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A simple proof of the propagation of singularities for solutions
of Hamilton-Jacobi equations

YIFENG YU

Abstract. In Albano-Cannarsa [1] the authors proved that, under some condi-
tions, the singularities of the semiconcave viscosity solutions of the Hamilton-
Jacobi equation propagate along generalized characteristics. In this note we will
provide a simple proof of this interesting result.
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1. Introduction

Let © be a bounded open subset of R". Throughout this note we assume that
u € C(2) is a semiconcave viscosity solution of the following Hamilton-Jacobi
equation

H(Du,u,x) =0 in Q. (1.1)

For x € © we set
DT u(x) ={p e R" u(y) <u(x)+p-(y —x)+o(lx — yD}.
As in [1], we assume that H € C'(R” x R x ) and satisfies

(Al) H(-, z, x) is convex for each (z,x) € R x Q;
(A2) Foreach (z, x) € R x , the O-level set { p| H(p, z, x) = 0} does not contain
any line segment.

We want to remark that under the convexity assumption (A1), u is a semiconcave
viscosity solution of equation (1.1) if and only if u is semiconcave and satisfies
equation (1.1) almost everywhere. For K C R", we denote co(K) as the convex
hull of K. Using some results in Albano-Cannarsa [2] about the propagation of the
singularities for semiconcave functions, Albano and Cannarsa proved the following
interesting theorem in [1].
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Theorem 1.1. If xg € X(u) and 0 & co(DpH(D+u(xo), u(xg), xo)) then there
exists 0 > 0 and a Lipschitz continuous curve £(s) : [0, o] — 2 (u) such that

E(s) € co(Dp H(D u(&(s)), u(é(s)), £(s))) #0 forae s €[0,0]
£(0) = xo,

and
max  min  H(p,u(§(s)),&(s)) <0,
0<s<o peDtu(&(s))
where
Y (u) = {x € Q| u is not differentiable at x}.

The proof in [1] is very technical. The techniques and methods used there are im-
portant for studying the singularities for general semiconcave functions. For the
semiconcave viscosity solution u of equation (1.1), we can in fact give a simple
proof of Theorem 1.1 by approximating u with smooth functions. See [1] for more
backgrounds and comments in the singularities of semiconcave viscosity solutions
of Hamilton-Jacobi equations. We also refer to [2], Ambrosio-Cannarsa-Soner [3]
and Cannarsa-Sinestrari [4] for detailed discussions about singularities of semicon-
cave functions.

2. Proofs

Since semiconcave functions are locally Lipschitz continuous, in this section, we
assume that
esssup |Du| < C and D*u <CIl, in%,
Q

where [, is the n x n identity matrix. We first prove the following lemma.

Lemma 2.1. Let V be an open subset such that xo € V C V cQ. If xo € Z(u),
then there exist a sequence of smooth functions {u,, (x)}m>1 in Q such that
(i) Hm  w, = u, uniformly in V;
m——400

(ii) max |Du,,| < C, D*up, < Cl,inV;
\%

(iii) linj Du,, (x0) = q for some g € DV u(xo) satisfying H(q, u(xo), xo) < 0.
m——+0Q

1 —
Ue(x) = —n/ u(y)m <u) dy,
€ Q €

where n € C3°(B1(0)) and satisfies

Proof. Let

n>0inBl(O)and/ nx)dx = 1.
B1(0)
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Then u, is smooth and

lim uc = u uniformly in V.
e—0

When € is small enough, we have that

|Duc| < C and D*u, < CI, inV.

Case 1. If lim._,o Du, (x¢) does not exist, then there exist two subsequence €,, — 0
and §,, — 0 such that

lim Due, (x0) = p1 # p2 = lim Dus, (xp).
m——+00

m——+00

We have that p;, po € D u(xp). Owing to (Al), H(pi, u(xp), xo) < 0 and
H(p2, u(xo), xo) < 0. Let

1
U (X) = 5 (e, () + us,, (x)).

By (A2), we get the desired {u,, },>1.

Case 2. If lim._. g Du.(xg) exists, we denote
q = (q1, ---, qn) = lim Duc(xp).
e—>0

According to (Al), H(q, u(xp), xo) < 0. If H(q, u(xp), xo) = 0, we claim that

1 Xo—y
lim — |Du(y) — qln dy =0.
e—>0 € B (x0) €

If not, then there exists a § > 0 and a subsequence €, — 07 as k — +o00 such that

1 _
lim —/ 1Du(y) — qln (M) dy > 2/né.
Bek(x()) €k

k—+00 EI?
Fori =1, ..., n, we denote
Ai = {x € B (x0)| [uy, (x) — gi| = 8}.

Then we must have that

1 —
lim —n/ 7 (xo y) dy > 0. 2.1)
k—-+oo €k JUL | A; €k

Since

Aj = {x € Bg (x0)| ux; (x) —gi = 8} U{x € Be (xo)| ux; (x) —qi < —6},
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upon passing if necessary to a subsequence, according to (2.1), without loss of
generality, we may assume that

1 —
lim —n/ n(xo y)dy=r>0
k—+o0 € AT €L

) 1 Xo—y
lim —/ Du(y)n <—) dy=4q"=(q,....q,)
Af €k

k—+o00 T€]!

and

where
AT = {x € B, (x0)| uy, (x) — q1 > 8}

Since g = lim¢_,0 Duc(xg), we have that T < 1. Otherwise, we have that

lim ue x (x0) — g1 = 8.
k—+o00

Therefore

. 1 X —y
lim — n
k=00 € JB (xo)\AT €k

)dy:l—t>0

and

1 — —1q’
lim 7n/ Du(x)n (xo y) dy = 1 1 _ q’.
k—+o0o (1 — ‘L')Ek Bek(XO)\AT €k -1

Owing to (A1), we have that
H(q', u(xo), x0) <0, H(q", u(xo), x0) <0. (2.2)

Also,
g=1t9'"+(1—-1)4q".

By the definition of AT, gy —q1 = 8. Hence ¢’ # q and ¢ # ¢”. Since
H(q, u(xp), x0) = 0, (2.2) implies that the O-level set {p| H(p, u(xg), xo) = 0}
contains the line segment connecting ¢’ and ¢”. This contradicts the assumption
(A2). So our claim holds. Since n > 0 in B;(0), we have that xq is a Lebesgue
point of Du. So u is differentiable at xg. This is a contradiction. Therefore
H(q, u(xp), x0) < 0. So in this case we can choose u, as the desired sequence
of smooth functions. U

Remark 2.2. Lemma 2.1 is still true by replacing ¢ in (iii) with any p € D u(xo).
To prove it, we need to choose more delicate mollification of u instead of the stan-
dard mollification. For our purpose, Lemma 2.1 is enough.
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Proof of Theorem 1.1.

Step 1. Choose an open set V such that xo € V C V C Q. Let {um}m>1 be the
sequence of smooth functions from Lemma 2.1. By a compactness argument, it is
easy to show that for any fixed x € V

Sup d(Duy(y), D u(x)) - 0 asm — +ooand § — 0, (2.3)
{k=m,|y—x|<8}

and
lim Sup d(Du"(y), DT u(x)) — 0.

80 {y—x|<8}

Since 0 ¢ co(DpH(D+u(xo), u(xop), xo)), without loss of generality, we may as-
sume that there exists a § > 0 such that

Bg(O)ﬂco{DpH(Du+(x),u(x),x),DpH(Dum(x),um(x),x)|x eV.m> 1} o

= .

Hence there exits a ¢ > 0 such that for each m > 1, there exists a C! curve
&n(s) : [0, 0] — V such that

En(s) = Dy H (Dt (£ (9)), ttm (Em (5)), Em(s)) # 0
£ (0) = xo.
Step 11. We claim that

H (D (§n(5))s m (Em (5)), Em(5)) = H(Dupm(x0), um(x0), x0) + Cs,  (2.5)

where C is some constant depending only on H and u. Since D?u,, < CI,, we
have that

d
%H(Dum(Em(s))aum@:m(s)), En(s)) = Hpinjum,xin + Hpinum,x,- + Hxini

<C|D,H|*+|D,H||Duy||H,|+|DyH||D,H| < C.

So our claim holds. We assume that lim,,_, + oo Du,, (x9) = ¢g. According to the
choice of u,,, ¢ € D u(xp) and H(q, u(xp), xo) < 0. Owing to (2.5), if we choose
o > 0 small enough, without loss of generality, we may assume that for m > 1 and
s €0, 0]

1
H (D (En(5)), m Em (). Em(5)) = 5H(q. u(xo), x0) < 0. (2.6)
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Step 111 Since {&,,},,>1 1s uniformly Lipschitz continuous, passing to a subsequence
if it is necessary, we assume that

liIE &n(s) = &(s) uniformly in [0, o].

Hence
ém = DpH(Dum(Sm(s))s W (Em(5)), Em(s)) — S(S) weakly in LZ[Oa ol. 2.7

Owing to (2.7), a subsequence of convex combinations of ém (s) converges to S (s)
a.e. in [0, o]. Hence by (2.3) and (2.4),

£(s) € co(DpH(D+u(§(s)), u(&(s)),&(s))) 20 forae.s €[0,0].

Owing to (2.3) and (2.6), we derive that

) 1
max min  H(p,u(§(s)),&(s)) < zH(q, u(xp), xo) <0.
s€[0,0] peDTu(&(s)) 2

Hence £([0, o]) C 2(u) and

E(s) € co(Dp(H(D+u(E(s)), u(&(s)),£(s)))) #0 forae.s €[0,0]. (]
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