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On non-overdetermined inverse scattering at zero energy
in three dimensions

ROMAN G. NOVIKOV

Abstract. We develop the ∂̄-approach to inverse scattering at zero energy in di-
mensions d ≥ 3 of [Beals, Coifman 1985], [Henkin, Novikov 1987] and [Novikov
2002]. As a result we give, in particular, uniqueness theorem, precise reconstruc-
tion procedure, stability estimate and approximate reconstruction for the problem
of finding a sufficiently small potential v in the Schrödinger equation from a fixed
non-overdetermined (“backscattering” type) restriction h

∣∣
�

of the Faddeev gener-
alized scattering amplitude h in the complex domain at zero energy in dimension
d = 3. For sufficiently small potentials v we formulate also a characterization
theorem for the aforementioned restriction h

∣∣
�

and a new characterization the-
orem for the full Faddeev function h in the complex domain at zero energy in
dimension d = 3. We show that the results of the present work have direct ap-
plications to the electrical impedance tomography via a reduction given first in
[Novikov, 1987, 1988].

Mathematics Subject Classification (2000): 35R30 (primary); 81U40, 86A20
(secondary).

1. Introduction

Consider the Schrödinger equation at zero energy

−�ψ + v(x)ψ = 0, x ∈ Rd , d ≥ 2, (1.1)

where

v is a sufficiently regular function on Rdwith sufficient decay at infinity (1.2)

(precise assumptions on v are specified below in this introduction and in Sections
2 and 3). For equation (1.1), under assumptions (1.2), we consider the Faddeev
generalized scattering amplitude h(k, l), where (k, l) ∈ �,

� = {k ∈ Cd , l ∈ Cd : k2 = l2 = 0, Im k = Im l}. (1.3)
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For definitions of h see, for example, [HN, Section 2.2] and [No1, Section 2]. Given
v, to determine h on � one can use, in particular, the formula

h(k, l) = H(k, k − l), (k, l) ∈ �, (1.4)

and the linear integral equation

H(k, p) = v̂(p) −
∫
Rd

v̂(p + ξ)H(k, −ξ)dξ

ξ2 + 2kξ
, k ∈ �, p ∈ Rd , (1.5)

where

v̂(p) = (2π)−d
∫
Rd

eipx u(x)dx, p ∈ Rd , (1.6)

� = {k ∈ Cd : k2 = 0}. (1.7)

In the present work we consider, mainly, the three dimensional case d = 3. In addi-
tion, in the main considerations of the present work for d = 3 our basic assumption
on v consists in the following condition on its Fourier transform

v̂ ∈ L∞
µ (R3) for some real µ ≥ 2, (1.8)

where
L∞

µ (Rd) = {u ∈ L∞(Rd) : ‖u‖µ < +∞},
‖u‖µ = ess sup

p∈Rd
(1 + |p|)µ|u(p)|, µ > 0. (1.9)

If v satisfies (1.8), then we consider (1.5) at fixed k as an equation for H(k, ·) ∈
L∞

µ (R3). An analysis of equation (1.5) for d = 3 and with (1.8) taken as a basic
assumption on v is given in Section 3.

Note that, actually, h on � is a zero energy restriction of a function h intro-
duced by Faddeev (see [F2, HN]) as an extention to the complex domain of the
classical scattering amplitude for the Schrödinger equation at positive energies. In
addition, the restriction h

∣∣
�

was not considered in Faddeev’s works. Note that h
∣∣
�

was considered for the first time in [BC1] for d = 3 in the framework of Prob-
lem 1.1a formulated below. The Faddeev function h was, actually, rediscovered in
[BC1]. The fact that ∂̄- scattering data of [BC1] coincide with the Faddeev function
h was observed, in particular, in [HN].

In the present work, in addition to h on �, we consider h
∣∣
�

, h
∣∣
�τ and h

∣∣
�τ ,

where

� =
{

k = p

2
+ i |p|

2
γ (p), l = − p

2
+ i |p|

2
γ (p) : p ∈ Rd

}
, (1.10a)
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where γ is a piecewise continuous (or just measurable) function of p ∈ Rd with
values in Sd−1 and such that

γ (p)p = 0, p ∈ Rd , (1.10b)

�τ = {(k, l) ∈ � : | Im k| = | Im l| < τ }, (1.11)

�τ = � ∩ �τ , (1.12)

where τ > 0. Note that

� ⊂ �, (1.13)

dim � = 3d − 4, dim � = dim Rd = d, (1.14)

3d − 4 = d for d = 2, 3d − 4 > d for d ≥ 3. (1.15)

Using (1.4), (1.5) one can see that

h(k, l) ≈ v̂(p), (k, l) ∈ �, k − l = p, (1.16)

in the Born approximation (that is in the linear approximation near zero potential).
Using (1.10), (1.13), (1.14), (1.16) one can see that, in general, h

∣∣
�

is a nonlinear
analog of the Fourier transform v̂. Note also that h

∣∣
�

is a zero energy analog of
the reflection coefficient (backscattering amplitude) considered (in particular) in
[Mos, P, HN, ER].

In the present work we consider, in particular, the following inverse scattering
problems for equation (1.1) under assumptions (1.2).

Problem 1.1.

(a) Given h on �, find v on Rd (and characterize h on �);
(b) Given h on �τ for some (sufficiently great) τ > 0, find v on Rd , at least,

approximately.

Problem 1.2.

(a) Given h on �, find v on Rd (and characterize h on �);
(b) Given h on �τ for some (sufficiently great) τ > 0, find v on Rd , at least,

approximately.

Using (1.14), (1.15), (1.16) one can see that Problems 1.1a, 1.1b are strongly overde-
termined for d ≥ 3, whereas Problems 1.2a, 1.2b are nonoverdetermined for d ≥ 2
(at least, in the sense of the dimension considerations and in the Born approxima-
tion). In addition, using (1.12), (1.13) one can see that any reconstruction method
for Problems 1.2 is also a reconstruction method for Problems 1.1. The present
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work is focused on Problems 1.2a, 1.2b for the most important three-dimensional
case d = 3. In addition, we are focused on potentials v with

v̂ ∈ L∞
µ (R3) with sufficiently small ‖v̂‖µ

for some fixed µ ≥ 2,
(1.17)

where L∞
µ (R3) and ‖ · ‖µ are defined in (1.9). In some results we also still assume

for simplicity that v̂ ∈ C(R3) (in addition to (1.8) or (1.17)), where C denotes the
space of continuous functions. The main results of the present work include, in
particular:

(I) uniqueness theorem, reconstruction procedure and stability estimate for Prob-
lem 1.2a for v satisfying (1.17) (with v̂ ∈ C(R3)) (see Theorem 2.1) and

(II) approximate reconstruction method for Problem 1.2b for v satisfying (1.17)
(with v̂ ∈ C(R3)) (see Theorem 2.1 and Corollary 2.2).

These results are formulated and proved in Sections 2-12. In the present work we
formulate also:

(III) characterization for Problem 1.2a for v satisfying (1.17) (see Theorem 2.3) and
(IV) new characterization for Problem 1.1a or more precisely a characterization for

Problem 1.1a for v satisfying (1.17) (see Theorem 2.4).

We plan to give a complete proof of these characterizations in a separate work,
where we plan to show also that the aforementioned results I and II remain valid
without the additional assumption that v̂ ∈ C(R3). All these results I, II, III and IV
are presented in detail in Section 2.

Note that Problem 1.1a was considered for the first time in [BC1] for d = 3
from pure mathematical point of view without any physical applications. No possi-
bility to measure h on �\{(0, 0)} directly in some physical experiment is known at
present. However, as it was shown in [No1] (see also [HN] (Note added in proof),
[Na1, Na2, No4]), Problems 1.1 naturally arise in the electrical impedance tomog-
raphy and, more generally, in the inverse boundary value problem (Problem 1.3)
formulated as follows. Consider the equation

−�ψ + v(x)ψ = 0, x ∈ D, (1.18)

where
D is an open bounded domain in Rd , d ≥ 2,

with sufficiently regular boundary ∂ D,

v is a sufficiently regular function on D̄ = D ∪ ∂ D.

(1.19)

We assume also that

0 is not a Dirichlet eigenvalue for

the operator − � + v in D.
(1.20)
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Consider the map � such that

∂ψ

∂ν

∣∣
∂ D = �

(
ψ

∣∣
∂ D

)
(1.21)

for all sufficiently regular solutions of (1.18) in D̄, where ν is the outward normal
to ∂ D. The map � is called the Dirichlet-to-Neumann map for equation (1.18). The
aforementioned inverse boundary value problem is:

Problem 1.3. Given �, find v on D.
In addition, the simplest interpretation of D, v and � in the framework of the elec-
trical impedance tomography consists in the following (see [SU, No1, Na1]): D is
a body with isotropic conductivity σ(x) (where σ ≥ σmin > 0),

v(x) = (σ (x))−1/2 � (σ(x))1/2, x ∈ D, (1.22)

� = σ−1/2

(
�σ−1/2 + ∂σ 1/2

∂ν

)
, (1.23)

where � is the voltage-to-current map on ∂ D and σ 1/2, ∂σ 1/2
/
∂ν in (1.23) denote

the multiplication operators by the functions σ−1/2
∣∣
∂ D ,

(
∂σ 1/2

/
∂ν

) ∣∣
∂ D , respec-

tively.
Note that the formulation of Problem 1.3 goes back to Gelfand [G] and

Calderon [C].
Returning to Problems 1.1, 1.2 and their relation to Problem 1.3 one can see

that the Faddeev function h of Problems 1.1, 1.2 does not appear in Problem 1.3.
However, as it was shown in [No1] (see also [HN] (where this result of [No1] was
announced in Note added in proof), [Na1, Na2, No4]), if h corresponds to equation
(1.1), where

v of (1.1) coincides on D with v of (1.18)

and v of (1.1) is identically zero on Rd\D̄,
(1.24)

then h on � can be determined from the Dirichlet-to-Neumann map � for equation
(1.18) via the following formulas and equation:

h(k, l) = (2π)−d
∫

∂ D

∫
∂ D

e−ilx (� − �0)(x,y)ψ(y,k)dydx for (k,l)∈�, (1.25)

ψ(x, k) = eikx +
∫

∂ D

A(x, y, k)ψ(y, k)dy, x ∈ ∂ D, (1.26)

A(x, y, k) =
∫

∂ D

G(x − z, k)(� − �0)(z, y)dz, x, y ∈ ∂ D, (1.27)

G(x, k) = −(2π)−deikx
∫
Rd

eiξ x dξ

ξ2 + 2kξ
, x ∈ Rd , (1.28)
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where k ∈ Cd , k2 = 0 in (1.26)-(1.28), �0 denotes the Dirichlet-to-Neumann map
for equation (1.18) for v ≡ 0, and (� − �0)(x, y) is the Schwartz kernel of the
integral operator � − �0. Note that (1.25), (1.27), (1.28) are explicit formulas,
whereas (1.26) is a linear integral equation (with parameter k) for ψ on ∂ D. In
addition, G of (1.28) is the Faddeev’s Green function of [F1] for the Laplacian �.
Note also that formulas and equation (1.25)- (1.27) are obtained and analyzed in
[No1] for (1.19) specified as

D is an open bounded domain in Rd , d ≥ 2,

∂ D ∈ C2, v ∈ L∞(D).
(1.29)

Formulas and equation (1.25)-(1.27) reduce Problem 1.3 to Problems 1.1, 1.2. In
addition, from numerical point of view h(k, l) for (k, l) ∈ �τ can be relatively eas-
ily determined from � via (1.27), (1.26), (1.25) if τ is sufficiently small. However,
if (k, l) ∈ �\�τ , where τ is sufficiently great, then the determination of h(k, l)
from � via (1.27), (1.26), (1.25) is very unstable (especially on the step (1.26)).
The reason of this instability is that formulas and equation (1.25)-(1.28) involve the
exponential functions e−ilx , eikx and, actually, eik(x−z) (arising in (1.27) in view
of (1.28)), where (k, l) ∈ �, x ∈ ∂ D, z ∈ ∂ D, which rapidly oscillate in x, z
and may have exponentially great absolute values if (k, l) ∈ �\�τ (and, therefore,
|Re k| = | Im k| = |Re l| = | Im l| > τ ) for sufficiently great τ .

These remarks show that Problems 1.1, 1.2 are especially important in their
versions 1b, 2b as regards their applications to Problem 1.3 via (1.25)-(1.28) (or
via similar reductions). In addition, in view of (1.13)-(1.15), one can see that it is
much simpler to determine h on � (or on �τ ) only than completely on � (on on
�τ , respectively) from � via (1.25)-(1.28) for d ≥ 3. Therefore, Problem 1.2b is
of particular interest and importance in the framework of applications of Problems
1.1, 1.2 to Problem 1.3 for d ≥ 3.

In the present work we consider, mainly, Problems 1.1 and 1.2 for d = 3.
In addition, as it was already mentioned, we are focused on nonoverdetermined
Problems 1.2a, 1.2b for v satisfying (1.17). The main results of the present work
are presented in Section 2. (Some of these results were already mentioned above.)
Note that only restrictions in time prevent us from generalizing all main results of
the present work to the case d > 3. Actually, the results of the present work are
obtained in the framework of a development of the ∂̄-approach to inverse scattering
at fixed energy in dimension d ≥ 3 of [BC1, HN, No3, No5]. In particular, the
central part of the present work consists in an analysis of the non-linear ∂̄-equation
(3.13) for the Faddeev function H on � for v satisfying (1.17) (with v̂ ∈ C(R3)),
see Sections 5, 6, 7.

Actually, in the present work we do not consider Problems 1.1 and 1.2 for
d = 2: inverse scattering at fixed energy in dimension d = 2 differs considerably
from inverse scattering at fixed energy in dimension d ≥ 3. Note that a global re-
construction method for Problem 1.2a for d = 2 and for v of the form (1.2), (1.22),
where x ∈ R2, σ ≥ σmin > 0, was given in [Na2] in the framework of a devel-
opment of the ∂̄-approach to inverse scattering at fixed energy in dimension d = 2
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(see references to [BLMP, GN, No2, T] given in [Na2] in connection with this ap-
proach). In addition, this result on Problem 1.2a is given in [Na2] in the framework
of applications to the (two-dimensional) electrical impedance tomography via the
reduction (1.25)-(1.27) for d = 2 (given first in [No1]). Besides, note that there is an
essential similarity between the results of [Na2] on global reconstruction for Prob-
lem 1.2a for d = 2 and for v of the form (1.2), (1.22), where x ∈ R2, σ ≥ σmin > 0,
and results of [BC2] on global inverse scattering reconstruction for some 2 × 2 first
order system on the plane (see also [BU] in this connection).

Applications of result of the present work to the electrical impedance tomog-
raphy and more generally to Problem 1.3 will be analyzed in detail in a subsequent
paper (where we plan to give, in particular, new stability estimates for Problem 1.3).
Concerning results given in the literature on Problem 1.3, see [KV, SU], [HN] (note
added in proof), [No1, A, Na1, Na2, BU, Ma, No4] and references therein.

2. Main results

As it was already mentioned in the introduction, the main results of the present
work include, in particular:

(I) uniqueness theorem, reconstruction procedure and stability estimate for Prob-
lem 1.2a for v satisfying (1.17) (with v̂ ∈ C(R3)) and

(II) approximate reconstruction method for Problem 1.2b for v satisfying (1.17)
(with v̂ ∈ C(R3)),

see Theorem 2.1 and Corollary 2.2 formulated below in this section (and proved by
means of analysis developed in Sections 3-12).

We identify h
∣∣
�

and h
∣∣
�τ with R and R2τ on Rd , where

R(p) = h

(
p

2
+ i |p|

2
γ (p), − p

2
+ i |p|

2
γ (p)

)
, p ∈ Rd , (2.1)

R2τ (p) = R(p) for |p| < 2τ, p ∈ Rd ,

R2τ (p) = 0 for |p| ≥ 2τ, p ∈ Rd ,
(2.2)

where γ is the function of (1.10).

Theorem 2.1. Let

v̂ ∈ L∞
µ (R3) for some µ ≥ 2, (2.3)

‖v̂‖µ ≤ C <
1

c1(µ) + 8c6(µ)
, (2.4)

where L∞
µ (R3) and ‖ · ‖µ are defined in (1.9), c1(µ) and c6(µ) are the positive

constants of Lemmas 3.1 and 6.4. (For simplicity we also still assume that v̂ ∈
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C(R3).) Let R be defined by (2.1) (for some given γ of (1.10) for d = 3). Then

R ∈ L∞
µ (R3), ‖R‖µ ≤ C

1 − c1(µ)C
, (2.5)

and R uniquely determines v̂ via the following reconstruction procedure

R
(6.6)−−−−−−−−−→

by successive
approximations

H
(7.1b),(7.2b)−−−−−−→ v̂, (2.6)

where (6.6) is a nonlinear integral equation of Proposition 6.1 of Section 6, (7.1b),
(7.2b) are explicit formulas of Section 7 and where we solve (6.6) by the method
of successive approximations (see Proposition 6.7 and Lemma 6.5). In addition, if
Rappr is an arbitrary approximation to R, where Rappr also satisfies (2.5), and v̂appr
is determined from Rappr via (2.6) (with H replaced by Happr), then the following
stability estimate holds:

‖v̂ − v̂appr‖µ ≤ 1 − c1(µ)C

1 − (c1(µ) + 8c6(µ))C
‖R − Rappr‖µ. (2.7)

One can see that Theorem 2.1 includes uniqueness theorem, reconstruction proce-
dure and stability estimate for Problem 1.2a (of the introduction) for v satisfying
(1.17) (with v̂ ∈ C(R3)).

Theorem 2.1 follows from Proposition 3.2, Lemmas 6.5, 6.6, Propositions 6.1,
6.7 and formulas (7.1), (7.2) (of Sections 3,6 and 7). In particular, condition (2.4)
of Theorem 2.1 implies condition (6.20) of Proposition 6.7 and condition (3.6) of
(part I of) Proposition 3.2.

Corollary 2.2. Let v satisfy (2.3), (2.4) and, in addition,

v̂ ∈ L∞
µ∗(R3) for some µ∗ > µ. (2.8)

(For simplicity we also still assume that v̂ ∈ C(R3).) Let v̂2τ denotes v̂appr recon-
structed from Rappr via (2.6) (as in Theorem 2.1), where Rappr = R2τ (defined by
(2.1), (2.2) for d = 3). Then

R ∈ L∞
µ∗(R3) (2.9)

and

‖v̂ − v̂2τ‖µ ≤ 1 − c1(µ)C

1 − (c1(µ) + 8c6(µ))C

‖R‖µ∗

(1 + 2τ)µ
∗−µ

for τ > 0. (2.10)

One can see that Theorem 2.1 and Corollary 2.2 give an approximate reconstruction
method for Problem 1.2b (of the introduction) for v satisfying (1.17) (with v̂ ∈
C(R3)).

Note that (2.9) follows from the property that R ∈ L∞
µ (R3), the assumption

(2.8) and the part II of Proposition 3.2 with µ = µ∗. Further, Corollary 2.2 follows
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from Theorem 2.1 and estimates (6.25), (6.26). The approximate reconstruction
of Corollary 2.2 is presented in more detail in Proposition 6.8 complemented by
formulas (7.5)-(7.8).
One can see that Theorem 2.1 and Corollary 2.2 give also reconstruction results for
Problem 1.1a and Problem 1.1b ( of the introduction) for d = 3 and v satisfying
(1.17) (with v̂ ∈ C(R3)). Let us compare these results with the reconstructions
for Problems 1.1a and 1.1b for d = 3 via formulas (2.11), (2.12), (2.14) presented
below. From formula (1.4), equation (1.5) and Proposition 3.2 (of Section 3) it
follows that if v satisfies (2.3), then

v̂(p) = lim
(k,l)∈�, k−l=p

| Im k|=| Im l|=τ→∞
h(k, l) for any p ∈ R3, (2.11)

|v̂(p) − h(k, l)| ≤ 2c2(µ)C2

(1 + |p|)µ
(ln τ)2

τ

for (k, l)∈�, p=k − l, | Im k|=| Im l|=τ ≥ τ(C, µ), ‖v̂‖µ ≤C,

(2.12)

where c2(µ) is the constant of Lemma 3.1 and τ(C, µ) is the smallest number such
that

c2(µ)C
(ln τ(C, µ))2

τ(C, µ)
≤ 1

2
, ln τ(C, µ) ≥ 2.

Actually, for sufficiently regular v on R3 with sufficient decay at infinity formula
(2.11) and some results of the type (2.12) (with less precise right-hand side) were
given first in [HN]. Note also that if

v ∈ L∞(R3), ess sup
x∈R3

(1 + |x |)3+ε|v(x)| ≤ C

for some positive ε and C,

(2.13)

then

|v̂(p) − h(k, l)| ≤ 2c̃2(ε)C2

τ
for (k, l) ∈ �, p = k − l,

| Im k| = | Im l| = τ ≥ τ̃ (C, ε),

(2.14)

where c̃2(ε) and τ̃ (C, ε) are some positive constants (similar to constants c2(µ) and
τ(C, µ) of (2.12)) (see [Na1] and [No3] as regards estimate (2.14) under assump-
tion (2.13)). One can see that for d = 3 already the simple formulas (2.11), (2.12),
(2.14) give a reconstruction method for Problem 1.1a and an approximate recon-
struction method for Problem 1.1b. However, for this approximate reconstruction
of the Fourier transform v̂ from h on �τ via (2.12), (2.14) the error decaies rather
slowly as τ → +∞: even for v of the Schwartz class on R3 the decay rate of this
error, for example, in the uniform norm on the ball Bτ = {p ∈ R3 : |p| ≤ r},
where r > 0 is fixed, is not faster than O(1/τ) as τ → +∞. An important advan-
tage of the approximation v̂2τ of Corollary 2.2 in comparison with the approximate
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reconstruction based on (2.12), (2.14) consists in a fast decay of the error norm
‖v̂ − v̂2τ‖µ = O(1/τµ∗−µ) as τ → +∞ (see estimate (2.10)), at least, if µ∗ − µ

is sufficiently great. For example, if v belongs to the Schwartz class on R3 and,
as in Theorem 2.1 and Corollary 2.2, is sufficiently small in the sense (2.4) for
some µ, then estimate (2.10) holds for any µ∗ > µ and ‖v̂ − v̂2τ‖µ = O(τ−∞)

as τ → +∞. This fast convergence of v̂2τ to v̂ as τ → +∞ is in particular im-
portant in the framework of applications to Problem 1.3 (of the introduction) via
the reduction (1.25)-(1.27): the point is that the determination of h

∣∣
�τ from � via

(1.25)-(1.27) is sufficiently stable for sufficiently small τ only (see related discus-
sion of the introduction), but v̂2τ reconstructed from h

∣∣
�τ (as described in Corollary

2.2) well approximates v̂ even if τ is relatively small (due to the rapid decay of the
error v̂− v̂2τ as τ → +∞). An obvious disadvantage of Theorem 2.1 and Corollary
2.2 in comparison with formulas (2.11), (2.12), (2.14) consists in the small norm
assumption (2.4). In a subsequent work we plan to propose an approximate recon-
struction of v̂ from h on �τ (for d = 3) with a similar (fast) decay of the error for
τ → +∞ as in Corollary 2.2 but without the assumption that v is small in some
sense.

As it was already mentioned in the introduction, in the present work we for-
mulate also:

(III) characterization for Problem 1.2a for v satisfying (1.17) and

(IV) new characterization for Problem 1.1a or more precisely a characterization for
Problem 1.1a for v satisfying (1.17),

see Theorems 2.2 and 2.3 presented next.

Theorem 2.3. Let v satisfy (2.3) and

‖v̂‖µ ≤ C < 1/c1(µ), (2.15)

where c1(µ) is the constant of Lemma 3.1. Then R (defined according to (2.1),
(1.4), (1.5)) satisfies (2.5). Conversely, let

R ∈ L∞
µ (R3) for some µ ≥ 2 (2.16)

and
‖R‖µ ≤ r/2, r < c7(µ), (2.17)

where c7(µ) is some positive constant. Then R is the scattering data (defined ac-
cording to (2.1), (1.4), (1.5)) for some potential v, where

v̂ ∈ L∞
µ (R3), ‖v̂‖µ ≤ r. (2.18)

One can see that Theorem 2.4 gives a characterization for Problem 1.2a (of the
introduction) for v satisfying (1.17).
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Consider

� = {k ∈ C3, p ∈ R3 : k2 = 0, p2 = 2kp}, (2.19)

� = {(k, p) : k = p

2
+ i |p|

2
γ (p), p ∈ R3} (2.20)

where γ is the function of (1.10).
Note that

� ≈ �, � ≈ � (2.21)

or more precisely

(k, p) ∈ � ⇒ (k, k − p) ∈ �, (k, l) ∈ � ⇒ (k, k − l) ∈ �,

(k, p) ∈ � ⇒ (k, k − p) ∈ �, (k, l) ∈ � ⇒ (k, k − l) ∈ �,
(2.22)

where � and � are defined by (1.3) and (1.10a) for d = 3. Due to (2.21), (2.22),
h on � in Problem 1.1 for d = 3 can be considered as H on � and h on � in
Problem 1.2 for d = 3 can be considered as H on �, where h and H are related by
(1.4).

Consider

L∞
µ (�) = {U ∈ L∞(�) : |||U |||µ < +∞},

|||U |||µ = ess sup
(k,p)∈�

(1 + |p|)µ|U (k, p)|, µ > 0. (2.23)

Theorem 2.4. Let v satisfy (2.3), (2.15) and H be defined on � by means of (1.5).
Then

H ∈ L∞
µ (�), |||H |||µ ≤ C

1 − c1(µ)C
, (2.24)

and for almost any p ∈ R3\0 the ∂̄- equation (3.13) for H on � holds.
Conversely, let

H ∈ L∞
µ (�) for some µ ≥ 2, (2.25)

|||H |||µ ≤ r, r < c8(µ), (2.26)

where c8 is a positive constant, and for almost any p ∈ R3\0 the ∂̄- equation (3.13)

holds. Then H on � is the scattering data (defined using (1.5)) for some potential
v, where

v̂ ∈ L∞
µ (R3), ‖v̂‖µ ≤ r. (2.27)

One can see that Theorem 2.4 gives a characterization for Problem 1.1a (of the
introduction) for v satisfying (1.17) (and where h on � is considered as H on �). In
a separate work we plan to give a detailed comparison of Theorem 2.4 with related
results of [BC1] and [HN]. In particular, Theorem 2.4 develops and simplifies the
results of [BC1] on the range characterization of H on �.
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The scheme of proof of Theorems 2.3 and 2.4 consists in the following:

(1) The result that (2.3), (2.15) imply (2.5) and (2.24) follows from Proposition
3.2.

(2) It is a separate lemma that the ∂̄- equation (3.13) remains valid for almost any
p ∈ R3\0 if v satisfies (2.3) and (2.15).

(3) To prove the sufficiency parts of Theorems 2.3 and 2.4, we use Proposition 3.2,
the aforementioned separate lemma concerning the ∂̄- equation (3.13), and the
analysis developed in Sections 4, 5, 6 and 7. In addition, in the framework of
this proof we obtain that the constants c7(µ) and c8(µ) of Theorems 2.3 and
2.4 can be defined as follows:

c7(µ) = min
(

1
4c6(µ)

, 1
c1(µ)+2c6(µ)

)
, (2.28)

c8(µ) = 1
c1(µ)+2c6(µ)

, (2.29)

where c1 and c6 are the constants of Lemmas 3.1 and 6.4.

On the basis of this scheme we plan to give a complete proof of Theorems 2.3 and
2.4 in a separate work, where we plan to show also that Theorem 2.1 and Corol-
lary 2.2 remain valid without the additional assumption that v̂ ∈ C(R3).

3. Some results on direct scattering

In this section we give some results on direct scattering at zero energy in three di-
mensions or, more precisely, some results concerning equation (1.5) and the func-
tion H of (1.5) under assumption (1.8).

Consider the operator A(k) from (1.5) for d = 3:

(A(k)U )(p) =
∫
R3

v̂(p + ξ)U (−ξ)dξ

ξ2 + 2kξ
, p ∈ R3, k ∈ �, (3.1)

where U is a test function, � is defined by (1.7) for d = 3. Let C stand for contin-
uous functions.

Lemma 3.1. Let v satisfy (1.8), A(k) be defined by (3.1) and U ∈ L∞
µ (R3). Then:

A(k)U ∈ C(R3), (3.2)

‖A(k)U‖µ ≤ c1(µ)‖v̂‖µ‖U‖µ, (3.3a)

‖A(k)U‖µ ≤ c2(µ)‖v̂‖µ‖U‖µ

(ln (| Im k|))2

| Im k| , ln | Im k| ≥ 2, (3.3b)
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for k ∈ � (defined by (1.7) for d = 3), where c1(µ), c2(µ) and ρ(µ) are some
positive constants; in addition,

‖(A(k′) − A(k))U‖µ ≤ �(k, k′)‖v̂‖µ‖U‖µ (3.4a)

for some �(k, k′) such that

lim
k′→k

�(k, k′) = 0, (3.4b)

where k, k′ ∈ �; in addition,

(A(k)U )(p) ∈ C(� × R3) as a function of k and p. (3.5)

Lemma 3.1 is proved in Section 8.

Proposition 3.2. Let v satisfy (1.8) and ‖v̂‖µ ≤ C. Then the following statements
are valid:
(I) if

η1(C)
def= c1(µ)C < 1, (3.6)

then equation (1.5) is uniquely solvable for H(k, ·) ∈ L∞
µ (R3) for any k ∈ � (by

the method of successive approximations) and

‖H(k, ·)‖µ ≤ C

1 − c1(µ)C
, k ∈ �, (3.7)

H − v̂ ∈ C(� × R3), (3.8a)

|H(k, p) − v̂(p)| ≤ c1(µ)C2

(1 − c1(µ)C)(1 + |p|)µ , k ∈ �, p ∈ R3; (3.8b)

(II) if

η2(C, τ )
def= c2(µ)C

(ln τ)2

τ
< 1, ln τ ≥ 2, (3.9)

then equation (1.5) is uniquely solvable (by the method of successive approxima-
tions) for H(k, ·) ∈ L∞

µ (R3) for any k ∈ �\�τ , where

�τ = {k ∈ � : | Im k| < τ }, (3.10)

and

|H(k, ·)|µ ≤ C

1 − η2(C, | Im k|) , k ∈ �\�τ , (3.11)

H − v̂ ∈ C((�\�τ ) × R3), (3.12a)

|H(k,p) − v̂(p)|≤ η2(C, | Im k|)C
(1− η2(C, | Im k|))(1+ |p|)µ , k ∈�\�τ , p∈R3. (3.12b)

Proposition 3.2 is proved in Section 8.
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Further, note that if v satisfies (1.8) and ‖v̂‖µ ≤ C , where C satisfies (3.6), and also
v̂ ∈ C(R3), then the Faddeev function H (of the part I of Proposition 3.2) satisfies
the following ∂̄-equation on �:

∂̄k H(k,p)
∣∣

Z p
=

3∑
j=1


−2π

∫
ξ∈Sk

ξ j H(k, −ξ)H(k+ξ, p+ξ)
ds

| Im k|2


 dk̄ j

∣∣
Z p

(3.13)

for any p ∈ R3\0, where

Z p = {k ∈ C3 : (k, p) ∈ �}, p ∈ R3\0, (3.14)

Sk = {ξ ∈ R3 : ξ2 + 2kξ = 0}, k ∈ Z p, (3.15)

ds is arc-length measure on the circle Sk in R3. Note also that, under the assump-
tions of the part II of Proposition 3.2 with v̂ ∈ C(R3), the ∂̄-equation (3.13) re-
mains valid with Z p replaced by Z p ∩ (�\�τ ). Actually, at least under somewhat
stronger assumptions on v than in the part I of Proposition 3.2 with v̂ ∈ C(R3), the
∂̄-equation (3.13) was obtained for the first time in [BC1].

4. Coordinates on �

Consider � defined by (2.19). For our considerations we introduce some convinient
coordinates on �. Let

�ν = {k ∈ C3, p ∈ R3\Lν : k2 = 0, p2 = 2kp}, (4.1)

where
Lν = {p ∈ R3 : p = tν, t ∈ R}, ν ∈ S2. (4.2)

Note that �ν is an open and dense subset of �.
For p ∈ R3\Lν consider θ(p) and ω(p) such that

θ(p), ω(p) smoothly depend on p ∈ R3\Lν,

take values in S2, and

θ(p)p = 0, ω(p)p = 0, θ(p)ω(p) = 0.

(4.3)

Note that (4.3) implies that

ω(p) = p × θ(p)

|p| for p ∈ R3\Lν (4.4a)

or

ω(p) = − p × θ(p)

|p| for p ∈ R3\Lν, (4.4b)

where × denotes vector product.
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To satisfy (4.3), (4.4a) we can take

θ(p) = ν × p

|ν × p| , ω(p) = p × θ(p)

|p| , p ∈ R3\Lν. (4.5)

Lemma 4.1. Let θ, ω satisfy (4.3). Then the following formulas give a diffeomor-
phism between �ν and (C\0) × (R3\Lν):

(k,p) → (λ,p), where λ = λ(k,p) = 2k(θ(p) + iω(p))

i |p| , (4.6)

(λ,p) → (k,p), where k = k(λ,p) = κ1(λ, p)θ(p) + κ2(λ,p)ω(p) + p

2
, (4.7)

κ1(λ, p) = i |p|
4

(
λ + 1

λ

)
, κ2(λ, p) = |p|

4

(
λ − 1

λ

)
,

where (k, p) ∈ �ν , (λ, p) ∈ (C\0) × (R3\Lν).

Actually, Lemma 4.1 follows from properties (4.3) and the result that formulas
(4.6), (4.7) for λ(k) and k(λ) at fixed p ∈ R3\Lν give a diffeomorphism between
{k ∈ C3 : k2 = 0, p2 = 2kp} and C\0. The latter result follows from the fact (see
[GN, No2]) that the following formulas

λ = k1 + ik2

i |E |1/2
, k1 = i |E |1/2

2

(
λ + 1

λ

)
, k2 = |E |1/2

2

(
λ − 1

λ

)

give a diffeomorphism between {k ∈ C2 : k2 = E}, E < 0, and C\0.
Note that for k and λ of (4.6), (4.7) the following formulas hold:

| Im k| = |p|
4

(
|λ| + 1

|λ|
)

, |Re k| = |p|
4

(
|λ| + 1

|λ|
)

, (4.8)

where (k, p) ∈ �ν , (λ, p) ∈ (C\0) × (R3\Lν).
We consider λ, p of Lemma 4.1 as coordinates on �ν and on �.

5. ∂̄-equation for H on � in the coordinates λ, p

Lemma 5.1. Let the assumptions of the part I of Proposition 3.1 be fulfilled and
v̂ ∈ C(R3). Let λ, p be the coordinates of Lemma 4.1, where θ , ω satisfy (4.3),
(4.4a). Then

∂

∂λ̄
H(k(λ,p), p)=−π

4

∫ π

−π

(
|p|
2

(|λ|2−1)

λ̄|λ| (cos ϕ−1) − |p|1

λ̄
sin ϕ

)

× H(k(λ,p),−ξ(λ,p,ϕ))H(k(λ,p,ϕ), p+ξ(λ,p,ϕ))dϕ

(5.1)
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for λ ∈ C\0, p ∈ R3\Lν , where k(λ, p) is defined in (4.7) (and also depends on
ν, θ , ω),

ξ(λ, p, ϕ) = Re k(λ, p)(cos ϕ − 1) + k⊥(λ, p) sin ϕ, (5.2)

k⊥(λ, p) = Im k(λ, p) × Re k(λ, p)

| Im k(λ, p)| , (5.3)

where × in (5.3) denotes vector product.

Proof of Lemma 5.1 is given in Section 9. In this proof we deduce (5.1) from
(3.13).

Note that (5.1) can be written as

∂

∂λ̄
H(k(λ, p), p) = {H, H}(λ, p), λ ∈ C\0, p ∈ R3\Lν, (5.4)

where

{U1, U2}(λ, p) = −π

4

∫ π

−π

(
|p|
2

|λ|2 − 1

λ̄|λ| (cos ϕ − 1) − |p|
λ̄

sin ϕ

)

× U1(k(λ, p), −ξ(λ, p, ϕ))

× U2(k(λ, p) + ξ(λ, p, ϕ), p + ξ(λ, p, ϕ))dϕ,

(5.5)

where U1, U2 are test functions on � (defined by (2.19)) and k(λ, p), ξ(λ, p, ϕ)

are defined by (4.7), (5.2), (λ, p) ∈ (C\0) × (R3\Lν). Note that in the left-hand
side of (5.1), (5.4)

(k(λ, p), p) ∈ �ν (5.6a)

and in the right-hand side of (5.1), (5.5)

(k(λ, p), −ξ(λ, p, ϕ)) ∈ �\(0, 0),

(k(λ, p) + ξ(λ, p, ϕ), p + ξ(λ, p, ϕ)) ∈ �\(0, 0),

where λ∈C\0, p∈R3\Lν , ϕ∈ [−π, π ] (and (0,0) denotes the point {k =0, p=0}).
Lemma 5.2. Let the assumptions of Lemma 4.1 be fulfilled. Let U1, U2 ∈ L∞

µ (�)

for some µ ≥ 2, where L∞
µ (�) is defined by (2.23). Let {U1, U2} be defined by

(5.5). Then:
{U1, U2} ∈ L∞

local((C\0) × (R3\Lν)) (5.7)

and

|{U1, U2}(λ, p)| ≤ |||U1|||µ|||U2|||µ
(1 + |p|)µ

×
(

c3(µ)|λ|
(|λ|2 + 1)2

+ c4(µ)|p|||λ|2 − 1|
|λ|2(1+|p|(|λ|+|λ|−1))2

+ c5(µ)|p|
|λ|(1+|p|(|λ|+|λ|−1))

) (5.8)

for almost all (λ, p) ∈ (C\0) × (R3\Lν).

Proof of Lemma 5.2 is given in Section 10.
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6. Finding H on � from its nonredundant restrictions H
∣∣
�

Our next purpose is to give an integral equation for finding H on � from R = H
∣∣
�

,
where � and � are defined by (2.19), (2.20). Actually, we will give an integral
equation for finding H on �ν from R = H

∣∣
�ν

, where �ν is defined by (4.1) and
�ν = � ∩ �ν . In the coordinates of Lemma 4.1 this means that we will give an
integral equation for finding

H(λ, p) = H(k(λ, p), p), λ ∈ C\0, p ∈ R3\Lν, (6.1)

from
R(p) = H(λ0(p), p) = H(k(λ0(p), p), p), p ∈ R3\Lν, (6.2)

where λ0 of (6.2) is a piecewise continuous function of p ∈ R3\Lν with values in

T = {λ ∈ C : |λ| = 1}. (6.3)

These properties of λ0 of (6.2) follow from the properties of γ of (1.10a) and from
(4.6). Note that if, for example, γ = θ , where θ , ω are defined by (4.5), then
λ0(p) ≡ 1 for p ∈ R3\Lν .

We will use the following formula

u(λ) = u(λ0) − 1

π

∫
C

∂u(ζ )

∂ζ̄

(
1

ζ − λ
− 1

ζ − λ0

)
d Re ζ d Im ζ,

λ ∈ C\0, λ0 ∈ C\0,

(6.4)

where u(λ) is continuous and bounded for λ ∈ C\0, ∂u(λ)/∂λ̄ is bounded for
λ ∈ C\0, and ∂u(λ)/∂λ̄ = O(|λ|−2) as |λ| → ∞. Note that the aforementioned
assumptions on ∂u(λ)/∂λ̄ in (6.4) can be somewhat weakened. One can prove (6.4)
using the formula

∂

∂λ̄

1

πλ
= δ(λ) (6.5)

(where δ is the Dirac function), the Liouville theorem and the property that (6.4)
holds for λ = λ0.

Proposition 6.1. Let the assumptions of Lemma 5.1 be fulfilled. Let H = H(λ, p),
R = R(p) be defined by (6.1), (6.2). Then H = H(λ, p), (λ, p) ∈ (C\0) ×
(R3\Lν), satisfies the following nonlinear integral equation

H(λ, p) = R(p) + M(H)(λ, p), λ ∈ C\0, p ∈ R3\Lν, (6.6)

where

M(U )(λ,p)= − 1

π

∫
C
(U,U )(ζ,p)

(
1

ζ −λ
− 1

ζ −λ0(p)

)
d Re ζ d Im ζ,

λ ∈ C\0, p ∈ R3\Lν,

(6.7)
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(U1, U2)(ζ, p) = {U ′
1, U ′

2}(ζ, p), ζ ∈ C\0, p ∈ R3\Lν, (6.8a)

U ′
j (k, p) = U j (λ(k, p), p), (k, p) ∈ �ν, j = 1, 2, (6.8b)

where U, U1, U2 are test functions on (C\0) × (R3\Lν), {U ′
1, U ′

2} is defined by
(5.5), λ0 = λ0(p) is the function of (6.2), λ(k, p) is defined in (4.6).

Remark 6.2. In addition to (6.8), note that definition of (U1, U2) can be also writ-
ten as

(U1, U2)(λ, p) = −π

4

∫ π

−π

(
|p|
2

|λ|2 − 1

λ̄|λ| (cos ϕ − 1) − |p|
λ̄

sin ϕ

)

× U1(z1(λ, p, ϕ), −ξ(λ, p, ϕ))

× U2(z2(λ, p, ϕ), p + ξ(λ, p, ϕ))dϕ,

(6.9)

where

z1(λ,p,ϕ)= 2k(λ, p)(θ(−ξ(λ,p,ϕ))+iω(−ξ(λ,p,ϕ)))

i |p| ,

z2(λ,p,ϕ)= 2(k(λ,p)+ξ(λ,p,ϕ))(θ(p+ξ(λ,p,ϕ))+iω(p+ξ(λ,p,ϕ)))

i |p| ,

(6.10)

λ ∈ C\0, p ∈ R3\Lν , ϕ ∈ [−π, π ], k(λ, p) is defined in (4.7), ξ(λ, p, ϕ) is
defined by (5.2), θ , ω are the vector functions of (4.3), (4.4a).

Remark 6.3. Under the assumptions of Proposition 6.1, equation (6.6) holds, at
least, for almost any (λ, p) ∈ (C\0) × (R3\Lν).

Proposition 6.1 follows from Lemmas 4.1, 5.1, 5.2 and formula (6.4) for
u(λ) = H(λ, p) (defined by (6.1)).

Consider

L∞
µ ((C\0)× (R3\Lν))={U ∈ L∞((C\0)×(R3\Lν)) : |||U |||µ <∞},

|||U |||µ = ess sup
λ∈C\0, p∈R3\Lν

(1 + |p|)µ|U (λ, p)|, µ > 0. (6.11)

Under the assumptions of Proposition 6.1, from the part I of Proposition 3.2 and
formulas (6.1), (6.2) it follows that

H, R ∈ L∞
µ ((C\0) × (R3\Lν)) (6.12)

(where R is independent of λ ∈ C\0).
Note that

M(U )(λ, p) = N (U )(λ, p) − N (U )(λ0(p), p), (6.13a)

N (U )(λ, p) = I (U, U )(λ, p), (6.13b)

I (U1, U2)(λ, p) = − 1

π

∫
C
(U1, U2)(ζ, p)

d Re ζ d Im ζ

ζ − λ
, (6.13c)
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where (λ, p) ∈ (C\0)×(R3\Lν), U , U1, U2 are test functions on (C\0)×(R3\Lν),
(U1, U2) is defined by (6.8).

To deal with nonlinear integral equation (6.6) we use Lemmas 6.4, 6.5 and 6.6
given below.

Lemma 6.4. Let U, U1, U2 ∈ L∞
µ ((C\0) × (R3\Lν)) for some µ ≥ 2. Let M(U ),

N (U ), I (U1, U2) be defined by (6.7), (6.13), where λ, p are the coordinates of
Lemma 4.1 under assumption (4.4a). Then

I (U1, U2), N (U ), M(U ) ∈ L∞
µ ((C\0) × (R3\Lν)), (6.14a)

I (U1, U2)(·, p), N (U )(·, p), M(U )(·, p) ∈ C(C\0) ∩ L∞(C\0)

for almost any p ∈ R3\Lν,
(6.14b)

|||I (U1, U2)|||µ ≤ c6(µ)|||U1|||µ|||U2|||µ, (6.15a)

|||N (U )|||µ ≤ c6(µ)|||U |||2µ, (6.15b)

|||M(U )|||µ ≤ 2c6(µ)|||U |||2µ, (6.15c)

|||N (U1) − N (U2)|||µ ≤ c6(µ)(|||U1|||µ + |||U2|||µ)|||U1 − U2|||µ, (6.16a)

|||M(U1) − M(U2)|||µ ≤ 2c6(µ)(|||U1|||µ + |||U2|||µ)|||U1 − U2|||µ. (6.16b)

Lemma 6.4 is proved in Section 11.

Lemma 6.5. Let µ ≥ 2 and 0 < r < (4c6(µ))−1. Let M be defined by (6.7)

(where λ, p are the coordinates of Lemma 4.1 under assumption (4.4a)). Let U0 ∈
L∞

µ ((C\0) × (R3\Lν)) and |||U0|||µ ≤ r/2. Then the equation

U = U0 + M(U ) (6.17)

is uniquely solvable for U ∈ L∞
µ ((C\0) × (R3\Lν)), |||U |||µ ≤ r , and U can be

found by the method of successive approximations, in addition,

|||U − (MU0)
n(0)|||µ ≤ r(4c6(µ)r)n

2(1 − 4c6(µ)r)
, n ∈ N, (6.18)

where MU0 denotes the map V → U0 + M(V ).

Lemma 6.5 is proved in Section 12 (using Lemma 6.4 and the lemma about
contraction maps).

Lemma 6.6. Let the assumptions of Lemma 6.5 be fulfilled. Let also Ũ0 ∈
L∞

µ ((C\0) × (R3\Lν)), |||Ũ0|||µ ≤ r/2 and Ũ denote the solution of (6.17) with

U0 replaced by Ũ0, where Ũ ∈ L∞
µ ((C\0) × (R3\Lν)), |||Ũ |||µ ≤ r . Then

|||U − Ũ |||µ ≤ |||U0 − Ũ0|||µ
1 − 4c6(µ)r

. (6.19)

Lemma 6.6 is proved in Section 12.
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As a corollary of Proposition 6.1 and Lemmas 6.5 and 6.6, we obtain the following
result.

Proposition 6.7. Let the assumptions of Lemma 5.1 be fulfilled. Let

r
def= 2C

1 − c1(µ)C
<

1

4c6(µ)
, (6.20)

where C is the constant of Proposition 3.2. Let H = H(λ, p), R = R(p) be defined
by (6.1), (6.2). Then

|||H |||µ ≤ r/2, |||R|||µ ≤ r/2 (6.21)

and R uniquely and stably determines H via nonlinear integral equation (6.6) con-
sidered for |||H ||| ≤ r . In addition, this equation is solvable by the method of
successive approximations according to (6.18) (of Lemma 6.5) and the stability
estimate holds according to (6.19) (of Lemma 6.6) (where U0, U , Ũ0, Ũ should be
replaced by R, H, R̃, H̃ , respectively).

Finally in this section, we apply Propositions 6.1, 6.7 and Lemmas 6.5, 6.6 to
approximate finding H on � from H

∣∣
�τ , where

�τ = {(k, p) ∈ � : | Im k| < τ }, (6.22)

�τ = � ∩ �τ , (6.23)

where � and � are defined by (2.19), (2.20). In the coordinates of Lemma 4.1 this
means that we deals with approximate finding H = H(λ, p) defined by (6.1) from
R2τ = χ2τ R, where R = R(p) is defined by (6.2) and χs denotes the multiplication
operator by the function χr (p), where

χs(p) = 1 for |p| < s, χs(p) = 0 for |p| ≥ s, where p ∈ R3, s > 0. (6.24)

One can see that R2τ is a low-frequency part of R and, thus, H
∣∣
�τ is a low-

frequency part of H
∣∣
�

. One can see also that �τ is a low-imaginary part of �

and, therefore, �τ is a low-imaginary part of �.
Note that

|||χ2τ R|||µ ≤ |||R|||µ, (6.25)

|||R − χ2τ R|||µ ≤ |||R|||µ∗

(1 + 2τ)µ
∗−µ

(6.26)

for R ∈ L∞
µ∗((C\0) × (R3\Lν)), where 0 ≤ µ ≤ µ∗, τ > 0.

Using Propositions 6.1, 6.7, Lemmas 6.5, 6.6 and estimates (6.25), (6.26) we
obtain the following result.
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Proposition 6.8. Let the assumptions of Proposition 6.7 be fulfilled. Let also

v̂ ∈ L∞
µ∗(R3) for some µ∗ > µ. (6.27)

Let τ > 0. Then:
|||χ2τ R|||µ ≤ r/2, (6.28a)

R ∈ L∞
µ∗(R3\Lν); (6.28b)

χ2τ R uniquely and stably determines H2τ , where H2τ denotes the solution of the
nonlinear integral equation

H2τ = χ2τ R + M(H2τ ), |||H2τ |||µ ≤ r, (6.29)

see Lemmas 6.5, 6.6; the following estimate holds:

|||H − H2τ |||µ ≤ |||R|||µ∗

(1 + 2τ)µ
∗−µ(1 − 4c6(µ)r)

. (6.30)

Note that (6.28b) follows from the property that R ∈ L∞
µ (R3\Lν), the assumption

(6.27), the part II of Proposition 3.2 for µ = µ∗ and definition (6.2). Estimate
(6.30) follows from Proposition 6.7, Lemma 6.6 (where U0, U , Ũ0, Ũ are replaced
by R, H , χ2r R, H2τ , respectively) and from (6.28), (6.29), (6.26).

Actually, in Proposition 6.8, H2τ is a low-frequency approximation to H . In
addition, estimate (6.30) shows that the error between H2τ and H rapidly decays in
the norm ||| · |||µ as τ → +∞ if µ∗ − µ is sufficiently great.

7. Finding v̂ on R3 from H on � and some related results

Actually, in this section we consider finding v̂ on R3\Lν from H on �ν in the coor-
dinates of Lemma 4.1 under assumption (4.4a). In addition, under the assumptions
of Proposition 6.8, we consider also approximate finding v̂ on R3\Lν from H2τ

introduced in Proposition 6.8 as a low-frequency approximation to H .
Under assumption (2.3), formulas (2.11), (4.7), (4.8) imply that

H(λ, p) → v̂(p) as λ → 0, (7.1a)

H(λ, p) → v̂(p) as λ → ∞, (7.1b)

where λ ∈ C\0, p ∈ R3\Lν and H(λ, p) is defined by (6.1). In addition, under
the assumptions of Proposition 6.1, formulas (6.6), (7.1) (and estimates (3.7), (3.8),
(5.7), (5.8)) imply that

v̂(p) = R(p) + M(H)(0, p), (7.2a)

v̂(p) = R(p) − N (H)(λ0(p), p) (7.2b)
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for p ∈ R3\Lν , where M , N are defined by (6.7), (6.8), (6.13), and λ0 is the
function of (6.2). In addition, due to (6.13a), we have that

M(H)(0, p) = N (H)(0, p) − N (λ0(p), p), p ∈ R3\Lν, (7.3)

and, as a corollary of (7.2), (7.3), we have that

N (H)(0, p) = 0, p ∈ R3\Lν. (7.4)

Further, under the assumptions of Proposition 6.8, using (6.29) we obtain that

H2τ (λ, p) → v̂+
2τ (p) as λ → 0, (7.5a)

H2τ (λ, p) → v̂−
2τ (p) as λ → ∞, (7.5b)

where
v̂+

2τ (p) = χ2τ R(p) + M(H2τ )(0, p), (7.6a)

v̂−
2τ (p) = χ2τ R(p) − N (H2τ )(λ0(p), p), (7.6b)

for p ∈ R3\Lν , where M , N are defined by (6.7), (6.8), (6.13) and λ0 is the function
of (6.2). In addition, formulas (1.9), (6.11), (7.1), (7.5) imply that

‖v̂ − v̂±
2τ‖µ ≤ |||H − H2τ |||µ. (7.7)

Under the assumptions of Proposition 6.8, formulas (6.30), (7.7) imply that v̂ on R3

can be approximately determined from H2τ as v̂±
2τ of (7.5), (7.6) and

‖v̂ − v̂±
2τ‖µ = O

(
1

τµ∗−µ

)
as τ → +∞. (7.8)

8. Proofs of Lemma 3.1 and Proposition 3.2

Proof of Lemma 3.1
Proof of (3.3). We have that

|A(k)U (p)| ≤ I (k, p)‖v̂‖µ‖U‖µ, (8.1)

where

I (k, p) =
∫
R3

dξ

(1 + |p + ξ |)µ(1 + |ξ |)µ|ξ2 + 2kξ | , k ∈ �, p ∈ R3. (8.2)
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To prove (3.3) it is sufficient to prove that

I (k, p) ≤ c1(µ)

(1 + |p|)µ , (8.3a)

I (k, p) ≤ c2(µ)(ln (| Im k|))2

| Im k|(1 + |p|)µ , ln | Im k| ≥ 2, (8.3b)

where k ∈ �, p ∈ R3. Note that

I (k, p) ≤

 ∫

|ξ |≤|p+ξ |
+

∫
|ξ |≥|p+ξ |


 dξ

(1 + |p + ξ |)µ(1 + |ξ |)µ|ξ2 + 2kξ | , (8.4)

where k ∈ �, p ∈ R3. Note also that

|ξ | ≤ |p + ξ | ⇒ |p + ξ | ≥ |p|/2, |ξ | ≥ |p + ξ | ⇒ |ξ | ≥ |p|/2, (8.5)

where ξ, p ∈ R3. Using (8.4), (8.5) we obtain that

I (k, p) ≤ (1 + |p|/2)−µ(I1(k) + I2(k, p)), (8.6)

where

I1(k) =
∫
R3

dξ

(1 + |ξ |)µ|ξ2 + 2kξ | ,

I2(k, p) =
∫
R3

dξ

(1 + |p + ξ |)µ|ξ2 + 2kξ | ,
(8.7)

where k ∈ �, p ∈ R3. Note that

I1(k) = I2(k, 0), k ∈ �. (8.8)

Note further that

I2(k, p) =∫
R3

dξ

(1+|(ξ+Rek)−(Rek− p)|)µ|(ξ+Rek)2−(Rek)2+2i Im k(ξ+Rek)|
= I3(k, Rek− p),

(8.9)

I3(k, p) =
∫
R3

dξ

(1 + |ξ − p|)µ|ξ2 − (Re k)2 + 2i Im kξ | , (8.10)

where k ∈ �, p ∈ R3.
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In view of (8.6)-(8.10), to prove (8.3) it is sufficient to prove that

I3(k, p) ≤ c̃1(µ), (8.11a)

I3(k, p) ≤ c̃2(µ)(ln (| Im k|))2

| Im k| , | Im k| ≥ ρ(µ), (8.11b)

where k ∈ �, p ∈ R3.
Consider p‖ = p‖(p, Im k), p⊥ = p⊥(p, Im k), where

p‖ = p Im k

| Im k|
Im k

| Im k| for | Im k| �= 0, p‖ =0 for | Im k|=0, p⊥ = p−p‖, (8.12)

where p, Im k ∈ R3. Using the properties

Im k Re k = 0, (Re k)2 = ( Im k)2 for k ∈ � (8.13)

and changing variables in the integral of (8.10), we obtain that

I3(k, p) =∫
R3

dξ

(1+((ξ1−|p⊥|)2+ξ2
2+(ξ3−sgn(p‖ Im k)|p‖|)2)1/2)µ|ξ2−( Im k)2+2i | Im k|ξ3|

,

(8.14)
where k ∈ �, p ∈ R3. Further, using (8.14) we obtain that

I3(k, p) ≤ √
2I4(| Im k|, |p‖|, |p⊥|), (8.15)

I4(ρ, s, t) =∫
R3

dξ

(1 + (ξ1 − t)2 + ξ2
2 + (ξ3 − s)2)µ/2(|ξ2

1 + ξ2
2 + ξ2

3 − ρ2| + 2ρ|ξ3|)
, (8.16)

where k ∈ �, p ∈ R3, ρ, s, t ∈ [0, +∞[. Due to (8.15), to prove (8.11) it is
sufficient to prove that

I4(ρ, s, t) ≤ c̃1(µ)/
√

2, (8.17a)

I4(ρ, s, t) ≤ c̃2(µ)(ln ρ)2

√
2ρ

, ln ρ ≥ 2, (8.17b)
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where ρ, s, t ∈ [0, +∞[. Note that

I4(ρ, s, t) ≤

 ∫

|ξ3|≤|ξ3−s|
+

∫
|ξ3|≥|ξ3−s|




× dξ

(1 + (ξ1 − t)2 + ξ2
2 + (ξ3 − s)2)µ/2(|ξ2

1 + ξ2
2 + ξ2

3 − ρ2| + 2ρ|ξ3|)

≤
∫

|ξ3|≤|ξ3−s|

dξ

(1 + (ξ1 − t)2 + ξ2
2 + ξ2

3 )µ/2(|ξ2
1 + ξ2

2 + ξ2
3 − ρ2| + 2ρ|ξ3|)

+
∫

|ξ3|≥|ξ3−s|

dξ

(1+(ξ1−t)2+ξ2
2 +(ξ3−s)2)µ/2(|ξ2

1 +ξ2
2 +(ξ3−s)2−ρ2|+2ρ|ξ3−s|)

≤ 2
∫
R3

dξ

(1 + (ξ1 − t)2 + ξ2
2 + ξ2

3 )µ/2(|ξ2
1 + ξ2

2 + ξ2
3 − ρ2| + 2ρ|ξ3|)

= 2I4(ρ, 0, t),
(8.18)

where ρ, s, t ∈ [0, +∞[. In addition, in (8.18) we used, in particular, that

|ξ2
1 + ξ2

2 + ξ2
3 − ρ2| + 2ρ|ξ3|

≥ |ξ2
1 + ξ2

2 + (ξ3 − s)2 − ρ2| + 2ρ|ξ3 − s| if |ξ3| ≥ |ξ3 − s|. (8.19)

To prove (8.19) we rewrite it as

ρ2 − ξ2
1 − ξ2

2 − ξ2
3 + 2ρ|ξ3| ≥ ρ2 − ξ2

1 − ξ2
2 − (ξ3 − s)2 + 2ρ|ξ3 − s|

for |ξ3| ≥ |ξ3 − s|, ξ2
1 + ξ2

2 + ξ2
3 ≤ ρ2,

(8.20a)

ξ2
1 + ξ2

2 + ξ2
3 − ρ2 + 2ρ|ξ3| ≥ ξ2

1 + ξ2
2 + (ξ3 − s)2 − ρ2 + 2ρ|ξ3 − s|

for |ξ3| ≥ |ξ3 − s|, ξ2
1 + ξ2

2 + ξ2
3 ≥ ρ2, ξ2

1 + ξ2
2 + (ξ3 − s)2 ≥ ρ2,

(8.20b)

ξ2
1 + ξ2

2 + ξ2
3 − ρ2 + 2ρ|ξ3| ≥ ρ2 − ξ2

1 − ξ2
2 − (ξ3 − s)2 + 2ρ|ξ3 − s|

for |ξ3| ≥ |ξ3 − s|, ξ2
1 + ξ2

2 + ξ2
3 ≥ ρ2, ξ2

1 + ξ2
2 + (ξ3 − s)2 ≤ ρ2.

(8.20c)

Inequality (8.20a) follows from the inequalities

−x2 + 2ρx ≥ −y2 + 2ρy for 0 ≤ y ≤ x ≤ ρ, (8.21)

y = |ξ3 − s| ≤ x = |ξ3| ≤
√

ρ2 − ξ2
1 − ξ2

2 ≤ ρ. (8.22)
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Inequality (8.20b) is obvious. Inequality (8.20c) follows from the inequalities

x2 − δ2 + 2ρx ≥ δ2 − y2 + 2ρy for 0 ≤ δ ≤ ρ, 0 ≤ y ≤ δ ≤ x, (8.23)

y =|ξ3 − s| ≤ δ=
√

ρ2 − ξ2
1 − ξ2

2 ≤ x =|ξ3|, δ =
√

ρ2 − ξ2
1 − ξ2

2 ≤ ρ. (8.24)

In turn, inequality (8.23) follows from the inequalities

x2 − δ2 + 2ρx ≥ 2ρδ for 0 ≤ δ ≤ x,

δ2 − y2 + 2ρy
(8.21)≤ 2ρδ for 0 ≤ y ≤ δ ≤ ρ.

(8.25)

Thus formulas (8.19), (8.18) are proved.
Due to (8.18), to prove (8.17) it is sufficient to prove that

I4(ρ, 0, t) ≤ c̃1(µ)

2
√

2
, (8.26a)

I4(ρ, 0, t) ≤ c̃2(µ)(ln ρ)2

2
√

2ρ
, ln ρ ≥ 2, (8.26b)

where ρ, t ∈ [0, +∞[. Using spherical coordinates we obtain that

I4(ρ, 0, t)

=
+∞∫
0

π∫
−π

π∫
0

r2 sin ψdψdϕdr

(1 + r2 + t2 − 2r t sin ψ cos ϕ)µ/2(|r2 − ρ2| + 2ρ r | cos ψ |)

= 2

+∞∫
0

π∫
−π

π/2∫
0

r2 sin ψdψdϕdr

(1 + r2 + t2 − 2r t sin ψ cos ϕ)µ/2(|r2 − ρ2| + 2ρ r cos ψ)

≤ 4

+∞∫
0

π/2∫
−π/2

π/2∫
0

r2 sin ψdψdϕdr

(1 + r2 + t2 − 2r t sin ψ cos ϕ)µ/2(|r2 − ρ2| + 2ρ r cos ψ)

≤ 4

+∞∫
0

π/2∫
−π/2

π/2∫
0

r2 sin ψdψdϕdr

(1 + r2 + t2 − 2r t cos ϕ)µ/2(|r2 − ρ2| + 2ρ r cos ψ)

= 4

+∞∫
0




π/2∫
−π/2

dϕ

(1+r2+t2 − 2r t cos ϕ)µ/2

π/2∫
0

sin ψdψ

(|r2−ρ2|+2ρ r cos ψ)


 r2dr,

(8.27)
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where ρ, t ∈ [0, +∞[. Further, we obtain that:

π/2∫
−π/2

dϕ

1 + r2 + t2 − 2r t cos ϕ

=
π/2∫

−π/2

dϕ

1 + r2 + t2 − 2r t (1 − 2(sin(ϕ/2))2)

= 2

π/4∫
−π/4

dϕ

1 + (r − t)2 + 4r t (sin ϕ)2

≤ 2

π/4∫
−π/4

√
2 cos ϕdϕ

1 + (r − t)2 + 4r t (sin ϕ)2
= 4

1/
√

2∫
0

√
2du

1 + (r − t)2 + 4r tu2

= 2
√

2√
r t

√
2r t∫

0

du

1 + (r − t)2 + u2
≤ 4

√
2√

r t

√
2r t∫

0

du

(
√

1 + (r − t)2 + u)2

= 4
√

2√
r t

(
1√

1 + (r − t)2
− 1√

1 + (r − t)2 + √
2r t

)

= 8√
1 + (r − t)2(

√
1 + (r − t)2 + √

2r t)
;

(8.28)

π/2∫
0

sin ψdψ

|r2 − ρ2| + 2ρ r cos ψ
=

1∫
0

du

|r2 − ρ2| + 2ρ ru

= 1

2ρ r
ln

(
|r2 − ρ2| + 2ρ ru

) ∣∣1
0 = 1

2ρ r
ln

(
1 + 2ρ r

|r2 − ρ2|
)

,

(8.29)

where ρ, t ∈ [0, +∞[. Using (8.27)-(8.29) we obtain that

I4(ρ, 0, t)
µ≥2≤ 32

+∞∫
0

dr√
1 + (r − t)2(

√
1 + (r − t)2 + √

2r t)

≤ 32

+∞∫
0

dr

1 + (r − t)2
≤ 32

+∞∫
−∞

dr

1 + r2
= 32π for ρ = 0, t ≥ 0,

(8.30a)
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I4(ρ, 0, t)
µ≥2≤ 16

ρ

+∞∫
0

ln
(

1 + 2ρr
|r2−ρ2|

)
rdr√

1 + (r − t)2(
√

1 + (r − t)2 + √
2r t)

= I5(ρ, t/ρ) for ρ > 0, t ≥ 0,

(8.30b)

where

I5(ρ, ε) = 16

+∞∫
0

ρ ln
(

1 + 2τ

|τ 2−1|
)

τdτ√
1 + ρ2(τ − ε)2(

√
1 + ρ2(τ − ε)2 + ρ

√
2τε)

, ρ > 0, ε ≥ 0.

As regards I5(ρ, ε), we will estimate it separately for ε ∈ [0, 1/4], ε ∈ [1/4, 2] and
ε ∈ [2, +∞[. For ε ∈ [0, 1/4], ρ > 0, we start with the partition:

I5(ρ, ε) = 16




1/2∫
0

+
3/2∫

1/2

+
+∞∫

3/2


 ρ ln

(
1 + 2r

|r2−1|
)

rdr

1 + ρ2(r − ε)2 + ρ
√

2rε
√

1 + ρ2(r − ε)2

= 16(I5,1(ρ, ε) + I5,2(ρ, ε) + I5,3(ρ, ε)),

(8.31)

where I5,1, I5,2, I5,3 correspond to
1/2∫
0

,
3/2∫

1/2
,

+∞∫
3/2

, respectively. Further,

I5,1(ρ, ε) ≤ ln (7/3)

1/2∫
0

ρ rdr

1 + ρ2(r − ε)2 + ρ
√

rε(1 + ρ|r − ε|)
= ln (7/3) Ĩ5,1(ρ, ε),

(8.32)

where ρ > 0, ε ∈ [0, 1/4]. In addition:

Ĩ5,1(ρ, ε) =
1/2∫
0

ρ rdr

1 + ρ2r2
= 1

2

1/4∫
0

ρ dτ

1 + ρ2τ
= ln

(
1 + ρ2/4

)
2ρ

(8.33a)

for ρ > 0, ε = 0;

Ĩ5,1(ρ, ε)

=



1/2∫
0

+
3/2∫

1/2

+
1/(2ε)∫
3/2


 ρ ε2τdτ

1 + (ρε)2(τ − 1)2 + ρε
√

τ(1 + ρε|τ − 1|)

= Ĩ5,1,1(ρ, ε) + Ĩ5,1,2(ρ, ε) + Ĩ5,1,ε(ρ, ε) for ρ > 0, ε ∈]0, 1/4],

(8.33b)
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where Ĩ5,1,1, Ĩ5,1,2, Ĩ5,1,ε correspond to
1/2∫
0

,
3/2∫

1/2
,

1/(2ε)∫
3/2

, respectively. In addition:

Ĩ5,1,1(ρ, ε) ≤ ρε2/4

1 + (ρε)2/4
= (ρε)2

ρ (4 + (ρε)2)
≤ min

(
1

ρ
,

ρ

43

)
, (8.34)

Ĩ5,1,2(ρ, ε)≤2

3/2∫
1

ρ ε2(3/2)dτ

1+ρε
√

1/2(1+ρε(τ −1))
=3

1/2∫
0

ρ ε2dτ

1+ρε/
√

2+(ρε)2τ/
√

2

= 3
√

2ρε2

(ρε)2
ln (

√
2 + ρε + (ρε)2τ)

∣∣1/2
0

= 3
√

2

ρ
ln

(
1 + (ρε)2

2(
√

2 + ρε)

)
≤ 3

√
2

ρ
ln

(
1 + ρ2

32
√

2

)
,

(8.35)

Ĩ5,1,3(ρ, ε) ≤
(2ε)−1−1∫

1/2

ρ ε2(τ + 1)dτ

1 + (ρε)2τ 2
≤ 3

(2ε)−1∫
1/2

ρ ε2τdτ

1 + (ρε)2τ 2

= 3ρε2

2(ρε)2
ln (1 + (ρε)2x)

∣∣1/(2ε)2

1/4 ≤ 3

2ρ
ln

(
1 + ρ2/4

)
,

(8.36)

where ρ > 0, ε ∈]0, 1/4]. Further,

I5,2(ρ, ε) ≤ ρ

1 + ρ2/16

3/2∫
1/2

ln

(
1 + 2r

|r2 − 1|
)

rdr, (8.37)

I5,3(ρ, ε) ≤
+∞∫

3/2

ρ(2r/|r2 − 1|)rdr

1 + ρ2(r − ε)2
≤

+∞∫
3/2

4ρ(1 + (r2 − 1)−1)dr

(1 + ρ (r − ε))2

≤ 8

1 + ρ 5/4
,

(8.38)

where ρ > 0, ε ∈]0, 1/4].
For ε ∈ [1/4, 2], ρ > 0 we use the partition:

I5(ρ, ε) = 16




1/8∫
0

+
3∫

1/8

+
+∞∫
3


 ρ ln

(
1 + 2r

|r2−1|
)

rdr

1 + ρ2(r − ε)2 + ρ
√

2rε
√

1 + ρ2(r − ε)2

= 16(I5,4(ρ, ε) + I5,5(ρ, ε) + I5,6(ρ, ε)),

(8.39)
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where I5,4, I5,5, I5,6 correspond to
1/8∫
0

,
3∫

1/8
,

+∞∫
3

, respectively. In addition:

I5,4(ρ, ε) ≤ ln (3/2)

1/8∫
0

ρ rdr

1 + ρ2(r − ε)2
≤ ln (3/2)ρ

64 + ρ2
, (8.40)

I5,5(ρ, ε) ≤ ρ

3∫
1/8

ln

(
1 + 2r

|r2 − 1|
)

rdr, (8.41a)

I5,5(ρ, ε) ≤
3∫

1/8

3ρ ln
(

1 + 2
|r−1|

)
dr

1 + ρ
√

1/32(1 + ρ |r − ε|)

≤

 ∫

|r−ε|≤|r−1|, 1/8<r<3

+
∫

|r−ε|≥|r−1|, 1/8<r<3


 3ρ ln

(
1 + 2

|r−1|
)

dr

1 + ρ
√

1/32 + ρ2
√

1/32|r − ε|)

≤ 12
√

2




3∫
1/8

ρ ln
(

1 + 2
|r−ε|

)
dr

4
√

2 + ρ + ρ2|r − ε| +
3∫

1/8

ρ ln
(

1 + 2
|r−1|

)
dr

4
√

2 + ρ + ρ2|r − 1|




≤ 48
√

2

3∫
0

ρ ln
(

1 + 2
r

)
dr

4
√

2 + ρ + ρ2r
≤ 48

√
2

3∫
0

ln
(

1 + 2
r

)
dr

1 + ρ r

= 48
√

2

ρ




1∫
0

+
3ρ∫

1


 ln

(
1 + 2ρ

τ

)
dτ

1 + τ

ρ≥1≤ 48
√

2

ρ




1∫
0

(ln (3ρ) + ln (1/τ))dτ

1 + τ
+

3ρ∫
1

ln (1 + 2ρ)dτ

1 + τ




= 48
√

2

ρ


ln(1 + 2ρ) ln(1/2 + (3/2)ρ) + ln(3ρ) ln 2 +

1∫
0

ln(1/τ)dτ

1 + τ


 , ρ ≥1,

(8.41b)

I5,6(ρ, ε)≤
+∞∫
3

ρ(2r/|r2 − 1|)rdr

1 + ρ2(r − ε)2
≤

+∞∫
3

4ρ(1 + (r2 − 1)−1)dr

(1 + ρ (r − ε))2
≤ 5

1 + ρ
, (8.42)

where ρ > 0, ε ∈ [1/4, 2].
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For ε ∈ [2, +∞[, ρ > 0 we use the partition:

I5(ρ, ε) = 16(I5,7(ρ, ε) + I5,8(ρ, ε)), (8.43)

where I5,7 = I5,1 + I5,2, I5,8 = I5,3, where I5,1, I5,2, I5,3 are defined as in (8.31).
In addition,

I5,7(ρ, ε) ≤ ρ

1 + ρ2/4

3/2∫
0

ln

(
1 + 2r

|r2 − 1|
)

rdr, (8.44)

I5,8(ρ, ε) ≤
+∞∫

3/2

ρ(2r/|r2 − 1|)rdr

1 + ρ2(r − ε)2 + ρ
√

3(1 + ρ |r − ε|)

=
+∞∫

3/2

2ρ(1 + (r2 − 1)−1)dr

1 + √
3ρ + √

3ρ2|r − ε| + ρ2(r − ε)2

≤
+∞∫

−∞

4ρ dr

1 + √
3ρ + √

3ρ2|r | + ρ2r2

≤
1∫

0

8ρ dr√
3ρ + √

3ρ2r
+

+∞∫
1

8ρ dr

1 + ρ2r2

≤ 8√
3

1∫
0

dr

1 + ρ r
+

+∞∫
1

16ρ dr

(1 + ρ r)2
= 8√

3

ln (1 + ρ)

ρ
+ 16

1 + ρ
,

(8.45)

where ρ > 0, ε ∈ [2, +∞[.
Estimates (8.26) follow from (8.30)-(8.45). Thus, estimates (8.17), (8.11),

(8.3) are proved. The proof of (3.3) is completed.

Proof of (3.2). Let

f1(ξ) = v̂(ξ), f2(ξ) = U (ξ)

ξ2 − 2kξ
, (8.46)

where ξ ∈ R3, k ∈ �. We have, in particular, that

f1 ∈ L∞(R3), f2 ∈ L1(R3). (8.47)

Property (3.2) follows from (8.46), (8.47) and the following lemma.
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Lemma 8.1. Let f1, f2 satisfy (8.47). Then the convolution

f1 ∗ f2 ∈ C(R3) ∩ L∞(R3), (8.48)

where

( f1 ∗ f2)(p) =
∫
R3

f1(p − ξ) f2(ξ)dξ, p ∈ R3. (8.49)

Lemma 8.1 follows from the following properties of (fixed) f1 ∈ L∞(R3), f2 ∈
L1(R3): ∫

R3

| f2(ξ)|dξ < ∞, (8.50a)

∫
Br

| f2(ξ)|dξ → 0 as r → +∞, (8.50b)

sup
mesA≤ε

∫
A

| f2(ξ)|dξ → 0 as ε → 0, (8.50c)

∀ r > 0, ε > 0, λ > 1 ∃ u ∈ C(Br+1) such that

mes supp ( f1 − u) < ε in Br+1, ‖u‖C(Br+1) ≤ λ‖ f1‖L∞(R3),
(8.50d)

where
Br = {ξ ∈ R3 : |ξ | < r}. (8.51)

The proof of (3.2) is completed.

Proof of (3.4). Due to (3.3a), we have that

‖(A(k) − A(l))U‖µ ≤ 2c1(µ)‖v̂‖µ‖U‖µ, k, l ∈ �. (8.52)

Besides, we have that

|(A(k) − A(l))U (p)|
≤ (�1(l, ε, p) + �2(k, l, ε, p) + �3(k, l, ε, r, p) + �4(k, l, r, p))

× ‖v̂‖µ‖U‖µ,

(8.53)

where

�1(l, ε, p) =
∫

D(l,ε)

dξ

(1 + |p + ξ |)µ(1 + |ξ |)µ|ξ2 + 2lξ | , (8.54)

�2(k, l, ε, p) =
∫

D(l,ε)

dξ

(1 + |p + ξ |)µ(1 + |ξ |)µ|ξ2 + 2kξ | , (8.55)
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�3(k, l, ε, r, p) =
∫

Br \D(l,ε)

2|(k − l)ξ |dξ

(1 + |p + ξ |)µ(1 + |ξ |)µ|ξ2 + 2kξ ||ξ2 + 2lξ | , (8.56)

�4(k, l, r, p) =
∫

R3\Br

2|(k − l)ξ |dξ

(1 + |p + ξ |)µ(1 + |ξ |)µ|ξ2 + 2kξ ||ξ2 + 2lξ | , (8.57)

where

D(l, ε) = {ξ ∈ R3 : |ξ2 + 2lξ | ≤ ε}, (8.58)

Br is defined by (8.51),

0 < ε ≤ 1, 2|l| + 2 ≤ r, |k − l| ≤ 1, k, l ∈ �, p ∈ R3, (8.59)

where |z| = (|Re z|2 + | Im z|2)1/2 for z ∈ Cd . Note that

|ξ2 + 2lξ | ≥ |ξ2 + 2Re lξ | ≥ |ξ |(|ξ | − 2|Re l|) ≥ 2|ξ | ≥ 4 > ε

for ξ ∈ R3\Br
(8.60)

and, therefore,

D(l, ε) ⊂ Br (8.61)

under conditions (8.59). Further, we estimate separately �1, �2, �3 and �4.

Estimate of �1. In a similar way with (8.6), (8.7) we obtain that

�1(l, ε, p) ≤ (1 + |p|/2)−µ
(
�1,1(l, ε) + (�1,2(l, ε, p)

)
, (8.62)

�1,1(l, ε) =
∫

D(l,ε)

dξ

(1 + |ξ |)µ|ξ2 + 2lξ | ,

�1,2(l, ε, p) =
∫

D(l,ε)

dξ

(1 + |p + ξ |)µ|ξ2 + 2lξ | ,
(8.63)

where 0 < ε ≤ 1, l ∈ �, p ∈ R3. In addition,

�1,1(l, ε) ≤ �1,3(l, ε), �1,2(l, ε, p) ≤ �1,3(l, ε), (8.64)



312 ROMAN G. NOVIKOV

where

�1,3(l, ε) =
∫

D(l,ε)

dξ

|ξ2 + 2lξ | ≤
∫

D(l,ε)

√
2dξ

|ξ2 + 2Re lξ | + 2| Im lξ |

(8.13)=
∫

|(ξ+Rel)2−(Rel)2+2i Im l(ξ+Re l)|≤ε

√
2dξ

|(ξ + Rel)2 − (Rel)2| + 2| Im l(ξ + Rel)|

≤
∫

|ξ2−(Re l)2|≤ε

√
2dξ

|ξ2 − (Rel)2| + 2| Im lξ |
ρl=|Rel|,(8.13)≤

∫
|ξ2−ρ2

l |≤ε

√
2dξ

|ξ2 − ρ2
l | + 2ρl |ξ3|

≤
(ρ2

l +ε)1/2∫
(max (ρ2

l −ε,0))1/2

π∫
−π

π∫
0

√
2r2 sin ψ dψ dϕ dr

|r2 − ρ2
l | + 2ρlr | cos ψ | = 4π

√
2�1,4(ρl , ε),

(8.65)

�1,4(ρ, ε) =
(ρ2+ε)1/2∫

(max (ρ2−ε,0))1/2

π/2∫
0

r2 sin ψ dψ dr

|r2 − ρ2| + 2ρ r cos ψ

(8.29)= 1

2

(ρ2+ε)1/2∫
(max (ρ2−ε,0))1/2

ln

(
1 + 2ρ r

|r2 − ρ2|
)

r

ρ
dr

≤ 1

2




ρ∫
(max (ρ2−ε,0))1/2

+
(ρ2+ε)1/2∫

ρ


 ln

(
1 + 2ρ

|r − ρ|
) (

1 + r − ρ

ρ

)
dr

= �1,4,1(ρ, ε) + �1,4,2(ρ, ε),

(8.66)

where �1,4,1, �1,4,2 correspond to
ρ∫

(max (ρ2−ε,0))1/2

,
(ρ2+ε)1/2∫

ρ

respectively, 0 < ε ≤

1, l ∈ �, ρl = |Re l| = |l|/√2, 0 ≤ ρ. In addition,

�1,4(ρ, ε) =
ε1/2∫
0

dr = ε1/2 for ρ = 0, 0 < ε ≤ 1, (8.67a)
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�1,4,1(ρ, ε) ≤ 1

2

ρ∫
(max (ρ2−ε,0))1/2

ln

(
1 + 2ρ

|r − ρ|
)

dr

(8.68)≤ 1

2

ρ∫
(max (ρ2−ε,0))1/2

1

α

(
2ρ

ρ − r

)α

dr

= − (2ρ)α

2α(1 − α)
(ρ − r)1−α

∣∣∣∣
ρ

(max (ρ2−ε,0))1/2

= (2ρ)α

2α(1 − α)

(
ρ − (max (ρ2 − ε, 0))1/2

)1−α

(8.69)≤ (2ρ)α

2α(1 − α)
ε(1−α)/2

(8.67b)

for ρ > 0, 0 < ε ≤ 1, 0 < α < 1,

�1,4,2(ρ, ε)
(8.68)≤

(ρ2+ε)1/2∫
ρ

1

2α

(
2ρ

η − ρ

)α

dr +
(ρ2+ε)1/2∫

ρ

dr

= (2ρ)α

2α(1 − α)

(
(ρ2 + ε)1/2 − ρ

)1−α +
(
(ρ2 + ε)1/2 − ρ

)
(8.69)≤

(
(2ρ)α

2α(1 − α)
+ 1

)
ε(1−α)/2

(8.67c)

for ρ > 0, 0 < ε ≤ 1, 0 < α < 1.
Note that in (8.67b), (8.67c) we used the inequalities

ln (1 + x) ≤ α−1xα for x ≥ 0, 0 < α ≤ 1, (8.68)

(x + ε)1/2 − x1/2 ≤ ε1/2 for x ≥ 0, ε ≥ 0. (8.69)

Due to (8.62)-(8.67) we have that

�1(l, ε, p) ≤ 8π
√

2(1 + |p|/2)−µ

(
1 + (2|Re l|)α

α(1 − α)

)
ε(1−α)/2 (8.70)

for l ∈ �, 0 < ε ≤ 1, p ∈ R3, 0 < α < 1.

Estimate of �2. In a similar way with (8.62)-(8.65) we obtain that

�2(k, l, ε, p) ≤ 2(1 + |p|/2)−µ�̃2(k, l, ε), (8.71)
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�̃2(k, l, ε) =
∫

D(l,ε)

√
2dξ

|ξ2 + 2Re kξ | + 2| Im kξ |

≤
∫

|((ξ+Re k)−(Re k−Re l))2−(Re l)2|≤ε

√
2dξ

|(ξ + Re k)2 − (Re k)2| + 2| Im k(ξ + Re k)|

=
∫

|(ξ−(Re k−Re l))2−(Re l)2|≤ε

√
2dξ

|ξ2 − (Re k)2| + 2| Im kξ | ,

(8.72)

where k, l ∈ �, 0 < ε ≤ 1, p ∈ R3. Note that

|(ξ − ζ )2 − ρ2| ≤ ε ⇔ max (ρ2 − ε, 0) ≤ (ξ − ζ )2 ≤ ρ2 + ε ⇒ (8.73)

max ((max (ρ2 − ε, 0))1/2 − |ζ |, 0) ≤ |ξ | ≤ |ζ | + (ρ2 + ε)1/2 (8.74)

(8.69)⇒ max (ρ − ε1/2 − |ζ |, 0) ≤ |ξ | ≤ ρ + ε1/2 + |ζ |, (8.75)

where ξ, ζ ∈ R3, ρ ≥ 0, 0 < ε ≤ 1. Using (8.72) and (8.73)-(8.75) for ζ =
Re k − Re l, ρ = |Re l|, in a similar way with (8.65), (8.66) we obtain that

�̃2(k, l, ε)

= 2π
√

2




ρk∫
max (ρl−δ,0)

+
ρl+δ∫
ρk


 ln

(
1 + 2ρk

|r − ρk |
) (

1 + r − ρk

ρk

)
dr

= 2π
√

2(�̃2,1(ρk, ρl , δ) + �̃2,2(ρk, ρl , δ)),

ρk =|Rek| �= 0, ρl =|Rel|, δ=ε1/2 + |Rek − Rel|, k, l ∈ �, 0<ε≤1,

(8.76)

where �̃2,1, �̃2,2 correspond to
ρk∫

max (ρl−δ,0)

,
ρl+δ∫
ρk

respectively. In addition, in a

similar way with (8.67) we obtain that

�̃2(k, l, ε) ≤ 4π
√

2(δ+ρl −ρk) ≤ 4π
√

2(ε1/2+2|Re k−Re l|) for k = 0, (8.77a)

�̃2,1(ρk, ρl , δ) ≤ (2ρk)
α

α(1 − α)
(ρk − max (ρl − δ, 0))1−α

≤ (2ρk)
α

α(1 − α)
(δ + |ρk − ρl |)1−α

≤ (2|Re k|)α
α(1 − α)

(ε1/2 + 2|Re k − Re l|)1−α,

(8.77b)
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�̃2,2(ρk, ρl , δ) ≤ (2ρk)
α

α(1 − α)
(ρl + δ − ρk)

1−α + 2(ρl + δ − ρk)

≤ (2|Re k|)α
α(1 − α)

(ε1/2 + 2|Re k − Re l|)1−α

+ 2(ε1/2 + 2|Re k − Re l|),

(8.77c)

where k, l, ε, ρk, ρl , δ are the same as in (8.76) and 0 < α < 1.
Due to (8.71), (8.76), (8.77) we have that

�2(k, l, ε, p)

≤ 8π
√

2(1 + |p|/2)−µ

(
(2|Re k|)α
α(1 − α)

+ 3α

)
(ε1/2 + 2|Rek − Rel|)1−α

for k, l ∈ �, |k − l| ≤ 1, 0 < ε ≤ 1, p ∈ R3, 0 < α < 1.

(8.78)

Estimate of �3. We have that

�3(k, l, ε, r, p)
(8.51),(8.58)≤

∫
Br

2|k − l|rdξ

(1 + |p + ξ |)µ(1 + |ξ |)µ|ξ2 + 2kξ |ε
(8.3a)≤ 2|k − l|r

ε

c1(µ)

(1 + |p|)µ
(8.79)

under conditions (8.59).
Estimate of �4. We have that

�4(k, l, r, p)
(8.57),(8.59),(8.60)≤

∫
R3\Br

|k − l|dξ

(1 + |p + ξ |)µ(1 + |ξ |)µ|ξ2 + 2kξ |
(8.3a)≤ |k − l| c1(µ)

(1 + |p|)µ
(8.80)

under conditions (8.59).
Now formulas (3.4) follow from (8.52), (8.53) and estimates (8.70), (8.78)-

(8.80) with ε = |k − l|β , 0 < |k − l| ≤ 1 for fixed k ∈ �, r ≥ 2(|k| + √
2) + 2,

α ∈]0, 1[ and β ∈]0, 1[.
The proof of (3.4) is completed.

Finally, property (3.5) follows from the presentation

(A(k)U )(p) − (A(k′)U )(p′)
= ((A(k)U )(p) − (A(k)U )(p′)) + ((A(k)U )(p′) − (A(k′)U )(p′))

(8.81)

and properties (3.2), (3.4). The proof of Lemma 3.1 is completed.
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Proof of Proposition 3.2. Proposition 3.2 follows from equation (1.5) written as

H(k, ·) = v̂ − A(k)H(k, ·) (8.82)

and Lemma 3.1. In addition, to obtain (3.8a), (3.12a) we use the presentation

H̃(k, p) − H̃(k′, p′) = (H̃(k, p) − H̃(k, p′)) + (H̃(k, p′) − H̃(k′, p′)), (8.83)

where
H̃(k, ·) def= H(k, ·) − v̂

(8.82)= −A(k)H(k, ·), (8.84)

H̃(k, ·) (3.2),(8.84)∈ C(R3) as soon as H(k, ·) ∈ L∞
µ (R3), (8.85)

H̃(k, ·) − H̃(k′, ·) = H(k, ·) − H(k′, ·)
(8.82)= ((I + A(k))−1 − (I + A(k′))−1)v̂

= (I + A(k))−1((I + A(k′))−1

− (I + A(k)))(I + A(k′))−1)v̂

= (I + A(k))−1(A(k′) − A(k))(I + A(k′))−1)v̂,

(8.86)

H̃(k, ·) − H̃(k′, ·) (8.85)∈ C(R3) as soon as H(k, ·), H(k′, ·) ∈ L∞
µ (R3), (8.87a)

‖H̃(k, ·) − H̃(k′, ·)‖µ
(3.4),(8.86)→ 0 as k′ → k

as soon as (I + A(k′))−1 is uniformly bounded in a neighborhood of k,
(8.87b)

sup
p′∈R3

(1 + |p′|)µ|H̃(k, p′) − H̃(k′, p′)| (8.87)→ 0 as k′ → k

as soon as (I + A(k′))−1 is uniformly bounded in a neighborhood of k,

(8.88)

where k, k′ ∈ �, p, p′ ∈ R3.
The proof of Proposition 3.2 is completed.

9. Proof of Lemma 5.1

The proof of Lemma 5.1 of the present work is similar to the proof of Lemma 4.1
of [No5]. Proceeding from (3.13), (4.3), (4.4a), (4.7), (5.2), (5.3) in a similar way
with the proof of Lemma 4.1 of [No5] we obtain that:

∂

∂λ̄
H(k(λ, p), p) = −π

2

∫
{ξ∈R3: ξ2+2kξ=0}

(
∂κ̄1

∂λ̄
θξ + ∂κ̄2

∂λ̄
ωξ

)

× H(k, −ξ)H(k + ξ, p + ξ)
ds

| Im k|2 , λ ∈ C\0, p ∈ R3\Lν,

(9.1)
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where k = k(λ, p), κ1 = κ1(λ, p), κ2 = κ2(λ, p) are defined in (4.7), θ = θ(p),
ω = ω(p) are the vector-functions of (4.3), (4.4a), ds is arc-length measure on the
circle {ξ ∈ R3 : ξ2 + 2kξ = 0} and, in addition,

ds = |Re k|dϕ, (9.2)

∂κ̄1

∂λ̄
θξ + ∂κ̄2

∂λ̄
ωξ =

(
∂κ̄1

∂λ̄
Re κ1 + ∂κ̄2

∂λ̄
Re κ2

)
(cos ϕ − 1)

+ |p|
2| Im k|

(
∂κ̄1

∂λ̄
Im κ2 − ∂κ̄2

∂λ̄
Im κ1

)
sin ϕ

(9.3)

under the assumption that the circle {ξ ∈ R3 : ξ2 + 2kξ = 0} is parametrized by
ϕ ∈] − π, π [ according to (5.2). (Note that in the proof of Lemma 4.1 of [No5] the
∂̄-equation similar to (9.1) is not valid for |λ| = 1 but it is not indicated because of
a misprint.)

The difinition of κ1, κ2 (see (4.7)) implies that

∂κ̄1

∂λ̄
= − i |p|

4

(
1 − 1

λ̄2

)
,

∂κ̄2

∂λ̄
= |p|

4

(
1 + 1

λ̄2

)
, (9.4)

Re κ1 = i |p|
8

(
λ − λ̄ + 1

λ
− 1

λ̄

)
, Im κ1 = |p|

8

(
λ + λ̄ + 1

λ
+ 1

λ̄

)
,

Re κ2 = |p|
8

(
λ + λ̄ − 1

λ
− 1

λ̄

)
, Im κ2 = |p|

8i

(
λ − λ̄ − 1

λ
+ 1

λ̄

)
,

(9.5)

where λ ∈ C\0, p ∈ R3. Due to (9.4), (9.5) we have that

∂κ̄1

∂λ̄
Re κ1 + ∂κ̄2

∂λ̄
Re κ2

= |p|2
32

(
1 − 1

λ̄2

) (
λ − λ̄ + 1

λ
− 1

λ̄
+

(
1 + 1

λ̄2

) (
λ + λ̄ − 1

λ
− 1

λ̄

))

= |p|2
32

(
λ − λ̄ + 1

λ
− 1

λ̄
− λ

λ̄2
+ 1

λ̄
− 1

λλ̄2
+ 1

λ̄3

+λ + λ̄ − 1

λ
− 1

λ̄
+ λ

λ̄2
+ 1

λ̄
− 1

λλ̄2
− 1

λ̄3

)

= |p|2
16

(
λ − 1

λλ̄2

)
= |p|2

16
λ

(
1 − 1

|λ|4
)

,

(9.6)
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∂κ̄1

∂λ̄
Im κ2 − ∂κ̄2

∂λ̄
Im κ1

= −|p|2
32

(
1 − 1

λ̄2

) (
λ − λ̄ − 1

λ
+ 1

λ̄
+

(
1 + 1

λ̄2

) (
λ + λ̄ + 1

λ
+ 1

λ̄

))

= −|p|2
32

(
λ − λ̄ − 1

λ
+ 1

λ̄
− λ

λ̄2
+ 1

λ̄
+ 1

λλ̄2
− 1

λ̄3

+λ + λ̄ + 1

λ
+ 1

λ̄
+ λ

λ̄2
+ 1

λ̄
+ 1

λλ̄2
+ 1

λ̄3

)

= −|p|2
16

(
λ + 2

λ̄
+ 1

λλ̄2

)
= −|p|2

16

(|λ|2 + 1)2

|λ|2λ̄ .

(9.7)

Due to (9.6), (9.7), (4.8) we have that(
∂κ̄1

∂λ̄
Re κ1 + ∂κ̄2

∂λ̄
Re κ2

)
1

| Im k| = |p|
4

(|λ|2 − 1)

λ̄|λ| , (9.8)

(
∂κ̄1

∂λ̄
Im κ2 − ∂κ̄2

∂λ̄
Im κ1

) |p|
2| Im k|2 = −|p|

2λ̄
, (9.9)

where (λ, p) ∈ (C\0) × (R3\Lν).
The ∂̄-equation (5.1) follows from (9.1), (9.2), (9.3), (9.8), (9.9) and the prop-

erty that |Re k| = | Im k| for k ∈ � defined by (1.7).
Lemma 5.1 is proved.

10. Proof of Lemma 5.2

Let us show, first, that

{U1, U2} ∈ L∞
local((C\0) × (R3\Lν)). (10.1)

Property (10.1) follows from definition (5.5), the properties

U1(k, −ξ(k, ϕ)) ∈ L∞(� × [0, 2π ]) (as a function of k, ϕ),

U1(k, −ξ(k, ϕ)) ∈ L∞(� × [0, 2π ]) (as a function of k, p, ϕ

(with no dependence on p)),

(10.2)

U2(k+ξ(k, ϕ), p+ξ(k, ϕ)) ∈ L∞(�×[0, 2π ]) (as a function of k, p, ϕ), (10.3)

where

� = {k ∈ C3 : k2 = 0}, � = {k ∈ C3, p ∈ R3 : k2 = 0, p2 = 2kp}, (10.4)

ξ(k, ϕ) = Re k(cos ϕ − 1) + k⊥ sin ϕ, k⊥ = Im k × Re k

| Im k| (10.5)
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(where × in (10.5) denotes vector product), and from Lemma 4.1. In turn, (10.2)
follows from U1 ∈ L∞(�), definition (10.4) and the fact that p = −ξ(k, ϕ), ϕ ∈
[0, 2π ], is a parametrization of the set {p ∈ R3 : p2 = 2kp}, k ∈ �\{0}. To prove
(10.3), consider

� = {k ∈ C3, l ∈ C3 : k2 = l2 = 0, Im k = Im l}. (10.6)

Note that

� ≈ �,

(k, l) ∈ � ⇒ (k, k − l) ∈ �, (k, p) ∈ � ⇒ (k, k − p) ∈ �.
(10.7)

Consider
u2(k, l) = U2(k, k − l), (k, l) ∈ �. (10.8)

The property U2 ∈ L∞(�) is equivalent to the property u2 ∈ L∞(�). Property
(10.3) is equivalent to the property

u2(k + ξ(k, ϕ), l) ∈ L∞(� × [0, 2π ]) (as a function of k, l, ϕ). (10.9)

Property (10.9) follows from the property

u2(ζ(l, ψ, ϕ) + i Im l, l) ∈ L∞(� × [0, 2π ] × [0, 2π ])

(as a function of l, ψ, ϕ),
(10.10)

where

ζ(l, ψ, ϕ) = Re l cos(ϕ − ψ) + l⊥ sin(ϕ − ψ), l⊥ = Im l × Re l

| Im l| (10.11)

(where × in (10.11) denotes vector product). Note that k = ζ(l, ψ, ϕ), ϕ ∈ [0, 2π ]
at fixed ψ ∈ [0, 2π ] is a parametrization of the set Sl = {k ∈ C3 : k2 = l2, Im k =
Im l}, l ∈ �\0. In turn, (10.10) follows from u2 ∈ L∞(�), definition (10.6)
and the aforementioned fact concerning the parametrization of Sl . Thus, properties
(10.10), (10.9), (10.3) are proved. This completes the proof of (10.1).

Let us prove now (5.8).
We have that

{U1, U2} = {U1, U2}1 + {U1, U2}2, (10.12)

where

{U1, U2}1(λ, p) = −π |p|(|λ|2 − 1)

8λ̄|λ| {U1, U2}3(λ, p), (10.13a)

{U1, U2}3(λ, p) =
∫ π

−π

(cos ϕ − 1)

× U1(k(λ, p), −ξ(λ, p, ϕ))U2(k(λ, p) + ξ(λ, p, ϕ), p + ξ(λ, p, ϕ))dϕ,

(10.13b)
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{U1, U2}2 = π |p|
4λ̄

{U1, U2}4(λ, p), (10.14a)

{U1, U2}4(λ, p) =
∫ π

−π

sin ϕ

× U1(k(λ, p), −ξ(λ, p, ϕ))U2(k(λ, p)+ξ(λ, p, ϕ), p+ξ(λ, p, ϕ))dϕ,

(10.14b)

λ ∈ C\0, p ∈ R3\Lν .
Formulas (5.2), (5.3) imply that

|ξ |2 = |Re k|2((cos ϕ − 1)2 + (sin ϕ)2) = 4|Re k|2(sin (ϕ/2))2, (10.15)

where ξ = ξ(λ, p, ϕ), k = k(λ, p).
The relation p2 = 2k(λ, p)p, λ ∈ C\0, p ∈ R3\Lν , implies that

p = −Re k(λ, p)(cos ψ − 1) − k⊥(λ, p) sin ψ (10.16)

for some ψ = ψ(λ, p) ∈ [−π, π ], where k⊥(λ, p) is defined by (5.3). Formulas
(5.2), (5.3), (10.16) imply that

|p + ξ |2 = |Re k|2((cos ϕ − cos ψ)2 + (sin ϕ − sin ψ)2)

= 4|Re k|2
(

sin
ϕ − ψ

2

)2

,

|p|2 = 4|Re k|2
(

sin
ψ

2

)2

,

(10.17)

where ξ = ξ(λ, p, ϕ), k = k(λ, p), ψ = ψ(λ, p).
Using the assumptions of Lemma 5.2 and formulas (10.13b), (10.14b), (10.15),

(10.17) we obtain that

|{U1, U2}3(λ, p)| ≤ A(r, ψ, µ, µ)|||U1|||µ|||U2|||µ,

|{U1, U2}4(λ, p)| ≤ B(r, ψ, µ, µ)|||U1|||µ|||U2|||µ
(10.18)

for r = |Re k(λ, p)|, ψ = ψ(λ, p) (of (10.16)) and almost all (λ, p) ∈ (C\0) ×
(R3\Lν), where

A(r, ψ, α, β) =
∫ π

−π

(1 − cos ϕ)dϕ

(1 + 2r | sin(ϕ/2)|)α(1 + 2r | sin(
ϕ−ψ

2 )|)β , (10.19a)

B(r, ψ, α, β) =
∫ π

−π

| sin ϕ|dϕ

(1 + 2r | sin(ϕ/2)|)α(1 + 2r | sin(
ϕ−ψ

2 )|)β , (10.19b)
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for r ≥ 0, ψ ∈ [−π, π ], α ≥ 2, β ≥ 2. In addition, in (10.18) we used also that,
in view of Lemma 4.1, properties (10.2), (10.3) and definitions (10.13), (10.14), the
variations of U1, U2 on the sets of zero measure in � imply variations of {U1, U2}3
and {U1, U2}4 on sets of zero measure, only, in (C\0) × (R3\Lν).

Further, we use the following lemma of [No5].

Lemma 10.1. [No5]. Let r ≥ 0, ψ ∈ [−π, π ], ρ = 2r | sin(ψ/2)|, α ≥ 2, β ≥ 2.
Then

A(r, ψ, α, β) ≤
4∑

j=1

A j (r, ψ, α, β), (10.20)

A1(r, ψ, α, β) ≤ min

(
ρ3

6r3
,

ρ

r3

)
1

(1 + ρ/2)β
, (10.21)

A2(r, ψ, α, β) ≤ ρ3

r3

1

(1 + ρ/2)α+1
, (10.22)

A3(r, ψ, α, β) ≤ 4ρ3

r3

1

(1 + ρ)α(1 + ρ/2)
, (10.23)

A4(r, ψ, α, β) ≤
(

3

1 + r2
+ 2π

(1 + √
2r)α

)
1

(1 + ρ/2)β
, (10.24)

B(r, ψ, α, β) ≤
4∑

j=1

B j (r, ψ, α, β), (10.25)

B1(r, ψ, α, β) ≤ min

(
ρ2

2r2
,

√
2ρ

r2

)
1

(1 + ρ/2)β
, (10.26)

B2(r, ψ, α, β) ≤ 2ρ2

r2

1

(1 + ρ/2)α+1
, (10.27)

B3(r, ψ, α, β) ≤ 4ρ2

r2

1

(1 + ρ)α(1 + ρ/2)
, (10.28)

B4(r, ψ, α, β) ≤
(

5

1 + r
+ 3

(1 + √
2r)α

)
1

(1 + ρ/2)β
. (10.29)

Lemma 10.2. Let

r = r(λ, p) = ρ

4

(
|λ| + 1

|λ|
)

, | sin (ψ/2)| = ρ

2r
, (10.30)
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where λ ∈ C\0, ρ ≥ 0, ψ ∈ [−π, π ]. Then:

ρ ||λ|2 − 1|
|λ|2 A1 ≤ 43|λ|√

6(|λ|2 + 1)2(1 + ρ/2)β
, (10.31)

ρ ||λ|2 − 1|
|λ|2 A2 ≤ 2 · 43|λ|

(|λ|2 + 1)2(1 + ρ/2)α
, (10.32)

ρ ||λ|2 − 1|
|λ|2 A3 ≤ 2 · 44|λ|

(|λ|2 + 1)2(1 + ρ)α
, (10.33)

ρ ||λ|2 − 1|
|λ|2 A4 ≤ 4πρ||λ|2 − 1|

|λ|2(1 + (ρ/4)(|λ| + |λ|−1))2(1 + ρ/2)β
, (10.34)

ρ

|λ| B1 ≤ 16
√

2|λ|
(|λ|2 + 1)2(1 + ρ/2)β

, (10.35)

ρ

|λ| B2 ≤ 43|λ|
(|λ|2 + 1)2(1 + ρ/2)α

, (10.36)

ρ

|λ| B3 ≤ 2 · 43|λ|
(|λ|2 + 1)2(1 + ρ)α

, (10.37)

ρ

|λ| B4 ≤ 8ρ

|λ|(1 + (ρ/4)(|λ| + |λ|−1))(1 + ρ/2)β
, (10.38)

where A j = A j (r, |ψ |, α, β), B j = B j (r, |ψ |, α, β) are the same as in Lemma
10.1, j = 1, 2, 3, 4, α ≥ 2, β ≥ 2.

Proof of Lemma 10.2. Using (10.30) we obtain that

ρ min

(
ρ3

6r3
,

ρ

r3

)
= 43|λ|3

(|λ|2 + 1)3
min

(
ρ

6
,

1

ρ

)
≤ 43|λ|3√

6(|λ|2 + 1)3
,(10.39)

ρ min

(
ρ2

2r2
,

√
2ρ

r2

)
= 16|λ|2

(|λ|2 + 1)2
min

(ρ

2
,
√

2
)

≤ 16
√

2|λ|2
(|λ|2 + 1)2

, (10.40)

where λ ∈ C\0, ρ ≥ 0. Estimates (10.31), (10.35) follow from (10.21), (10.26)
and (10.39), (10.40). Estimates (10.32), (10.33), (10.36), (10.37) follow from
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(10.22), (10.23), (10.27), (10.28) and (10.30). Estimates (10.34), (10.38) follow
from (10.24), (10.29), the inequalities

3

1 + r2
+ 2π

(1 + √
2r)α

≤ 4π

(1 + r)2
,

5

1 + r
+ 3

(1 + √
2r)α

≤ 8

1 + r
,

(10.41)

where r ≥ 0, α ≥ 2, and from (10.30). Lemma 10.2 is proved.
Estimate (5.8) follows from (10.12)-(10.14), (10.18), (4.8), (10.17) (for |p|) and
Lemmas 10.1, 10.2.

Lemma 5.2 is proved.

11. Proof of Lemma 6.4

Let

J1(λ) =
∫
C

|ζ |
(|ζ |2 + 1)2

d Reζ d Im ζ

|ζ − λ| , (11.1)

J2(λ, ρ) =
∫
C

(|ζ |2 + 1)ρ

|ζ |2(1 + ρ(|ζ | + |ζ |−1))2

d Reζ d Im ζ

|ζ − λ| , (11.2)

J3(λ, ρ) =
∫
C

ρ

|ζ |(1 + ρ(|ζ | + |ζ |−1))

d Reζ d Im ζ

|ζ − λ| , (11.3)

where λ ∈ C, ρ > 0.

Lemma 11.1. The following estimates hold:

J1(λ) ≤ n1, λ ∈ C, (11.4)

J2(λ, ρ) ≤ n2, λ ∈ C, ρ > 0, (11.5)

J3(λ, ρ) ≤ n3, λ ∈ C, ρ > 0, (11.6)

for some positive constants n1, n2, n3 (where J1, J2, J3 are defined by (11.1)-
(11.3)).
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Proof of Lemma 11.1.

Proof of (11.4). We have that

J1(λ) ≤

 ∫

|ζ |≤|ζ−λ|
+

∫
|ζ |≥|ζ−λ|


 2|ζ |

(|ζ |2 + 1)(|ζ | + 1)2

d Reζ d Im ζ

|ζ − λ|

≤
∫

|ζ |≤|ζ−λ|

2d Reζ d Im ζ

(|ζ |2 + 1)(|ζ | + 1)2

+
∫

|ζ |≥|ζ−λ|

2d Reζ d Im ζ

(|ζ − λ|2 + 1)(|ζ − λ| + 1)|ζ − λ|

≤
∫ +∞

0

4πrdr

(r2 + 1)(r + 1)2
+

∫ +∞

0

4πrdr

(r2 + 1)(r + 1)r
≤ n1,

(11.7)

where λ ∈ C. Estimate (11.4) is proved.

Proof of (11.5). We have that

J2(λ, ρ) = J2,1(λ, ρ) + J2,2(λ, ρ), (11.8a)

J2,1(λ, ρ) =
∫

|ζ |<1

(|ζ |2 + 1)ρ d Reζ d Im ζ

|ζ |2(1 + ρ(|ζ | + |ζ |−1))2|ζ − λ|

=
∫

|ζ |<1

ρ(|ζ |2 + 1)d Reζ d Im ζ

(|ζ | + ρ(|ζ |2 + 1))2|ζ − λ| ,
(11.8b)

J2,2(λ, ρ) =
∫

|ζ |>1

(|ζ |2 + 1)ρ d Reζ d Im ζ

|ζ |2(1 + ρ(|ζ | + |ζ |−1))2|ζ − λ| , (11.8c)

where λ ∈ C, ρ > 0. In addition,

J2,1(λ, ρ) ≤




∫
|ζ |<1

|ζ |≤|ζ−λ|

+
∫

|ζ |<1
|ζ |≥|ζ−λ|


 2ρ d Reζ d Im ζ

(|ζ | + ρ)2|ζ − λ|

≤
∫

|ζ |<1

2ρ d Reζ d Im ζ

(|ζ | + ρ)2|ζ | +
∫

|ζ |<1

2ρ d Reζ d Im ζ

(|ζ − λ| + ρ)2|ζ − λ|

≤
∫
C

4ρ d Reζ d Im ζ

(|ζ | + ρ)2|ζ | =
∫ ∞

0

8πρ dr

(r + ρ)2
= 8π,

(11.9a)
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J2,2(λ, ρ) ≤




∫
|ζ |>1

|ζ |≤|ζ−λ|

+
∫

|ζ |>1
|ζ |≥|ζ−λ|


 2ρ d Reζ d Im ζ

(1 + ρ|ζ |)2|ζ − λ|

≤
∫

|ζ |>1

2ρ d Reζ d Im ζ

(1 + ρ |ζ |)2|ζ | +
∫

|ζ |>1

2ρ d Reζ d Im ζ

(1 + ρ |ζ − λ|)2|ζ − λ|

≤
∫
C

4ρ d Reζ d Im ζ

(1 + ρ |ζ |)2|ζ | =
∫ ∞

0

8πρ dr

(1 + ρ r)2
= 8π,

(11.9b)

where λ ∈ C, ρ > 0. Estimate (11.5) follows from (11.8), (11.9).

Proof of (11.6). We have that

J3(λ, ρ) ≤

 ∫

|ζ |≤|ζ−λ|
+

∫
|ζ |≥|ζ−λ|


 ρ d Reζ d Im ζ

(|ζ | + ρ(|ζ |2 + 1)|ζ − λ|

≤
∫
C

2ρ d Reζ d Im ζ

(|ζ | + ρ(|ζ |2 + 1))|ζ | =
∫ ∞

0

4πρ dr

r + ρ(r2 + 1)

≤
∫ 1

0

4πρ dr

r + ρ
+

∫ ∞

1

4πρ dr

r(1 + ρ r)

=
∫ 1

0

4πρ dr

r + ρ
= 8πρ ln

(
1 + ρ

ρ

)
,

(11.10)

where λ ∈ C, ρ > 0. Estimate (11.6) follows from (11.10).
Lemma 11.1 is proved.

Using formulas (6.13c), (6.8), Lemmas 4.1, 5.2, 11.1 and smoothing properties
of the convolution with 1/ζ on the complex plane C we obtain properties (6.14) for
I (U1, U2) and estimate (6.15a). Properties and estimates (6.14), (6.15b), (6.15c) for
N (U ) and M(U ) follow from property (6.14) and estimate (6.15a) for I (U1, U2).
Estimate (6.16a) follows from the formula

N (U1) − N (U2) = I (U1 − U2, U1) + I (U2, U1 − U2) (11.11)

and from estimate (6.15a). Estimate (6.16b) follows from (6.13a), (6.14a) and
(6.16a).

Lemma 6.4 is proved.
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12. Proof of Lemmas 6.5 and 6.6

Proof of Lemma 6.5. Suppose that

U, V ∈ L∞
µ ((C\0) × (R3\Lν)), |||U |||µ ≤ r, |||V |||µ ≤ r. (12.1)

Then using Lemma 6.4 and the assumptions of Lemma 6.5 we obtain that

MU0(U ) ∈ L∞
µ ((C\0) × (R3\Lν)),

|||MU0(U )|||µ ≤ |||U0|||µ + |||M(U )|||µ ≤ r/2 + 2c6(µ)r2 < r, (12.2)

|||MU0(U ) − MU0(V )|||µ ≤ α |||U − V |||µ, α = 4c6(µ)r < 1, (12.3)

where
MU0(U ) = U0 + M(U ). (12.4)

Due to (12.1)-(12.4), MU0 is a contraction map of the ball U ∈ L∞
µ ((C\0) ×

(R3\Lν)), |||U |||µ ≤ r . Using now the lemma about contraction maps we ob-
tain that (6.17) is uniquely solvable for U of the aforementioned ball by the method
of successive approximations. In addition, using the formulas

|||U − (MU0)
n(0)|||µ ≤

∞∑
j=n

|||(MU0)
j+1(0) − (MU0)

j (0)|||µ, (12.5)

|||(MU0)
j+1(0) − (MU0)

j (0)|||µ
(12.3)≤ 4c6(µ)r |||(MU0)

j (0) − (MU0)
j−1(0)|||µ, j = 1, 2, 3, . . . ,

(12.6a)

|||(MU0)
j+1(0) − (MU0)

j (0)|||µ
(12.6a)≤ (4c6(µ)r) j |||MU0(0) − (MU0)

0(0)|||µ
(12.4)= (4c6(µ)r) j |||U0|||µ ≤ (4c6(µ)r) j r/2, j = 1, 2, 3, . . . ,

(12.6b)

where U is the solution of (6.17) in the aforementioned ball and (MU0)
0(0) = 0,

we obtain (6.18).
Lemma 6.5 is proved.

Proof of Lemma 6.6. We have that

U − Ũ = U0 − Ũ0 + M(U ) − M(Ũ ), (12.7)

M(U )(λ, p) − M(Ũ )(λ, p)
(6.13a),(11.11)= LU,Ũ (U − Ũ ), (12.8)



ON NON-OVERDETERMINED INVERSE SCATTERING AT ZERO ENERGY 327

where
LU,Ũ W = I (W, U )(λ, p) + I (Ũ , W )(λ, p)

+ I (W, U )(λ0(p), p) + I (Ũ , W )(λ0(p), p),
(12.9)

where I (U1, U2) is defined by (6.13c), W is a test function on (C\0) × (R3\Lν).
In view of (12.8), (12.9) we can consider (12.7) as a linear integral equation for
“unknown” U − Ũ with given U0 − Ũ0, U , Ũ . Using (12.9), (6.14), (6.15a), and
the properties |||U |||µ ≤ r , |||Ũ |||µ ≤ r , we obtain that

LU,Ũ W ∈ L∞
µ ((C\0) × (R3\Lν)),

|||LU,Ũ W |||µ ≤ 4c6(µ)r |||W |||µ for W ∈ L∞
µ ((C\0) × (R3\Lν)).

(12.10)

Using (12.8)-(12.10) and solving (12.7) with respect to U − Ũ by the method of
successive approximations, we obtain (6.19).

Lemma 6.6 is proved.
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