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Refined Hardy inequalities

HAJER BAHOURI, JEAN-YVES CHEMIN AND ISABELLE GALLAGHER

Abstract. The aim of this article is to present “refined” Hardy-type inequalities.
Those inequalities are generalisations of the usual Hardy inequalities, their ad-
ditional feature being that they are invariant under oscillations: when applied to
highly oscillatory functions, both sides of the refined inequality are of the same or-
der of magnitude. The proof relies on paradifferential calculus and Besov spaces.
It is also adapted to the case of the Heisenberg group.

Mathematics Subject Classification (2000): 43A80 (primary); 42B99 (second-
ary).

1. Introduction

The aim of this article is to prove a “refined” version of the Hardy inequalities [11,
12]. Those inequalities have some importance in Analysis (among other applica-
tions we can mention blow-up methods or the study of pseudodifferential operators
with singular coefficients). Many works have been devoted to those inequalities,
and our goal is first to provide an elementary proof of the standard Hardy inequality,
and then to prove a refined inequality in the spirit of the refined Sobolev inequal-
ity proved in [10]. The setting will be both the classical RN space, as well as the
Heisenberg group Hd (for an application of the Hardy inequality on the Heisenberg
group we refer for instance to [1]).

1.1. Elementary Hardy inequality

The simple case of RN with N ≥ 3 with one derivative gives the following inequal-
ity: ∫

RN

u2(x)

|x |2 dx ≤ C‖∇u‖2
L2 . (1.1)

In order to prove this inequality, it is enough to observe that we have

1

|x |2 = −1

2
R

(
1

|x |2
)

with R = x · ∇.
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An integration by parts joint with the fact that the divergence of R is equal to N
gives the result.
Let us now present the case of the Heisenberg group. The Heisenberg group Hd is
the space R2d+1 endowed with the following product group law:

w · w′ = (x + x ′, y + y′, s + s′ + (y|x ′) − (y′|x))

where w = (x, y, s) and w′ = (x ′, y′, s′). Let us notice that Hd is a non com-
mutative group and that the inverse of w is w−1 = (−x, −y, −s). The Lebesgue
measure on Hd seen as R2d+1 is invariant by translation with respect to this law.
We define the convolution of two functions by

f � g(w′) =
∫

Hd
f (w′w−1)g(w)dw.

Let us emphasize that this convolution product is, as Hd itself, not commutative.
We say that a vector field X is left invariant if X ( f (a·)) = (X f )(a·). The Lie
algebra of left invariant vector fields is spanned by the vector fields

X j =∂x j +y j∂s , Y j =∂y j −x j∂s with j ∈ {1, . . . , d} and S =∂s = 1

2
[Y j , X j ].

In all that follows, we shall denote byZ the family defined by Z j = X j and Z j+d =
Y j . Let us denote

�H
def=

2d∑
j=1

Z2
j and for α ∈ {1, . . . , 2d}k , Zα def= Zα1 . . . Zαk . (1.2)

One can associate Sobolev spaces to the system Z through the following definition.

Definition 1.1. Let k be a non negative integer, we denote by Ḣ k(Hd) the homo-
geneous Sobolev space of order k which is the space of functions u such that

‖u‖2
Ḣ k(Hd )

def=
∑

α∈{1,...,2d}k

‖Zαu‖2
L2(Hd )

< ∞. (1.3)

Let us also introduce the distance to the origin

ρ(w)
def=

(
(|x |2 + |y|2)2 + s2

) 1
4

with w = (x, y, s)

and the dilation δλ(w)
def= (λx, λy, λ2s). Let us point out that the function ρ is

homogenenous of degree 1 in the sense that

ρ ◦ δλ = λρ
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and the vector fields Z j change the homogeneity as

Z j ( f ◦ δλ) = λ(Z j f ) ◦ δλ.

Moreover, we have ∣∣Z jρ
σ
∣∣ ≤ Cσ ρσ−1. (1.4)

Let us also introduce the homogeneous dimension N = 2d + 2 noticing that the
Jacobian of the dilation δλ is λN . The Hardy inequality with one derivative in this
context is∫

Hd

u2(w)

ρ2(w)
dw ≤ C‖∇Hu‖2

L2 where ∇Hu
def= (Z1u, . . . , Z2du).

The proof (as written for instance in [1]) of this inequality relies mainly on the fact
that

1

ρ2
= −1

2
R

(
1

ρ2

)
with R

def=
d∑

j=1

(x j X j + y j Y j ) + 2s∂s .

An integration by parts and the fact that div R = N essentially gives the result.

1.2. More general Hardy inequalities

Now we want to state Hardy inequalities with any number of derivatives less
than N/2.

Theorem 1.2. Let s ∈]0, N/2[. There exists a constant C such that∫
RN

|u|2(x)

|x |2s
dx ≤ C‖u‖2

Ḣ s(RN )
and

∫
Hd

|u|2(w)

ρ2s(w)
dw ≤ C‖u‖2

Ḣ s(Hd )

where the spaces Ḣ s are defined by complex interpolation.

Classically, the way of proving this consists in proving that the operators

1

|x |s (−�)−
s
2 or

1

ρs
(−�H)−

s
2

are bounded on L2(RN ) or L2(Hd). The purpose of this paper is first to give a more
direct proof of these inequalities, which will be the same for RN or Hd . Moreover,
in the case of RN , let us apply the above Hardy inequality with s = 1 to the fam-
ily ( fε)ε>0 of functions defined by

fε(x) = ei
x1
ε θ(x)

where θ is a given function in the Schwartz class S(RN ). The left-hand side of the
inequality is obviously independent of ε and the right-hand side is of order ε−1.
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The second purpose of this paper is to improve Hardy inequalities into inequalities
which in particular will be invariant under the multiplication by oscillating functions

like ei (x |ω)
ε .

This requires the introduction of Besov spaces of negative index and thus Lit-
tlewood Paley theory. In the case of RN , this is quite classical. In the case of the
Heisenberg group, it was constructed by H. Bahouri, P. Gérard and C.-J. Xu in [2]
(see also [3]). We can summarize this theory in the following properties, which
hold regardless of the space which can be RN or Hd ; one of the features of this
paper is to write unified statements and proofs, which hold independently of the
space. It is therefore natural to introduce unified notation. In the same way as on
the Heisenberg group we have defined a family Z of vector fields, we will denote
on RN

for α ∈ {1, . . . , N }k , Zα def= Xα1 . . . Xαk , where Xα j

def= ∂xα j
.

We will also use the following notation:

∀w ∈ RN , w−1 =−w, ρ(w)
def=

(
N∑

j=1

|w j |2
)1

2

, and ∀a ∈ R, δaw = aw.

Using that notation, the elements of Littlewood-Paley theory we will need are the
following.

Both in the case of RN and Hd , there exists a family (S j ) j∈Z of operators such that
for any p belonging to [1, ∞[,

∀u ∈ L p , lim
j→−∞ ‖S j u‖L p = 0 and lim

j→∞ ‖S j u − u‖L p = 0. (1.5)

Moreover, for any multi-index α, there exists a constant C such that, for any (p, q)∈
[1, ∞]2 satisfying p ≤ q, we have

‖Zα S j u‖Lq ≤ C2
j N

(
1
p − 1

q

)
+|α| j‖S j u‖L p . (1.6)

Moreover, if � j
def= S j+1 − S j , two integers N0 and N1 exist such that

| j − j ′| ≥ N0 =⇒ (
� j� j ′ = 0 and � j

(
S j ′−N0u� j ′v

) = 0
)
, (1.7)(|k − k′| ≤ N0 and j ≥ k + N1

) =⇒ � j (�ku�k′v) = 0. (1.8)

For any positive integer k, there exists a constant C such that, for any p ∈ [1, ∞],

‖� j u‖L p ≤ C2−2 jk‖(−�)k� j u‖L p . (1.9)
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The operators � j are of the form

� j u = u � h j with h j (w) = 2 j N h(δ2 j w) and h ∈ S. (1.10)

We remark that as � j is a function of the Laplacian (respectively sublaplacian)
on RN (respectively Hd ), it commutes with the latter operator.

Definition 1.3. Let s ∈ R be given, as well as p and r , two real numbers in the
interval [1, ∞]. Then we define the space Ḃs

p,r of tempered distributions u such
that

lim
j→−∞ S j u = 0 and ‖u‖Ḃs

p,r

def=
∥∥∥(2 js‖� j u‖L p )

∥∥∥
�r (Z)

< ∞.

Let us notice that Inequality (1.6) implies immediately that, when q ≥ p and r ′ ≥ r ,
we have

‖u‖
Ḃ

s−N
(

1
p − 1

q

)
q,r ′

≤ C‖u‖Ḃs
p,r

. (1.11)

The result we will prove is the following. It is stated and proved indifferently in RN

and Hd .

Theorem 1.4. Let s be a real number in the interval ]0, N/2[ and let p and q be
two real numbers in [1, ∞] such that

2 ≤ q <
2N

N − 2s
< p ≤ ∞.

There is a constant C such that, for any function u ∈ Ḃ
s−N ( 1

2 − 1
q )

q,2 , the following
inequality holds:(∫ |u(w)|2

ρ2s(w)
dw

) 1
2

≤ C‖u‖α

Ḃ
s−N

(
1
2 − 1

p

)
p,2

‖u‖1−α

Ḃ
s−N

(
1
2 − 1

q

)
q,2

with α = pq

p − q

(
1

q
− 1

2
+ s

N

)
.

Let us remark that, when p = ∞ and q = 2, the above theorem implies that(∫ |u(w)|2
ρ2s(w)

dw

) 1
2

≤ C‖u‖
2s
N

Ḃ
s− N

2∞,2

‖u‖1− 2s
N

Ḣ s . (1.12)

This inequality should be compared to the following similar result derived by P.
Gérard, Y. Meyer and F. Oru in [10], in the case of the Sobolev inequalities on RN

(see [3] for the Heisenberg case), namely

‖u‖Lr ≤ C‖u‖
2s
N

Ḃ
s− N

2∞,∞
‖u‖1− 2s

N

Ḣ s with
1

r
= 1

2
− s

N
· (1.13)
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The following result indicates the invariance of (1.12) and (1.13) under oscillations.

Proposition 1.5. Let θ be a function in S , p in [1, ∞], σ in ] − N (1 − 1/p), +∞[
and ε0 a positive real number. There exists a constant C such that the oscillatory

function fε(w)
def= θ(w)eiw1/ε satisfies

∀ε ≤ ε0 , ‖ fε‖Ḃσ
p,1

≤ Cε−σ . (1.14)

This proposition implies immediately the following corollary.

Corollary 1.6. There exists a family ( fε)ε>0 of smooth functions such that, for
any s in ]0, N/2[ and any β > 2s/N, we have

lim
ε→0

‖ fε‖
L

2N
N−2s

‖ fε‖β

Ḃ
s− N

2∞,∞
‖ fε‖1−β

Ḣ s

= +∞ and lim
ε→0

1

‖ fε‖β

Ḃ
s− N

2∞,∞
‖ fε‖1−β

Ḣ s

∫
f 2
ε

ρ2s
dw= +∞.

1.3. Structure of the paper and idea of the proof

The idea of the proof of Theorems 1.2 and 1.4 is to see them from a non linear point
of view. More precisely, we write∫

u2(w)

ρ2s(w)
dw = 〈ρ−2s, u2〉.

Then it is enough to prove that ρ−2s and u2 belongs to a pair of spaces in duality.
In the second section, we shall prove that ρ−2s belongs to the space Ḃ N−2s

1,∞ .
Then using a product law, we shall conclude the proof of Theorem 1.2.

In the third section, we shall use paradifferential calculus to prove Theorem 1.4.
In the fourth section, we shall prove Proposition 1.5. We shall also investigate

if it is possible to extend Corollary 1.6 for a family of non negative functions.

2. The behavior of negative powers of ρ

It is described by the following proposition.

Proposition 2.1. Let s be a real number in the interval ]0, N/2[. Then the func-
tion ρ−2s belongs to the Besov space Ḃ N−2s

1,∞ .

Proof of Proposition 2.1. Let us introduce a smooth compactly supported func-
tion χ which is identically equal to 1 near the unit ball and let us write

ρ−2s = ρ0 + ρ1 with ρ0
def= χρ−2s and ρ1

def= (1 − χ)ρ−2s .
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It is obvious that ρ−2s ∈ L1+Lq with q > N/2s which implies that lim
j→−∞ S jρ

−2s =
0 in L1 + Lq . Then, the homogeneity of the function ρ gives

� jρ
−2s = 2 j N ρ−2s � h(δ2 j ·)

= 2 j (N+2s)ρ−2s(δ2 j ·) � h(δ2 j ·)
= 22 js(�0ρ

−2s)(δ2 j ·).
Therefore ‖� jρ

−2s‖L1 = 2 j (2s−N )‖�0ρ
−2s‖L1 which reduces the problem to

proving that the function �0ρ
−2s is in L1. As ρ0 is in L1, �0ρ0 is also in L1

thanks to the continuity of the operator �0 on Lebesgue spaces. In order to esti-
mate ρ1 in L1, we shall use Inequality (1.9) to write that

‖�0ρ1‖L1 ≤ Ck‖(−�)k�0ρ1‖L1 ≤ Ck‖(−�)kρ1‖L1 .

By the Leibniz formula, (−�)kρ1 − (1 − χ)(−�)kρ is a smooth compactly sup-
ported function. Then, we achieve the proof by using (1.4) and choosing k such
that 2k > N − 2s.

As an application, we shall prove Theorem 1.2. When u belongs to Ḣ s , then

u2 ∈ Ḃ
2s− N

2
2,1 and ‖u2‖

Ḃ
2s− N

2
2,1

≤ C‖u‖2
Ḣ s .

That result is classical in RN and was proved in Hd by two of the authors in [3].
Now writing that

〈ρ−2s, u2〉 =
∑

| j− j ′|≤N0

〈� jρ
−2s, � j ′u

2〉,

we infer, thanks to Proposition 2.1 and embeddings (1.11), that

〈ρ−2s, u2〉 ≤ ‖u‖2
Hs

∑
| j− j ′|≤N0

2
− j

(
N
2 −2s

)
d j ′2

− j ′
(

2s− N
2

)
with (d j ) j∈Z ∈ �1(Z).

This proves Theorem 1.2.

Remark 2.2. Let us point out that, in Theorem 1.2, the function ρ−2s can be any

function in Ḃ
N
2 −2s

2,∞ .

3. Paradifferential calculus and refined inequalities

In order to prove Theorem 1.4, let us recall the paraproduct algorithm introduced
by J.-M. Bony in [4] in the case of RN and by two of the authors in the case of Hd
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in [3]. In both cases, this allows to write that

u2 = 2Tuu + R(u, u), with Tuu
def=

∑
j

S j−N0u� j u

and R(u, u)
def=

∑
| j− j ′|≤N0

� j u� j ′u.

Using (1.7) and (1.6), we get

‖� j Tuu‖L∞ =
∥∥∥∥∥∥

∑
| j− j ′|≤N0

� j (S j ′−N0u� j ′u)

∥∥∥∥∥∥
L∞

≤
∑

| j− j ′|≤N0

‖S j ′−N0u‖L∞‖� j ′u‖L∞ .

Now let us write that

2
− j

(
N
2 −s

)
‖S j u‖L∞ ≤

∑
k≤ j−1

2
( j−k)

(
s− N

2

)
2

k
(

s− N
2

)
‖�ku‖L∞ .

Young’s inequality on series implies that

‖S j u‖L∞ ≤ Cc j 2
j
(

N
2 −s

)
‖u‖

Ḃ
s− N

2∞,2

with
∑

j

c2
j = 1.

This gives

‖� j (Tuu)‖L∞ ≤ C‖u‖
Ḃ

s− N
2∞,2

j+N0∑
j ′= j−N0

2 j ′(N−2s)c j ′2
− j ′

(
N
2 −s

)
‖� j ′u‖L∞

≤ C‖u‖2

Ḃ
s− N

2∞,2

2 j (N−2s)
j+N0∑

j ′= j−N0

d j ′ with
∑

j ′
d j ′ = 1.

Thanks to (1.11), and Proposition 2.1, we have,

〈ρ−2s, Tuu〉 ≤ C‖u‖2α

Ḃ
s−N

(
1
2 − 1

q

)
q,2

‖u‖2−2α

Ḃ
s−N

(
1
2 − 1

p

)
p,2

(3.1)

for any 0 ≤ α ≤ 1 and p, q ≥ 1.
The estimate of 〈ρ−2s, R(u, u)〉 relies on the following elementary interpola-

tion lemma.
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Proposition 3.1. Let s be a real number in the interval ]0, N/2[ and let p and q be
two real numbers in [1, ∞] such that

2 ≤ q <
2N

N − 2s
< p ≤ ∞.

There is a constant C such that for any functions f and g which belongs to L p ∩Lq,
we have

〈ρ−2s, f g〉 ≤ C‖ f ‖α
L p‖g‖α

L p‖ f ‖1−α
Lq ‖g‖1−α

Lq with α = pq

p − q

(
1

q
− 1

2
+ s

N

)
·

Proof of Proposition 3.1. Let us write that, for any positive R,

〈ρ−2s, f g〉 = I1(R) + I2(R) with I1(R)
def=

∫
(ρ≤R)

f g

ρ2s
dw

and I2(R)
def=

∫
(ρ≥R)

f g

ρ2s
dw.

The condition on p and q implies that ρ−2s is locally L
p

p−2 and is L
q

q−2 outside any
compact neighbourhood of 0. By Hölder’s inequality, we infer that

I1(R) ≤ ‖1(ρ≤R)ρ
−2s‖

L
p

p−2
‖ f ‖L p‖g‖L p and

I2(R) ≤ ‖1(ρ≥R)ρ
−2s‖

L
q

q−2
‖ f ‖Lq ‖g‖Lq .

As the function ρ is homogeneous of order 1, we get, by the change of variable w′ =
δR−1w,

‖1(ρ≤R)ρ
−2s‖

L
p

p−2
= RN−2s− 2N

p ‖1(ρ≤1)ρ
−2s‖

L
p

p−2
and

‖1(ρ≥R)ρ
−2s‖

L
q

q−2
= RN−2s− 2N

q ‖1(ρ≥1)ρ
−2s‖

L
q

q−2
.

Thus we have, for any positive R,

〈ρ−2s, f g〉 ≤ C RN−2s
(

R− 2N
p ‖ f ‖L p‖g‖L p + R− 2N

q ‖ f ‖Lq ‖g‖Lq

)
.

Choosing the optimal

R =
( ‖ f ‖Lq ‖g‖Lq

‖ f ‖L p‖g‖L p

) pq
2N (p−q)

concludes the proof of the proposition.
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Let us go back to the proof of Theorem 1.4. By definition of R(u, u), we have

〈ρ−2s, R(u, u)〉 =
∑

|�|≤N0

∑
j∈Z

〈ρ−2s, � j u� j−�u〉.

Proposition 3.1 implies that

〈ρ−2s, R(u, u)〉 ≤
∑

|�|≤N0

∑
j∈Z

(
22 j (s−N ( 1

2 − 1
p ))‖� j u‖L p‖� j−�u‖L p

)α

×
(

22 j (s−N ( 1
2 − 1

q ))‖� j u‖Lq ‖� j−�u‖Lq

)1−α

.

By definition of the Besov norms, this implies that two series (c j ) j∈Z and (c′
j ) j∈Z

exist in the unit sphere of �2(Z) such that

〈ρ−2s, R(u, u)〉 ≤ C‖u‖2α

B
s−N

(
1
2 − 1

p

)
p,2

‖u‖2(1−α)

B
s−N

(
1
2 − 1

q

)
q,2

∑
|�|≤N0

∑
j∈Z

(c j c j−�)
α(c′

j c
′
j−�)

1−α.

From Hölder inequalities, it follows that

〈ρ−2s, R(u, u)〉 ≤ C‖u‖2α

B
s−N

(
1
2 − 1

p

)
p,2

‖u‖2(1−α)

B
s−N

(
1
2 − 1

q

)
q,2

.

Together with (3.1), this gives Theorem 1.4.

4. Oscillations and fractal transforms in refined inequalities

The purpose of this section is to provide examples which show that the refined
estimates are sharp. The first one deals with oscillating functions.

4.1. Oscillations

Here we want to prove Proposition 1.5, namely, by definition of Besov spaces, that
for any function θ in S , we have∑

j

2 jσ‖� j fε‖L p ≤ Cε−σ with fε(w)
def= ei

w1
ε θ(w). (4.1)

We shall treat differently the high frequencies (indices j such that 2 jε is greater
than 1) and low frequencies (indices j such that 2 jε is less than 1).

Let us first estimate the low frequencies. Denoting the vector Z̃1 = ∂x1 in the
case of RN and Z̃1 = ∂x1 − y1∂s in the case of Hd , we have

iε Z̃1ei
w1
ε = −ei

w1
ε .
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By integration by parts, we get

� j fε(w
′) = (−iε)N 2 j N

∫
(−Z̃1)

N (ei
w′

1−w1
ε )θ(w′w−1)h(δ2 j (w))dw

= (−iε)N 2 j N
∫

ei
w′

1−w1
ε (Z̃1)

N (θ(w′w−1)h(δ2 j (w))dw

= (−iε)N 2 j N
N∑

�=0

C�
N

∫
ei

w′
1−w1

ε Z̃ N−�
1 (θ(w′w−1))Z̃�

1(h(δ2 j (w))dw

where the vector field Z̃1 acts on the variable w. As

Z̃1(h(δ2 j (w)) = 2 j (Z̃1h)(δ2 j (w)) and − Z̃1(θ(w′w−1)) = (Z1θ)(w′w−1),

we infer that

|� j fε(w
′)|

= εN 2 j N

∣∣∣∣∣ N∑
�=0

C�
N 2 j�(−1)N−�

∫
ei

w′
1−w1

ε (Z N−�
1 θ)(w′w−1)(Z̃�

1h)(δ2 j (w))dw

∣∣∣∣∣
≤ εN 2 j N

N∑
�=0

C�
N 2 j�

(
|Z N−�

1 θ | � |(Z̃�
1h)(δ2 j ·)|

)
(w′).

Young inequalities imply that∥∥∥|Z N−�
1 θ | � |(Z̃�

1h)(δ2 j ·)|
∥∥∥

L p

≤ min
{

2− j N
p ‖Z N−�

1 θ‖L1‖Z̃�
1h‖L p , 2− j N ‖Z N−�

1 θ‖L p‖Z̃�
1h‖L1

}
.

Therefore, as σ > −N
(

1 − 1
p

)
,

∑
2 j ≤ 1

ε

2 jσ‖� j fε‖L p ≤ CεN

∑
2 j ≤1

2
j
(
σ+N

(
1− 1

p

))
+

∑
1≤2 j ≤ 1

ε

2 j (σ+N )


≤ Cε−σ .

In order to estimate high frequencies, let us use (1.9). We get, for any non negative
integer M ,

‖� j fε‖L p ≤ C2 j (N−2M)‖((−�)M fε) � h(δ2 j ·)‖L p

≤ C2−2 j M‖(−�)M fε‖L p .
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The Leibniz formula implies that, for any ε∈]0,ε0], ‖(−�)M fε‖L p ≤Cε−2M‖θ‖L p .
Thus we infer, thanks to (1.6), that∑

2 j ≥ 1
ε

2 jσ‖� j fε‖L p ≤ Cε−2M
∑

2 j ≥ 1
ε

2 j (σ−2M).

Choosing M such that σ − 2M is negative gives∑
2 j ≥ 1

ε

2 jσ‖� j fε‖L p ≤ Cε−σ . (4.2)

This ends the proof of Proposition 1.5.

4.2. Fractal transform and Besov norms

In this subsection we will show that oscillations are not the sole responsible for the
smallness of a Besov norm. Below we present another situation, of a sequence of
non negative functions for which the L p norms and the Besov norms are balanced
as the family ( fε) of Proposition 1.5. Again, we shall present statements and proofs
common to the case of RN and Hd . In order to do so, let us define the distance d as

∀(w, w′) ∈ RN × RN , d(w, w′) def= max
1≤ j≤N

|w j − w′
j |

and, for any (w, w′) ∈ Hd × Hd ,

d(w, w′)def= max

{
max

1≤ j≤d
|x j − x ′

j | , max
1≤ j≤N

|y j − y′
j | , |s − s′ + (y′|x) − (y|x ′)| 1

2

}
,

where in the case of Hd we have noted w = (x, y, s) and w′ = (x ′, y′, s′). Let us
denote by Q the ball for d centered at zero and of radius 1/2. Now let us define
the following quantities. Let D and L such that D = L = N in the case of RN

and D = N − 1 and L = N + 1 in the case of Hd . For J in {−1, 1}L , we define the
point wJ of Q and the cube Q J by

wJ
def= δ 3

8
J and Q J

def= wJ · δ 1
4

Q =
{
w / d(w, wJ ) ≤ 1

8

}
.

Omitted elementary computations show that

Q J ⊂ Q and

(
J �= J ′ =⇒ d(Q J , Q J ′) ≥

√
3

4

)
. (4.3)

Now let us define the transform T which duplicates (after dilation and translation)
functions defined on Q.
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Definition 4.1. Let us denote by T the following transform

T


D(Q) → D(Q)

f �→ T f
def= 2D

∑
J∈{−1,1}L

f J with f J (w)
def= f (δ4(w

−1
J w)).

For a subset A of Q , we denote by T A the set defined by

T A
def=

⋃
J∈{−1,1}L

wJ δ 1
4

A.

Let us notice that T A ⊂ Q and that Supp (T f ) = T (Supp f ). Let us also observe
that, using (4.3), we have

‖T f ‖p
L p = 2Dp

∑
J∈{−1,1}L

‖ f J ‖p
L p

= 2Dp

 ∑
J∈{−1,1}L

2−2N

 ‖ f ‖p
L p

= 2Dp+L−2N ‖ f ‖p
L p

= 2D(p−1)‖ f ‖p
L p .

Thus, we have

‖T f ‖L p = 2
D

(
1− 1

p

)
‖ f ‖L p . (4.4)

The way T acts on Besov spaces is described by the following proposition.

Proposition 4.2. For any (p, r) ∈ [1, +∞]2 and any σ in
]
−N

(
1 − 1

p

)
, + ∞

[
,

there exists a constant C such that

‖T f ‖Ḃσ
p,r

≤ 2
D

(
1− 1

p

)
+2σ‖ f ‖Ḃσ

p,r
+ C‖ f ‖L1 .

Proof of Proposition 4.2. For the sake of simplicity, we only prove this proposition
in the case when r = 1. By definition of the Besov norm, we have

‖T f ‖Ḃσ
p,1

= T1 f + T2 f with T1 f
def=

∑
j≤0

2 jσ‖� j T f ‖L p

and T2 f
def=

∑
j≥1

2 jσ‖� j T f ‖L p .

On the one hand, using Bernstein’s inequality (1.6), the fact that N
(

1 − 1
p

)
+σ > 0

and (4.4) with p = 1, we get

T1 f ≤ C
∑
j≤0

2
jσ+ j N

(
1− 1

p

)
‖� j T f ‖L1 ≤ C‖T f ‖L1 ≤ C‖ f ‖L1 . (4.5)
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The estimate on T2 f uses the special structure of T Q. Let us define the set

Q̃
def=

{
w /d(w, T Q)≤ 1

32

}
=

⋃
J∈{−1,1}L

Q̃ J with Q̃ J
def=

{
w /d(w, Q J ) ≤ 1

32

}
·

Now let us write that T2 f = T21 f + T22 f with

T21 f
def=

∑
j≥1

2 jσ‖� j T f ‖L p(c Q̃) and T22 f
def=

∑
j≥1

2 jσ‖� j T f ‖L p(Q̃).

Let us recall that

(� j T f )(w′) = 2 j N
∫

T f (w)h
(
δ2 j (w

−1w′)
)

dw.

As h belongs to S , we have, for any positive integer M , that |h(w)| ≤ CM (1+
ρ(w))−M . Thus, by homogeneity and by definition of ρ and d, we get, for all
(w, w′) ∈ T Q × Q̃c,∣∣∣h(δ2 j (w

−1w′))
∣∣∣ ≤ CM

(
1 + ρ(δ2 j (w

−1w′))
)−N−1

ρ−M (δ2 j (w
−1w′))

≤ CM

(
1 + ρ(δ2 j (w

−1w′))
)−N−1

2− j Mρ−M (w−1w′)

≤ CM 2− j M
(

1 + ρ(δ2 j (w
−1w′))

)−N−1
.

Using (4.4), we infer that, for any integer M ,

‖� j T f ‖L p(c Q̃) ≤ CM 2
j
(

N
(

1− 1
p

)
−M

)
‖T f ‖L1

≤ CM 2
j
(

N
(

1− 1
p

)
−M

)
‖ f ‖L1 .

Then, choosing M large enough, we infer

T21 f ≤ C‖ f ‖L1 . (4.6)

Finally let us estimate T22 f . As Q̃ is the disjoint union of the Q̃ J , we get

‖� j T f ‖L p(Q̃) ≤ 2
L
p sup

J∈{−1,1}L
‖� j T f ‖L p(Q̃ J ). (4.7)

Let us first estimate ‖� j f J ′‖L p(Q̃ J ) for J ′ �= J . We have, for all w′ ∈ Q̃ J ,

(� j f J ′)(w′) = 2 j N
∫

f J ′(w)h(δ2 j (w
−1w′)) dw ,
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and in the integral, the distance d(w, w′) is greater than 1/32. Then, reasoning as
above we find that, for any positive integers M , there exists a constant CM such that

J �= J ′ =⇒ ‖� j f J ′‖L p(Q̃ J ) ≤ CM 2
j
(

N
(

1− 1
p

)
−M

)
‖ f J ′‖L1 . (4.8)

Then, let us observe that ‖� j f J ‖L p(Q̃ J ) ≤ ‖� j f J ‖L p . Writing that

w−1w′ = δ 1
4

((
δ4(w

−1
J w)

)−1
δ4(w

−1
J w′)

)
and changing variable v = δ4(w

−1
J w) gives

(� j f J )(w′) = (� j−2 f )
(
δ4(w

−1
J w′)

)
.

Thus ‖� j f J ‖L p = 2− 2N
p ‖� j−2 f ‖L p . Then using (4.7) and (4.8), we get by defi-

nition of T , that for all positive integers M ,

‖� j f ‖L p(Q̃) ≤ 2D+ L−2N
p ‖� j−2 f ‖L p + CM 2

j
(

N
(

1− 1
p

)
−M

)
‖ f ‖L1 .

Thus by definition of T22 f , we get by choosing M large enough,

T22 f ≤ 2
D

(
1− 1

p

) ∑
j≥1

2 jσ‖� j−2 f ‖L p + CM‖ f ‖L1

∑
j≥1

2
j
(
σ+N

(
1− 1

p

)
−M

)

≤ 2
D

(
1− 1

p

)
+2σ‖ f ‖Ḃσ

p,1
+ C‖ f ‖L1 .

Together with (4.5) and (4.6), this concludes the proof of the proposition.

Let us state the following corollary of Proposition 4.2.

Corollary 4.3. For (N − D)/2 < s < N/2, there exists a sequence ( fn)n∈N of non
negative smooth and compactly supported functions such that, for any β > 2s/N,

lim
n→∞

‖ fn‖
L

2N
N−2s

‖ fn‖β

Ḃ
s− N

2∞,∞
‖ fn‖1−β

Ḣ s

= +∞.

Proof of Corollary 4.3. Let us consider a smooth compactly supported non nega-
tive function f0 and let us define the sequence ( fn)n∈N by fn = T n f0. By iteration
of the inequality of Proposition 4.2, we have

‖ fn‖Bσ
p,q

≤ 2
n
(

D
(

1− 1
p

)
+2σ

)
‖ f0‖Bσ

p,q
+ C

(
n−1∑
m=0

2
m

(
D

(
1− 1

p

)
+2σ

))
‖ f0‖L1 .
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If σ > − D
2

(
1 − 1

p

)
, we deduce that

‖ fn‖Bσ
p,q

≤ C f02
n
(

D
(

1− 1
p

)
+2σ

)

Applying this first with σ = s − N/2 and p = q = ∞ and then with σ = s
and p = q = 2 gives

‖ fn‖
Ḃ

s− N
2∞,∞

≤ C f02n(D−N+2s) and ‖ fn‖Ḣ s ≤ C f02
n
(

D
2 +2s

)
.

Assertion (4.4) claims that

‖ fn‖
L

2N
N−2s

= 2
nD

((
1
2 + s

N

))
‖ f0‖

L
2N

N−2s
.

This concludes the proof of the corollary.

Remark 4.4. Unfortunately, we cannot claim the same result for the refined Hardy
inequality. Let us notice that the refined Hardy inequality has an obvious translation
invariant generalization which is

sup
a

∫
u2(w)

ρ2s(a−1w)
dw ≤ C‖u‖

2s
N

Ḃ
s− N

2∞,2

‖u‖1− 2s
N

Ḣ s .

For the sequences used in the proof of Corollary 4.3, omitted computations show
that, if s is greater than 1

2

(
N − D

2

)
,

sup
a

∫
f 2
n (w)

ρ2s(a−1w)
dw ≤ C2n(D−N+2s).

This is exactly the same behavior as ‖ fn‖
Ḃ

s− N
2∞,2

. We do not know if the exponent

can be improved in (1.12) when we restrict to the cone of non negative functions.
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