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Divisibility of twisted Alexander polynomials
and fibered knots

Teruaki Kitano and Takayuki Morifuji

Abstract. We prove that Wada’s twisted Alexander polynomial of a knot group
associated to any nonabelian SL(2, F)-representation is a polynomial. As a corol-
lary, we show that it is always a monic polynomial of degree 4g − 2 for a fibered
knot of genus g.
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1. Introduction

In the early ’90s, the theory of twisted Alexander polynomials was introduced
by Lin [11] and Wada [17] independently (the article [11] appeared first in 1990
as a Columbia University preprint). Lin defined the twisted Alexander polyno-
mial for knots using regular Seifert surfaces. On the other hand, Wada defined
the twisted Alexander polynomial for finitely presentable groups, which include
the link groups. Let � be a finitely presentable group with a surjective ho-
momorphism from � to a free abelian group. For each linear representation
of �, its twisted Alexander polynomial of � is defined to be a rational function
with some variables. This invariant in Wada’s framework is sufficiently useful
and computable. For instance, the Kinoshita-Terasaka knot can be distinguished
from the Conway knot by this invariant. Another advantage of Wada’s defini-
tion of the twisted Alexander polynomial is that it naturally coincides with the
Reidemeister torsion in the case of knot groups [8].

However, the condition that the twisted Alexander polynomial becomes
really a polynomial, it is not so clear. The purpose of the present paper is
to give a sufficient condition that the twisted Alexander polynomial in Wada’s
sense becomes a polynomial. Namely, we prove the following main theorem.

The first author is supported in part by the Grant-in-Aid for Scientific Research (No. 14740037),
The Ministry of Education, Culture, Sports, Science and Technology, Japan.

Pervenuto alla Redazione l’11 ottobre 2004 e in forma definitiva il 25 gennaio 2005.



180 Teruaki Kitano and Takayuki Morifuji

Theorem 1.1. The twisted Alexander polynomial of a knot group for any nonabelian
representation into SL(2, F) over a field F is always a polynomial.

As a corollary, we can show that if K is a fibered knot of genus g, then its
twisted Alexander polynomial becomes a monic polynomial of degree 4g − 2
for any nonabelian SL(2, F)-representation (see also [3]). This result can be
regarded as a generalization of the classical result, due to Neuwirth [14], which
asserts the Alexander polynomial of any fibered knot is given by a monic
polynomial of degree 2g.

After Lin and Wada, Jiang and Wang defined in [5] an invariant for 3-
manifolds from the viewpoint of twisting a given invariant by a representation.
In [6], Kirk and Livingston gave a wide generalization of the work mentioned
above and cleared the relationship between the former results and their invariants.
As for other applications of the twisted Alexander polynomial, see also [4, 7,
9, 12, 13] and [16] for instance.

Acknowledgements. The authors would like to thank Andrei Pajitnov for his
interest in this work. The authors also would like to thank Masaaki Wada and
Hiroshi Goda for their careful reading of an earlier version of this paper.

2. Twisted Alexander polynomial

For a knot group G(K ) = π1 E(K ), namely the fundamental group of the
exterior E(K ) = S3 − N (K ) of a knot K in the 3-sphere S3, where N (K )

denotes an open tubular neighborhood of K , we choose and fix a Wirtinger
presentation

P(G(K )) = 〈x1, . . . , xu | r1, . . . , ru−1〉 .

Then the abelianization homomorphism

α : G(K ) → H1(E(K ), Z) ∼= Z = 〈t〉

is given by
α(x1) = . . . = α(xu) = t .

Here we specify a generator t of H1(E(K ), Z) and denote the sum in Z mul-
tiplicatively. In this paper, we only consider a representation ρ : G(K ) →
SL(2, F), where F stands for a field.

These maps naturally induce two ring homomorphisms ρ̃ : Z[G(K )] →
M(2, F) and α̃ : Z[G(K )] → Z[t, t−1], where Z[G(K )] is the group ring of
G(K ) and M(2, F) is the matrix algebra of degree 2 over F. Then ρ̃⊗α̃ defines
a ring homomorphism

Z[G(K )] → M
(

2, F[t, t−1]
)

.
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Let Fu denote the free group on generators x1, . . . , xu and

� : Z[Fu] → M
(

2, F[t, t−1]
)

the composition of the surjection Z[Fu] → Z[G(K )] induced by the presentation
P(G(K )) and the map ρ̃ ⊗ α̃ : Z[G(K )] → M(2, F[t, t−1]).

Let us consider the (u − 1) × u matrix M whose (i, j)-component is the
2 × 2 matrix

�

(
∂ri

∂xj

)
∈ M

(
2, F[t, t−1]

)
,

where ∂/∂x denotes the free differential calculus. This matrix M is called the
Alexander matrix of the presentation P(G(K )) associated to the representation ρ.

For 1 ≤ j ≤ u, let us denote by Mj the (u − 1) × (u − 1) matrix obtained
from M by removing the j th column. We regard Mj as a 2(u − 1) × 2(u − 1)

matrix with coefficients in F[t, t−1].
Then Wada’s twisted Alexander polynomial of a knot K for a representation

ρ : G(K ) → SL(2, F) is defined to be a rational function

�K ,ρ(t) = det Mj

det �(xj − 1)

and moreover well-defined up to a factor t2k (k ∈ Z). See [17] and [3] for
details.

As a criterion for the twisted Alexander polynomial to be a polynomial,
Wada shows in [17] the following:

Proposition 2.1. Let ρ : G(K ) → SL(2, F) be a representation of a knot group
G(K ) so that there exists an element γ of the commutator subgroup [G(K ), G(K )],
whose image ρ(γ ) does not have the eigenvalue 1. Then det Mj is divisible by
det �(xj − 1).

Remark 2.2. In [17] Proposition 9, Wada also shows that the twisted Alexander
polynomial of any link L with two or more components becomes always a
Laurent polynomial.

3. Divisibility of twisted Alexander polynomials

As for divisibility of the twisted Alexander polynomial, we obtain the following
theorem.

Theorem 3.1. Let ρ : G(K ) → SL(2, F) be a nonabelian representation of a knot
group G(K ) = π1 E(K ). Then the twisted Alexander polynomial �K ,ρ(t) becomes
a polynomial.
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Proof. We first assume that ρ is an irreducible representation. For simplicity,
we denote the commutator subgroup [G(K ), G(K )] by G ′(K ). Let us consider
the following two cases:

(i) ρ|G′(K ) is a nonabelian representation.
(ii) ρ|G′(K ) is an abelian representation.

Case (i). At first, by the assumption, we can choose elements γ, γ ′ ∈ G ′(K )

so that
ρ(γ )ρ(γ ′) 	= ρ(γ ′)ρ(γ ) .

We may assume that both of ρ(γ ) and ρ(γ ′) have the eigenvalue 1. If not,
the assertion follows from Proposition 2.1.

Taking conjugation, we can put

ρ(γ ) =
( 1 s1

0 1

)
and ρ(γ ′) =

( 1 0
s2 1

)
,

where s1, s2 ∈ F
× = F − {0} (see [15] for example). An easy calculation shows

that the matrix ρ(γ γ ′) = ρ(γ )ρ(γ ′) does not have the eigenvalue 1. Hence the
claim holds in this case.

Case (ii). We suppose that the eigenvalue of ρ(γ ) is 1 for any γ ∈ G ′(K ).
Since the restricted map ρ|G′(K ) is an abelian one, we may assume that the
images of G ′(K ) are upper-triangle matrices. The commutator subgroup G ′(K )

is a normal subgroup of G(K ), so that it holds

ρ(ξ)ρ(γ )ρ(ξ)−1 =
( 1 ∗

0 1

)
for any element ξ ∈ G(K ). Hence we see that ρ(ξ) is also an upper-triangle
matrix. However this contradicts the irreducibility of the representation ρ.

Finally we consider the case where ρ : G(K ) → SL(2, F) is a reducible
nonabelian representation. In this case, we can suppose that the images of
generators in a Wirtinger presentation P(G(K )) have the following forms:

ρ(x1) =
( a1 b1

0 a−1
1

)
, . . . , ρ(xu) =

( au bu

0 a−1
u

)
,

where ai ∈ F
× and bi ∈ F.

Since xi x
−1
j (i 	= j) is an element of the commutator subgroup G ′(K ), we

see that ai = aj holds for any i, j . We then put a = ai for simplicity. Here all
matrices are upper-triangle matrices, so that the computation of the determinant
does not depend on the off-diagonal entries b1, . . . , bu . Hence it is the same as
the one that all matrices are diagonal. Thus the numerator of �K ,ρ(t) coincides
with the product of the original Alexander polynomials which are evaluated at
at and a−1t , that is, det Mj = �K (at)�K (a−1t).

On the other hand, the denominator of �K ,ρ(t) in this case is just (t −
a)(t −a−1). To finish the proof, we have only to show that two points t = a and
a−1 are zeros of the numerator. However this follows from the fact that ρ is a
representation of G(K ) if and only if a2 is a zero of �K (t) and (b1, . . . , bu) is
an eigenvector of the Alexander matrix (see de Rham [2]). In fact, we see that
t = a is a zero of �K (at) and t = a−1 is a zero of �K (a−1t). This completes
the proof.
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A knot in the 3-sphere S3 is called a fibered knot if its exterior has the structure
of a surface bundle over the circle S1.

In our previous paper [3], we showed that the twisted Alexander polyno-
mial �K ,ρ(t) of a fibered knot K associated to a representation ρ : G(K ) →
SL(2n, F) is expressed as a rational function of monic polynomials. Here a
polynomial

amtm + . . . + a1t + a0 ∈ F[t]

is called a monic polynomial if the coefficient am is one. It should be noted
that the notion of a monic polynomial makes sense for �K ,ρ(t), because it is
well-defined up to a factor t k (k ∈ Z). Therefore combining this result with
Theorem 3.1, we have more effective assertion for fibered knots.

Theorem 3.2. Let ρ : G(K ) → SL(2, F) be a nonabelian representation of a
genus g fibered knot K . Then the twisted Alexander polynomial �K ,ρ(t) is a monic
polynomial of degree 4g − 2.

Proof. For a fibered knot K of genus g, we can take the following presentation
of G(K ) coming from the structure of a surface bundle over the circle:

P(G(K )) = 〈x1, . . . , x2g, h | ri = hxi h
−1ϕ∗(xi )

−1, 1 ≤ i ≤ 2g〉 ,

where x1, . . . , x2g is a generating system of the fundamental group of the fiber
surface, h is a generator corresponding to the meridian of K and ϕ∗ denotes
the automorphism of the surface group induced by the monodromy ϕ.

We then easily see that the degree of det M2g+1 is equal to 4g. Hence the
degree of �K ,ρ(t) is 4g − 2, because det �(h − 1) = t2 − (tr ρ(h))t + 1. The
monicness follows from [3] Theorem 3.1.

Remark 3.3. A similar result on the fibered knots was given by Cha [1]. He
described a necessary condition that a knot in S3 was fibered in the framework
of Kirk and Livingston [6] (after a slight generalization).

4. Examples

Example 4.1. Let K be the trefoil knot 31. It is well-known that G(K ) allows
a presentation

P(G(K )) = 〈x, y | r = xyxy−1x−1 y−1〉 .

The abelianization α : G(K ) → 〈t〉 is given by α(x) = α(y) = t .
Let us consider the trivial representation

ρ0 : G(K ) → SL(2, F)

as an example of abelian representations. An easy calculation shows that the
Alexander matrix M is given by(

�

(
∂r

∂x

)
, �

(
∂r

∂y

))
=

( 1 − t + t2 0 −1 + t − t2 0
0 1 − t + t2 0 −1 + t − t2

)
.
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We also have
�(x − 1) = �(y − 1) =

( t − 1 0
0 t − 1

)
.

Therefore the twisted Alexander polynomial of G(K ) associated to ρ0 is

�K ,ρ0(t) = (t2 − t + 1)2

(t − 1)2
,

and this is not a polynomial.

Remark 4.2. If � is a finitely presentable group which is not a knot group, in
general, ��,ρ(t) is not a polynomial even though a representation ρ is nonabelian
(see [13] Examples 4.2 and 4.3).

x 1

x 6

x 4

x 2

x 5

x7
x 3

Fig. 1.

Example 4.3. Let K be the knot illustrated in Figure 1. This knot K was first
observed in the paper [3]. The Alexander polynomial of K is given by the
monic polynomial t4 − t3 + t2 − t +1. We also see that K has the genus 2. Thus
we can say nothing on the fiberedness of K from information of the Alexander
polynomial.

The knot group G(K ) has a presentation with seven generators x1, . . . , x7
and six relations:

r1 : x2x1 = x3x2x1x2x−1
1 x−1

2 ,

r2 : x6x5x−1
6 = x4x3x−1

1 x3x−1
1 x3x1x−1

3 x1x−1
3 x1x−1

3 x−1
4 ,

r3 : x6x7x−1
6 = x4x3x−1

1 x3x−1
1 x3x1x−1

3 x1x−1
3 x−1

4 ,

r4 : x5x6x−1
5 = x7x2x−1

7 ,

r5 : x2x6x−1
2 = x3x2x1x2x−1

1 x−1
2 x−1

3 x7x3x2x1x−1
2 x−1

1 x−1
2 x−1

3 ,

r6 : x5x4x−1
5 x7 = x7x3x2x1x2x−1

1 x−1
2 x−1

3 .

Let F7 be the finite field of cardinality 7 and ρ : G(K ) → SL(2, F7) the
nonabelian representation defined as follows:

ρ(x1)=
( 3 3

3 1

)
, ρ(x2)=

( 5 1
1 6

)
, ρ(x3)=

( 0 1
6 4

)
, ρ(x4)=

( 6 4
2 5

)
,

ρ(x5)=
( 6 6

6 5

)
, ρ(x6) =

( 6 1
1 5

)
and ρ(x7) =

( 1 2
1 3

)
.
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A straightforward calculation shows that

�K ,ρ(t) = t6 + 2t5 + 4t4 + 2t3 + 4t2 + 2t + 1

t2 + 3t + 1

= t4 + 6t3 + 6t2 + 6t + 1 .

This polynomial is monic but does not have the degree 6 = 4 · 2 − 2. Hence
the knot K is not fibered.

Remark 4.4. We have used Kodama’s program “KNOT” [10] to find a repre-
sentation ρ : G(K ) → SL(2, F7) in Example 4.3. The latest version of KNOT
can give us a list of linear representations into SL(2, Fp) and the numerator of
the twisted Alexander polynomial associated to such representations.
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