = (φ1, φ2, φ3) : I → H

1 satisfying (i) and (ii) with 1
2 < α ≤ 1 and

S = {(0, y, t) : y, t ∈ R}. Then from (ii) φ1 ≡ 0 in I . On the other hand (i)
yields by a simple calculations

|φ3(v) − φ3(u) + 2(φ1(u)φ2(v) − φ1(v)φ2(u))| ≤ L2|u − v|2α ∀u, v ∈ I

whence φ3 : I → R would be constant and then a contradiction arises.
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spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 195-252.

[14] G. David – S. Semmes, “Fractured Fractals and Broken Dreams. Self-Similar Geometry
through Metric and Measure”, Oxford University Press, 1997.

[15] G. David – T. Toro, Reifenberg flat metric spaces, snowballs, and embeddings, Math.
Ann. 315 (1999), 641-710.

[16] E. De Giorgi, Su una teoria generale della misura (r − 1)-dimensionale in uno spazio ad
r dimensioni, Ann.Mat.Pura Appl. (4) 36 (1954), 191-213.

[17] E. De Giorgi, Nuovi teoremi relativi alle misure (r − 1)-dimensionali in uno spazio ad r
dimensioni, Ricerche Mat. 4 (1955), 95-113.

[18] E. De Giorgi – F. Colombini – L. C. Piccinini, “Frontiere orientate di misura minima e
questioni collegate”, Scuola Normale Superiore, Pisa, 1972.

[19] E. De Giorgi, Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis.
Univ. Modena 43 (1995), 285-292.

[20] E. De Giorgi, Un progetto di teoria unitaria delle correnti, forme differenziali, varietà
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