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A finiteness theorem for holomorphic Banach bundles

JURGEN LEITERER

Abstract. Let E be a holomorphic Banach bundle over a compact complex
manifold, which can be defined by a cocycle of holomorphic transition functions
with values of the form id + K where K is compact. Assume that the character-
istic fiber of E has the compact approximation property. Let n be the complex
dimension of X and 0 < g < n. Then: If V — X is a holomorphic vector bundle
(of finite rank) with H4(X, V) = 0, thendim H? (X, V ® E) < oo. In particular,
ifdim H4(X, O) = 0, then dim HY (X, E) < oc.

Mathematics Subject Classification (2000): 32F10 (primary); 32C37 (sec-
ondary).

1. Introduction

By a holomorphic Banach bundle we mean a topological vector bundle £ whose
characteristic fiber is a complex Banach space B and whose structure is defined
by a cocycle of holomorphic transition functions with values in the automorphism
group of B. Set rankE = dim B.

Many of the results on holomorphic vector bundles on Stein spaces are valid
also for Banach bundles, as it was proved by L. Bungart [1] (1968). This is no more
true on non-Stein spaces. For example, it is clear that there is no Kodaira finiteness
theorem for holomorphic Banach bundles on compact spaces. Moreover, already on
the Riemann sphere IP)I, there exist holomorphic Banach bundles E with a Hilbert
space as characteristic fiber such that H I(P', E) is even not Hausdorff [3]. Hence,
to get finiteness theorems for holomorphic Banach bundles, we have to impose
additional conditions.

We shall say that a holomorphic Banach bundle with characteristic fiber B is of
compact type if it can be defined by a cocycle of holomorphic transition functions
with values of the form id + K where K is compact. For such bundles, on the
Riemann sphere P!, we have the Gohberg splitting theorem [4] (1964), which is a
generalization of the Grothendieck splitting theorem and plays an important role in
operator theory:
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Gohberg splitting theorem [4, 5, 2]. Any holomorphic Banach bundle of compact
type over P! splits into a finite sum of line bundles and a trivial Banach bundle.

From the Gohberg splitting theorem it follows that, for any holomorphic Banach
bundle E of compact type over P!,

if 1
dimHIP', By ] = ta =
= 00 if ¢ = 0 and rank E = oo.

So, on the Riemann sphere, for holomorphic Banach bundles of compact type, the
Kodaira finiteness theorem is true if ¢ > 1 and it is not true if ¢ = 0. The reason is
that H9(P', O) = 0if ¢ > 1 whereas HO(P!, O) # 0.

Now let X be an arbitrary compact complex manifold. If, for some g € N,
H1(X, O) # 0, then it is clear that, for any product bundle of the form £ = X x B
where B is an infinite dimensional Banach space,

dim HY(X, E) = co.

Hence there is no Kodaira finiteness theorem also for holomorphic Banach bundle
of compact type. However one may expect that the following conjecture ist true:

Conjecture 1.1. If X is a compact complex manifold and ¢ € N such that dim H9
(X, O) = 0, then, for any holomorphic Banach bundle of compact type, dim HY
(X, E) < o0.

In the present paper we prove this conjecture under the additional hypothesis that
the characteristic fiber of E has the compact approximation property (see, e.g.,
[9]).2 Actually we prove the following more general theorem (the conjecture is the
special case when V is the trivial line bundle):

Theorem 1.2. Let X be an n-dimensional compact complex manifold, V. — X a
holomorphic vector bundle (of finite rank) and 0 < g < n such that

dim H%(X, V) = 0. (1.1)

1'n [4, 5, 2] this result appears in the language of Riemann-Hilbert factorization. This is equiv-
alent to the formulation given here, because holomorphic Banach bundles over C are trivial, as it
was proved by Bungart [1]. Note also that the first proof of this theorem, given in [4] (1964), uses
the additional condition that the bundle can be defined by a cocycle of holomorphic transition
functions with values of the form id + K where K can be approximated be finite dimensional
operators. (By Enflow’s example, found later (1972), there exist Banach spaces such that not
any compact operator can be approximated by finite dimensional operators (see, e.g., [9])). This
additional condition then was removed in [5].

2 A Banach space B has the compact approximation property if for each compact set ' € B
and each ¢ > 0, there is a compact endomorphism K of B such that

[x — Kx|| <e forallx € I.

Note that there exist Banach spaces without approximation property but with compact approxi-
mation property (see, e.g., [9]).
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Then, for each holomorphic Banach bundle of compact type E — X whose char-
acteristic fiber has the compact approximation property,

dim HY(X,V ® E) < oo, (1.2)

and
dmHY(X,VQE)=0 if E is trivial. (1.3)

Now some remarks about the proof of this theorem. The first ingredient is a gen-
eral local-global construction of [8]. Under the hypothesis (1.1) this construction
gives a global homotopy representation for V-valued (0, g)-forms. By a general
principle (Proposition 2.2), this yields a homotopy representation for (0, g)-forms
with values in holomorphic Banach bundles of the form V ® E where E is a trivial
Banach bundle (which completes the proof in this case). The second ingredient is
the following observation (Proposition 2.5): let B be a Banach space, X a com-
pact metric space, C°(X, B) the Banach space of continuous B-valued maps on X
and C¥ (X, B) the Banach space of Holder-a-continuous B-valued functions on X,
0 < a < 1. Further, let A be a bounded linear map from C°(X, B) to C*(X, B),
and let K be a compact linear endomorphism of B. Although then neither A nor
the operator of multiplication by K need to be compact as an endomorphism of
C%(X, B), the composition K A is a compact endomorphism of C%(X, B). It is not
clear whether the same is true also for A K, but under certain extra conditions, ful-
filled in our situation, this is the case (Proposition 2.8).

ACKNOWLEDGEMENTS. I thank Matjaz Erat and Laszlo Lempert for reading the
manuscript and many suggestions improving the text.

2. Preliminaries

By a Banach space we always mean a complex linear space endowed with a Ba-
nach space topology (a norm need not be fixed). The Banach space of bounded
linear operators from a Banach space A to a Banach space B will be denoted by
Hom(A, B) and considered as Banach space endowed with the operator norm topol-
ogy. The subset of isomorphisms of Hom(A, B) will be denoted by Iso(A, B) (pos-
sibly, it is empty). We set End (B) := Hom(B, B), and AutB = Iso(B, B).

Let E be a C*° Banach bundle over a C* manifold X, i.e. a locally trivial
bundle whose characteristic fiber is a Banach space B and which can be defined by
a cocycle of (AutB)-valued C* transition functions. If x € X, then the fiber of
E over x will be denoted by E,. By a fiber norm on E we mean a C* function
| - || on E such that the restriction to each fiber E, is a norm defining the topology
of E,.

Let E, F be two C* Banach bundles over a C>* manifold X. Then we denote
by Hom(E, F) the Banach bundle with (Hom(E, F)), = Hom(E,, Fy), x € X.
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The subbundle of isomorphisms in Hom(E, F) will be denoted by Iso(E, F). Set
End E = Hom(E, E) and AutE = Iso(E, E).

By a vector bundle (C* or holomorphic) we always mean a usual complex
vector bundle of finite rank.

Let E be a C* Banach bundle over a C* manifold X, and k € N U {oco}
(N = {0,1,...}). Then we denote by C¥(X, E) the Fréchet space of global C*
sections of E, and, if k < oo and 0 < « < 1, then we denote by Ckta (X, E) the
Fréchet space of global C* sections of E whose derivatives of order k are Holder
continuous with exponent «.

Let V be a C* vector bundle over a C* manifold X and B a Banach space. The
fiberwise defined tensor product V ® (X x B) will be simply denoted by V ® B.
For ¥ € CX(X,V) and b € B, then we have the element ¥ ® b of the tensor
product CK(X, V) ® B of the spaces Ck(X, V) and B. On the other hand, we have
the fiberwise defined tensor product ¥ ® (X x b) € CK(X,V ® B) of Y and the
constant section X x b of X x B. Itis easy to see that the linear map

ckx,v)® B —s CF(X,V ® B)
defined by
Vb — ¥ ® (X xb), v eCkX,V), beB,

is injective, for each k € N U {oc}. Therefore the subspace of C¥(X, V ® B) which
consists of the sums of the form

N
Y Ui ®(X xbj),  y;eCYX.V), b;eB, 2.1)
j=1

can be identified with the tensor product Ck(X, V)® B. We will do this, and for the
now identified products ¥ ® b and ¢ ® (X x b) we will use the simpler notation
Y ®b. Clearly, for dim B = oo, Ck(X,V)®Bis strictly smaller than Ck(X,V®B),
but we have

Proposition 2.1. Ler V be a C* vector bundle over a C*° manifold X, B a Banach
space and k € N U {00}. Then the space C*°(X, V) ® B is dense in CX(X,V ® B)
with respect to the C* topology.

Proof. 1t is sufficient (by partition of unity) to prove the following local result:

Lemma. Let U C R”" be an open set and D*(U, B) the space of B-valued C*
maps with compact support in U, k € N U {oo}. Denote by D*(U,C) ® B the
subspace of D*(U, B) which consists of the finite sums of the form > Y jbj where
(/S DU, C) and b;j € B. Then D*(U,C) ® B is dense in Dk, B) with
respect to the C* topology.

To prove the lemma we fix some norm || - || on B defining the topology of B.
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First consider the case k = 0. Let f € D°(U, B) and ¢ > 0 be given. Since
f 1s continuous and has compact support in U, we can find a finite open covering
Ui, ..., Uy of U such that || f(x) — f(y)|| < e whenever x and y belong to the
same U;. Fix some point u; in each U; such that f(u;) = 0if U; Nsuppf = 0.
Take a continuous partition of unity {x j} subordinated to the covering {U;} and set

N
f) =) x;0) fuy)  forxel.
=0

J

Then it is clear that f € D°(U,C) ® B and || f(x) — f(x)|lg < & forall x € U.

To prove the lemma for 1 < k < oo, it is sufficiet to do this for 1 < k < oo.
Let such k be given. Let dX be the Euclidean volume form on R”. Fix a non-
negative C*°-function ¢ on R” with [p, ¢ di = 1 and ¢(x) = 0 if [x| > 1. Set
pe(x) = e "p(x/e)forx €e R"and e > 0. Ifu : R" — B is continuous and ¢ > 0,
then we define

(Teu)(x) = /(ps(x — Y u(y)di(y) = /(ps(y) u(x — y)da(y). (2.2)
Rn Rn

Now let f € D*(U, B) and § > 0 be given. Take gy > 0 so small that the distance
between supp f and the boundary of U is bigger than 2gg, and let U’ be the open
go-neighborhood of supp f. Then, for ¢ < &g, T f belongs to D*(U’, B). (To
see this one has to differentiate under the sign of integration in the first integral
of (2.2).) Moreover, for ¢ — 0, T f tends to f in the C* topology. (To see this
one has to differentiate under the sign of integration in the second integral of (2.2).)
Therefore, we can find 0 < & < g¢ with

)
| =Tflle < 3 2.3)

where || - ||, denotes the C*-norm with respect to || - || g- As the lemma is already
proved for k = 0, moreover we can find a sequence g; € DYU’, C) ® B such that

lim max || f(x) —g;j(x)llz =0. 2.4)
j—ooxelU’
Set fj = T.gj. Then f; € D*°(U, C) ® B for all j, and it follows from (2.3)
1) 1)
1f = Fille < 1Tef = il + 5 = 1Te(f =2 + 5

By differentiation under the sign of integration in the first integral of (2.2) and
by (2.4) it follows that

tim |7,/ ~ g, =

Hence, we can choose j so large that || f — f;|, <. U
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Proposition 2.2. Let V and V' be C*° vector bundles over C°° manifolds X and X'
respectively. Letk, k' € N, 0 < o < 1, and let

A:CHX, V) — CKrex V)

be a continuous linear operator. Then, for each Banach space B, there exists a
uniquely determined continuous linear operator

Ap :CY(X,V ®B) — CKt* (X', V' ® B)

such that
Ap=A®id on CX,V)®B (2.5)

where
A®id:C*Xx,V)® B— C* (X', V)® B

is the algebraic tensor product of A and the identical endomorphism of B.

Proof. Since, by Proposition 2.1, C¥(X, V) ® B is dense in CK(X, V ® B), it is
sufficient to prove that A ® id is continuous with respect to the C¥ topology in the
source space and the CK+a topology in the target space.

Letn = dimX, n’ = dim X', r = rankV, ' = rankV’. Fix some norm || - ||
defining the topology of B. Denote by B* the space of continuous linear functionals
® : B — C endowed with the norm || ®|| := sup,cp =1 [P )]

Let/,m € N, w cC R” a compact set and f a B-valued C! map in a neigh-
borhood of w. Then we set (using the usual notations for partial derivatives)

(0] = Dﬁ
Poi(f) Oggélrglggn RSl

and, if @ > 0 and f is even of class C/*®,

DB — DP
pw,H—a(f) = max ,Ow,l(f) , max sup ” f & f (77)“ )
IBI=l ¢new. c#n [ —nl*

In the same way we define p,, ;(f) and pg 1o (f) if f is a scalar function, using
the modulus |- | of complex numbers instead of the norm || - ||. By the Hahn-Banach
theorem,

IDPF)ll= max |®(DF @)= max [DF(®o f)()

deB*, || P|=1 deB*, [|P|=1

for all ¢ € w and all multi-indices § with 0 < |8| < [. Hence

Po,1(f) = o8 Ly o1 (P o f). (2.6)
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If o > 0 and f is even of class C'T®, then moreover

IDPf () —DPf

e, L#n [ —nl
|DP(® o f) () — DP(Po f) ()|
= sup max
tew, c4n PEBF[P]=1 & —nl*
|DE(@ o f) () — DP(®o f) ()|
= sup sup
PeB*, |@l=1 Ccw, LA [c —nl
and therefore
Pwl+a(f) = Sup  Pw,i+a(®o f). 2.7
DeB*, |@|=1

Fix a family {(Uj, wj, ¢, ej)}jel such that
e {Uj}jer is alocally finite open covering of X;
e cach w; is a compact subset of Uj, and X = Ujel wj;
e each ¢; is asystem ¢; = (¢j1, ..., ¢j,) of real C*° coordinates on Uj;
e cache; isaC™ frame e; = (ej1, ..., ej,) of V over U; (r is the rank of V).
For X’ and V' we fix a corresponding family {(U;., a); <p;., e;)}jel,.

If f is a section of V over some Q C X, then, over each U; N Q, it can be
written in the form f = Y| _, fj» ej, where fj1, ..., fjr are uniquely determined
scalar functions on U; N2. These functions f;,, will be called the coefficients of f.
Similarly, if f is a section of V ® B over some Q2 C X, then by the coefficients of f
we mean the uniquely determined maps fj, : U; N Q2 — Bwith f =31 _ ¢, ®
fjv- If f belongs to one of the spaces C¥(X, V) or C¥(X, V ® B), then we define

Pj(f)=vfllaxrpwj,k(fjvo¢;l) forall j e I
where f;, are the coefficients of f. The so defined family of semi norms {p;};c;
defines the topologies of C¥(X, V) and C¥(X, V ® B).

Similarly, using the family {(U;., a); (p}, 6;-)}j61/, we define a family of semi
norms {p’} jey defining the topologies of CK+e (X’ v’y and CK+* (X', V' ® B).

Let ® € B*. Then we denote by ®y the global section of Hom(V ® B, V)
which is the fiberwise tensor product of the identity section of End V and &, i.e. if
a section f of V ® B is written as a finite sum f = ) u VY ® by, where the ¥, are
sections of V and the b,, are B-valued maps, then

Dy f =) (Poby) . (2.8)
w

In the same way, we define a global section ®y of Hom(V' ® B, V').
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Let f € CK(X,V ® B) and let fjv be the coefficients of f. Then, by (2.8),
® o f;, are the coefficients of ®y f. By (2.6) this implies, for all j € 1,

p;j(f) = max sup ,owj,k(d)ofjvogpj*l) = sup pj(CDVf). 2.9)
v=L,...,r epB*, |®|=1 deB*, |P|=I

Similarly, if f € CK+e (X' V' ® B) and j € I, then, by (2.8) and (2.7),

Pi(fy= " sup  pi(Pvf). (2.10)
deB*, ||P|=1

Let f € C*(X, V) ® B and ® € B*. Then f can be written as a finite sum

f=Y Yu®b,  withy, € C*(X,V)andb, € B,
"

and, by (2.8) and the corresponding relation for ®y-, it follows that

Qyf =) (Pbu)Yu and  Qy(ARid)f =) (Pb)(AV,).
n "

Since the ®b,, are numbers and A is linear, this implies that

Py (AQId)f=A (Z(d)bu)‘/fu) = Ady f. (2.11)
n
Now, to prove the continuity of A ® id, consider an arbitrary x € I’. We have to
find a finite number of indices ji, ..., jy € I and a constant C < oo such that
p((A@id)f) =C max pj(f) (2.12)
for all f € Ck(X,V) ® B. Since A is continuous, there exist a finite number of
indices ji, ..., jy € I and a constant C < oo such that
pe(Av) = C r?aprjv(v) (2.13)
-

=1,...,

.....

and the required estimate (2.12) now follows by (2.9) and (2.10). O

Definition 2.3. Let £ and F be C* Banach bundles over a C*° manifold X. A
section K : X — Hom(E, F) will be called fiber compact if, for each { € X, the
value K (¢) is a compact operator between the fibers £, and Fy.
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Lemma 2.4. Let E and E’ be C* Banach bundles over a C*° manifold X, and let
K : X — Hom(E, E’) be a section which is fiber compact and continuous with
respect to the operator norm topology. Further, let || - || be a fiber norm on E. Then,
for each compact set w CC X, the set

KO v|tew, veE, v <1} (2.14)
is precompact in E'.

Proof. Since w is compact, after passing to local trivializations, we may assume
that X is an open subset of R” and the bundles E and F are trivial, i.e. E = X x B
and E’ = X x B’ for some Banach spaces B and B’, and K can be considered as
a continuous map K : X — Hom(B, B’). Assume that some norms are fixed on

B and B’ which we both denote by || - ||. Also the corresponding operator norm on
Hom(B, B’) will be denoted by || - ||. Then we have to prove that the set
(K@v|tew. veB . v <1 (2.15)

is precompact in B’. Let ¢ > 0 be given. As the values of K are compact, for each
n € X, there is a finite set A(n) € B’ such that

[Kmv|veB, v <1}

is contained in the ¢/2-neighborhood of A(#n). Since K is continuous, for each
n € X, we can find a neighborhood U (1) of n such that

nmo—wa§§ for all ¢ € U ().

Then ||K(¢)v — K(n)v|| < &/2 forall v € B with ||v|| < 1, and, hence, the set
{(K@Ov|teUm,veB, vl <1}

is contained in the e-neighborhood of A(n). Since w is compact, there is a finite
number of points 71, ..., ny € o such that w is covered by U (1), ..., U(ny).
Then the set

N
Ulg@wlcevmp . ven. wi=1]
j=1
is contained in the e-neighborhood of the finite set A(n;) U...U A(ny). If follows
that the set (2.15) is contained in the e-neighborhood of this finite set. O

Proposition 2.5. Let E, E’, E” be C*° Banach bundles over a compact C*° man-
ifold X and 0 < o < 1. Let K : X — Hom(E’, E") be a section which is fiber
compact and Holder continuous with exponent a with respect to the operator norm
topology. Further let

A:C%X,E) — CYX, E)

be a continuous linear operator. Then KA is compact as an operator between
CO%(X, E) and C°(X, E").
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Proof. Let a bounded sequence (f}) jen in C%(X, E) be given. Then (Af;)jenisa
bounded sequence in C*(X, E’). In particular, (Afj)jen is bounded in CY(X, E.
As X is compact, it follows, by Lemma 2.4, that

A= {(KAfj)(;) ( rex, je N}

is precompact in E”. Since K is Holder continuous with exponent o and (Af;) jen
is a bounded sequence in C*(X, E’), now we see that (KAfj)jen is a bounded
sequence in C*(X, E”) all values of which belong to the precompact set A. By
Ascoli’s theorem this sequence has a uniformly convergent subsequence. U

Lemma 2.6. Let V be a C* vector bundle over a C*° manifold X, B a Banach
space and F a linear subspace of B. Let || - || be a fiber normon 'V ® B, ¢ > 0 and
f : X — V ® B a continuous section such that

inf — ¢ eX.
e, IF () —vl<e  forallg

Then there exists a continuous section f, : X — V ® F such that

@) — fe(O)ll <e  forall? € X.

Proof. By hypothesis, for each { € X, we can fix a vector v, € (V ® F); such
that || f(¢) — v || < e. Further, for each such vector, we can find a continuous
section f; : X — V ® F with f;(¢) = v;. Then, for each { € X, we choose a
neighborhood U, of ¢ so small that || f(n) — f:(n)|| < ¢ for all n € U,. Finally,
take a continuous partition of unity {x.};cx subordinated to the covering {U;};cx,

and set fe(n) = > . cx xc () fr () forn € X.

Lemma 2.7. Let V be a C* vector bundle over a compact C*° manifold X, B a
Banach space, || - || a fiber norm on V- ® B, and w a compact subset of the total
space of the bundle V @ B. Then, for each ¢ > 0, there exists a finite dimensional
subspace F of B such that

inf JJv—w| <e forallt € X andv € oN(V @ B);. (2.16)
we(VRF),

Proof. Let r be the rank of V and B’ the direct sum of r copies of B. Fix some
norm || - || g~ of B". Take a Riemann metric on X and let dx be the corresponding
distance function. Setting

d((¢,v), (1, w)) =dx (& n) + llv—wl|p for,ne Xandv, w € B",

we choose a metric d on X x B". Since X is compact, we can find a finite open
covering U .. U n of X and local C® trivializations 0 V|U — Uj x C" of

V. Setting ®; = 6, ® id we get trivializations

©;: (Ve B)|z — Ujx B
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Take relatively compact open subsets U; CC U j such that Uy, ..., Uy is still an
open covering of X. Set

wj = ®j<a)ﬂ (V ®B)|Uj>'

Then each w; is a compact subset of U j X B". Now we consider an arbitrary § > 0.
As @ := w1 U...Uwy is compact, then we can choose a finite number of points
(¢y,by) € X x B",v = 1,...,m, such that, for each (¢, b) € @, there exists an
index v € {1,...,m} with d((;‘, b), (¢v, bu)) < § and therefore, by definition of
d, ||b — by|lpr < 8. Let F be the subspace of B spanned by the components of
the vectors b, (the dimension of F is < mr). Then F” contains the vectors b, and,
hence, for each (¢, b) € w, we get

inf ||b—v < 4.
inf [Ib = vil

Since ©; ((V ® F);) = {¢} x F" for { € U}, this implies (2.16) if § is chosen
sufficiently small. O

Proposition 2.8. Let V, V' and V" be C* vector bundles over a compact C*
manifold X, B a Banach space and0 < o < 1. Let K : X — Hom(V®B, V' ® B)
be a section which is fiber compact and continuous with respect to the operator
norm topology. Let A : CO%(X, V') — C*(X, V") be a bounded linear operator,
and let

Ap :C%X,V'® B) — C%X, V" ® B)

be the bounded linear operator with Ap = A ® id on CO%X,V)®B (Proposition
2.2). Then AgK is compact as operator between C°(X, V®B) and C°(X, V' Q B).

Proof. Fix some fiber normson V ® B, V' ® B and V” ® B which we all denote
by || - [|I. Consider an arbitrary sequence (f;)jen in C%(X,V ® B) with

C:= sup |[fi©] <oo, (2.17)
jeN,teX

as well as an arbitrary ¢ > 0. It is sufficient to find a sequence ( f/f/ )jeN in
CO(X, V" ® B) with

max |AgKfj(¢) — f{ (@) <&  forall j €N (2.18)
teX :

such that (f J/./ ) jeN has a uniformly convergent subsequence.
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Let ||Ap| be the operator norm of Ap as an operator between the spaces
Co%X, V' ® B) and C°(X, V" ® B) endowed with the maximum norms with re-
spect to the fiber norms fixed in the beginning of the proof. By Lemma 2.4, the
set

o={K@f;©) |cex, jen] (2.19)

is precompact in V' ® B. Hence, by Lemma 2.7, there is a finite dimensional
subspace F of B such that

inf K@) fi () —wl| < forall¢ € Xand j e N.  (2.20)
we(V'@F), IIA [

Therefore, by lemma 2.6, we can find a sequence (fjf)jeN in C%X, V' ® F) such
that

r{llea;IIK(é“)fj(;“) F @l < ||A i forall j € N. (2.21)

Set f]f’ = Ap f]f. Then (2.18) is clear, by (2.21) and the definition of ||A||. More-
over, as Ap is the tensor product of A and the identical map of B, Ap (CO(X V' ®
F )) is contained in C¥(X, V" ® F). Hence Ap is a bounded linear operator from
CoUX,V'®F)toC*X, V"®F), and from (2.17) and the continuity of K it follows
that the sequence (f jf) jeN is bounded in CY%(X, V' ® F). Therefore, the sequence
(f]’.’)jeN is bounded in C*(X, V" ® F). Since V" ® F has finite rank, this implies,
by Ascoli’s theorem, that ( f ]f’ ) jen has a uniformly convergent subsequence. O

3. 3 for continuous Banach-valued functions

Let E be a holomorphic Banach bundle over a complex manifold X. Then we
denote by A74Ty the complex vector bundle of (p, g)-forms on X. The sec-
tions of AP4Ty ® E will be called E-valued (p, g)-forms. Set Cf,’q(X, E) =
CH(X, AP4T; ® E) for k € NU{oo} and Cite (X, E) = CK**(X, APT; Q E) if
k € Nand 0 < o < 1. If B is a Banach space, then we write A”9T¢ ® B instead
of APIT§ ® (X x B) and C}; (X, B) instead of C}; (X, X x B), 0 < < oo
Now let X be an open subset of C". Denote by Iq the set of strictly increasing
p-tuples of length p in {1,...,n}. Let B be a Banach space and f a B-valued
(p, g)-form on X. Then by the coefficients of f we mean the maps f7; : X — B,
I €1, Jel,with f = ZleIp,Jqu frydz; Adzy. If H is an End B-valued
map on X, then we denote by H f the form with coefficients H o f7.
Deﬁnltlon 3.1. Let X be an open subset of C" and B a Banach space. For f €

(X B), we say that 3 f is continuous if there exists g € Cp g+1 (X, B) with

fﬁwAf=en“ﬂ/wAg 3.1
X X
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for all scalar ¢ € C.° 2 pn—g—1(X C) with compact support. Then g is uniquely
determined and will be denoted by Af. Ifdf =0, then f will be called d-closed.
Set C) ,(X. B) = {f € C) (X, B) | 9 is continuous} and Z) (X, B) = {f €
Ch (X, B)|af =0}
Note that 9 is closed as operator between the Fréchet spaces ng ¢(X, B) and
q (X, B) if we take C (X B) as domain of definition.

PropOSItlon 3.2. Let X be an open subset of C", B a Banach space and f €
¢(X. B). Then:

(1) For each complex valued C*°-function y on X, xf belongs to gg,q(X, B) and

dxf)=3ax Af+xdf.
(i1) For each holomorphic map H : X — End B, Hf belongs to C (X, B) and

9Hf = Hof.

Proof. To prove (i), for ¢ € C°°p n—g—1(X; C) with compact support, we compute:
3w nxs=[ xduns=[awnsr-[Fnvns
X X X X
= ol [xwndre [vadins
X
X

:(_1)1’*‘1/1// A(xdf +3x A f).
X

Now we prove (ii). Let g = d f. First consider the case when H is a constant map.
Then, for each ¢ € C° < pn—g—1 X, C) with compact support,

/ng/\Hf:H(/ng/\f>:H<(_1)p+q/X1ﬁ/\8)2(—1)1’+q/xlﬁ/\Hg.

Now consider the general case. Since the assertion is local, we may assume that H
is given by an uniformly convergent power series H(z) = Y_ z! Hy. Since the asser-
tion is already proved for constant maps and by part (i), it follows that each JdH f
belongs to Cg’q(X, B) and 3(z H; f) = z! H;g. Since both the series Y z! H f
and the series Y z/ H; g converge uniformly on the compact subsets of X and 9 is
closed, this implies the assertion. ]

Definition 3.3. Let E be a holomorphic Banach bundle over a complex manifold
X. If fe Cg’ ¢(X, E), then we say that 9 f is continuous if there exists a form

g € CI7 q 4+1(X, E) such that d0Of = Og for any local holomorphic trivialization
®: Ely - Ux Bof E. Weset df = g in this case. Denote by CN?M(X, E)
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the space of all f € ngq(X, E) with continuous d f. Set Zg’q(X, E)={f €

Cg’ ¢(X, E) |df = 0}. Further, we denote by O(X, E) the space of global holo-
morphic sections of E.

Remark 3.4. By Proposition 3.2 (ii) it is not necessary to verify 90f = @g for
any local holomorphic trivialization over any coordinate chart but it suffices to do
this for at least one local holomorphic trivialization over at least one coordinate
neighborhood of any given point of X.

Proposition 3.5. Let E be a holomorphic Banach bundle over an n-dimensional
complex manifold X. Then O(X, E) = ZgO(X, E).

Proof. Since the assertion is local, it is sufficient to consider an open set X C C", a
Banach space B and a continuous map f : X — B with 3 f = 0, and to prove that
f is holomorphic. Since 8 f = 0, we have Jx @y)f =0forall y € Cron (X, C)
with compact support. Let B* be the dual space of B. Then this implies that
fX(d> o f)dy = 0 for each ® € B* and all ¥ € C}i’fn_l(X, C) with compact
support. Therefore 3(® o f) = 0 in the sense of distributions for each ® € B*.
Hence (since the assertion of the proposition is well-known for B = C) ® o f is
holomorphic for all ® € B*. As f is continuous, this completes the proof. O

Proposition 3.6. Let E be a holomorphic Banach bundle over an n-dimensional
complex manifold X and 0 < p,q < n. Then, for each f € Cg’q(X, E), there
exists a sequence (fy), .y in C;f’q (X, E) such that, uniformly on the compact sets

in X, both (fy), oy converges to f and @ Sv) ey converges to af.

Proof. By Proposition 3.2 (i), each form in f € 52 ¢(X, E) can be written as a
locally finite sum f = ) j [ of forms fj € ng ¢(X, E) such that the support of
each f; is compact and contained in a coordinate neighborhood where E is trivial.

Therefore we may assume that f € ng ¢(X, B) for some Banach space B.

Let dA be the Euclidean volume form on C”. Fix a non-negative C°°-function
¢ on C" with f(C" @dr =1and p(¢) = 0if || = 1. Set @s(¢) = 2 p(¢ /¢) for
eC"and e > 0. Let for ¢ € C" define

tr :C"asz—5z-¢eC

and for any B-valued continuous form u on C"

Tou = [C e (O)Fudr().

Then T.u is C*, since its coefficients are obtained from those of u by a convolution
with ¢,; and T.u — u, uniformly on tl’le compact sets, when ¢ — 0, by the same
reason. As 7, commutes with 9 on Cp,q (X, B), one takes f, = T, f, with a
sequence &, — 0. U
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Proposition 3.7. Let X be a convex open subset of C", U a relatively compact open
subset of X, B a complex Banach space and 0 < p < n. Then there exist linear
operators

Ar:C) (X,B)—C) . (U,B), 1=<r=<n,

with A,(CY (X, B)) € CO,_, (U, B) such that (setting Ay = 0)
A f + Arpidf = fl,  forall f €C, (X, B). (3.2)

Moreover, ifk € NU{o0}, 0 <a < land 1 <r < n, then A,(Cf,,r(X, B)) C
Ci""‘il (X, B) and A, is continuous as an operator from Cﬁ’r(X, B)to Cff’fl (U,B).

7r 5r

Proof. If B = C, then the assertion is well known,? i.e. we have linear operators

Af : C)L(X,.C) — No<a<1Cs (U, C), which are C*-C*+*-continuous for

0 < o < 1 and each k € N U {00}, such that

9ACo + AS, 99 =9 forallg € CY (X, O). (3.3)

Then, by Proposition 2.2, there are linear operators A, : CIO,J(X . B) = No<az1
Cg 1 (U, B), which are Cck-Cck+e_continuous for 0 < @ < 1 and each k € N, such
that

N N
A @jbj =Y Af(ppb;  ifg;eC) (X,C), bje B, N <oo. (34)
j=1 j=1
It remains to prove (3.2). Let f € 52’,()(, B) be given. By Propositions 3.6 and 2.1
there exists a sequence f, € C;°.(X, C) ® B such that, in the C? topology, lim f, =
f and limﬁf‘} = 0 f. From (3.4) and (3.3) it follows dA, f, + A, 110 f, = f, for
all v. Passing to the limit we obtain (3.2). O

Theorem 3.8. Let X be an n-dimensional complex manifold, E — X a holomor-
phic Banach bundle. Then, for 0 < r < n, there are isomorphisms

Zo (X, E) 20 (X, E)
9C_|(X.E)  3CY,_ (X, E)’

H (X, E) =

where the second isomorphism is induced by the identity map Z&‘; (X, E) > Z(()),r
(X, E) and C3° (X, E) :=C) _ (X, E) :=0.

3 Indeed, we may assume that also U is convex. Moreover, we may assume that the boundary of
U is smooth. Then, for example, we can take the Henkin operators (see, e.g., Corollary 1.12.2
in [6] and, for the existence of the holomorphic “Leray map” required there, Corollary 2.1.4 in

(61,
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Proof. By Propositions 3.2 (i), 3.5 and 3.7, the sequences of sheaves

0— OF — (. E) 5 (. E) = ... 5 Y (. E)— 0
and

0— OF — C5( E) =5 C (- E) = ... -5 C2( E) — 0

are fine resolutions of O£ . Therefore the assertion follows from the de Rham-Weil
isomorphism. O

4. A global homotopy formula

Theorem 4.1. Let X be an n-dimensional compact complex manifold, V. — X a
holomorphic vector bundle and 0 < q < n such that

HY (X, V)=0. 4.1)

Further let 0 <a< 1. Then there exist continuous linear operators A, :Cg (X, V)—>
Cl,_ (X, V), r=q,q+1, (Ao := Apy1 :=0) with

AAGf +Ag0f = f (4.2)
Jorall f e Cg’q (X, V) such that 3 f is also continuous.

This section is devoted to the proof of this theorem. We will deduce it from
the Koppelman formula by means of a general functional analytic local-global con-
struction described in [8]. For convenience of the reader we repeat this construction
adapted to the situation considered here.

Let Cg’r(X, V) be the space of all f € ngr(X, V) with continuous 3 f, 0 <
r <n.

By means of the Koppelman formula and a partition of unity (see [7], Theo-
rem 1.17, for the details), we obtain continuous linear operators 7. : Cg’ LX) —

Cy,_ (X, V)and K, : Cj (X, V) — C& (X, V) such that (with T, 1 := 0)
f+K f=00f+Tqidf forall feCy, (X,V) and 1<r<n. (43)
Applying 9 to (4.3), we get d f + 3K, f = 0T, 110 f, and replacing f by_gf and r

by r + 1 in (4.3), we obtain (setting also K,,+1 :=0) 0 f 4+ K,410f = 0T, 410 f.
Together this implies

K, f =K, 10f  forall fe 58,,()(, V) and 1<r<n. (4.4)
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Letl <r <n. Set B, = 558r_1(X, V). Note that B, is a closed subspace of
Zg’ (X, V) (with respect to the max-norm), because it is of finite codimension and

the image of a closed linear operator. Set N, := id + Kr| B.- Since K, (B,) <

B, (as it follows from (4.3)), N, is an endomorphism of B,. Let KerN, be the
kernel, and ImN, the image of N.. N, —id = K, | B is continuous as an operator

between B, and Cg‘r(X , V) and, therefore, by Ascz)li’s theorem, compact as an

endomorphism of B,. Hence N, is a Fredholm endomorphism of 5, with index
zero. Let m, := dimKerN, = dim B, /ImN,. Take a basis b/, ...,b" of KerN,

>rm

and forms gi, ..., g, € B, such that B, is spanned by ImN, U {g], .. . 8m, ). AS
Cgf;,l (X,V)is de_nse in C(()),rfl (X, V) with respect to the graph norm of 3, we may
assume that g, € 9C3°._, (X, V). Choose uf,_l € C§S_ (X, V) with

oul =g, 1<v<m,. (4.5)

v

Let V* be the dual bundle of V. Take forms ¢f, ..., ‘/’;w e C>® _ (X, V*) with

n,n—r

/ng A @, =8y, (Kronecker symbol), 1 <v, u<m,. (4.6)

Define continuous linear operators of finite rank S, : Cg’ L(X V) — C(‘)”Orfl(X , V)
and K/, K] : C) (X, V) — C3%(X, V) by

Srf=2</ fMDﬁ) o K;fzz(/ waS) g
v=1 X v=1 X
and
my _
K/ f = (=Dt 3y ( / fA a¢;> .
v=1 X
Then, by (4.5),
K f=0S.f forall feCy.(X,V) and 1=<r=<n, 4.7
and, by Stokes’ theorem, we obtain (setting S, 41 := 0)
K'f=S8.40f forall f e (Eg’r(X, V) and 1<r <n. (4.8)
Set
A, =T, +S, and M, =id+K, +K,+K/ forl<r<n.
It follows from (4.3), (4.7) and (4.8) that (with Xn—i—l =0)
A [+ Adf =M, f  forall feCy,(X,V) and 1<r<n. (49)
It follows (setting also M, 1 := 0)

M, f =M, 0f  forall f €Co,(X,V)and1 <r <n. (4.10)
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Lemma 4.2. For1 <r < n we have:

(1) M, is a Fredholm endomorphism of Cg (X, V) with index zero,
(i) M, |B is an isomorphism of B,.

Proof. Since K,+K,+ K] is continuous as operator from Cg,r(X, V) to C(‘ir (X, V),
it follows from Ascoli’s theorem that M, —id = K, + K, + K, is compact as
endomorphism of CO (X, V). This proves part (i). Further K, is a map of rank
m, = dim KerN, Wthh maps Ker/N, isomorphically onto a complement of ImN,
in B, (by (4.6)). Hence N, + K. ’Br is an isomorphism of B,.. This proves part (ii),

because K, vanishes on 53, and therefore M, |,, = N, + K. O

|5, = s,

Set h, = dim H% (X, V). Then, by regularity of 3, we can find an m,-
dimensional subspace A, of Zg"i(X , V) such that Zg’r(X , V) = B, & A, (direct
sum). Choose a basis A/, .. A’r of A,. Moreover, by Serre duality, for each r, we
can find [, ..., yh € ZOO (X, V*) with

n,n—r
/yvAAr Suu for 1<v,u<m, and 1<r <n.
X

Define projections P, from Cg’r(X, V)onto A, 1 <r <n,by

hy
Prf=2_;(/x y:Af) - (4.11)

Since the forms y and A’ are d-closed, then
3P, f=0 forall f €Cy, (X,V)and1 <r <n, (4.12)

and
Prgf =0 forall f € ngr_l(X, V)yand1 <r <n. 4.13)

Together with (4.10) this implies that (with P,4 := 0)
(M, +P)f=(M, 41+ P 1)df forall feé‘g,r(x, Vyand 1 <r <n. (4.14)
Lemma 4.3. (M, + Pr)(ag’r(X, V)) = C~8,r(X, V)forl <r <n.

Proof. “C” follows from K, (52,(X, V)) - 58 (X, V) (true by (4.4)) and the fact
that the values of K/, K" and P, are of class C*°. To prove 27, first note that

zg,,<x, VY=B, ®A, =M, (B,) ®ImP. € (M, + P,)((?g,,(x, V)). (4.15)

Now let f € CN(())J(X, V). Then df € Bry1 = M,y 1(Bry1) (with B,yq := 0).
Therefore and by (4.10), Af = M,_ng = dM,u for some u € (78’r(X, V). Hence
f—M.u € zg,,(x, V) which yields, by (4.15), f —M,u € (Mr-i—P,)((?g’r(X, V).
Since also Myu € (M, + P,)(CY, (X, V), itfollows f € (M, +P,)(CY (X, V). [
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Since M, is an index zero Fredholm endomorphism of Cg’r(X ,' V), also M, +
P, is an index zero Fredholm endomorphism of ngr(X , V). As @;()),r(X , V) isdense
in Cg’ (X, V), this implies by Lemma 4.3 that M, + P, is an isomorphism of
Cg’r(X, V). From (4.14) and Lemma 4.3 follows

M, + P f = (M1 + Pri) '0f, feC (X, V), 1<r <n. (416)
Set A, = A.(M, + P,)"! for 1 <r < n. Then, by (4.9) and (4.16),
JAf+Af = f—P(M+P) f. feCh (X, V), 1<r<n (417)

If ¢ > 1 and therefore P, = 0 (by hypothesm (4.1)), this completes the proof of
Theorem 4.1. Now let ¢ =0 and f € Cg o(X, V). We have to prove that

Adf =f. (4.18)

Since (M + P1)| B = M, | B is an isomorphism of 3], we see in particular that

(My+P)"'9 f € By and therefore P (M) + P;)~'3 f = 0. In view of (4.17) (with
r = 1 and 8f instead of f), this implies dA;0f = df — Pi(M, + P))"'9f =
df, ie. Ajof — f € HYO(X, V). Since, by hypthesis, H*(X, V) = 0, this
means (4.18).

5. Proof of Theorem 1.2

Let B be the characteristic fiber of E. Fix 0 < o < 1. In view of Theorem 3.8 we
have to prove that
(X V®E)
dim 0 < 0 (5.1
8C0 a— (X, VR E)

and
Z0,X,V®E)=03C), (X,V®E) if Eis trivial. (5.2)

Using Propositions 2.2, 3.6 and 2.1 in the same way as in the proof of the local ho-
motopy formula of Proposition 3.7, from Theorem 4.1 we obtain continuous linear
operators A, : Cg’r(X, V®B) — Cg’r_l(X, V®B),r=q,q+1,(Ap:=0and

Ant1 = 0) such that A, (C) (X, V ® B)) € C{,_,(X,V ® B) and

9Af + Ag1df = f  forall f €Cy (X.V ®B). (5.3)

First note that this implies (5.2) and that we did not use the compact approximation
property of B for this.

Now we prove (5.1). Fix some norm || - || in B. The same notation || - || will be
used for the fiber norm canonically defined by this norm in the trivial bundle X x B.
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Further we fix some fiber norms in each of the bundles V, E and A%” T;‘(‘ ®V®B,
0 <r < n, which will be denoted also by || - ||. Since E is of compact type, we can
choose finite open coverings Uy, ..., Uy and Uy, .. ., U;. of X with U; cC U, for

j=1,..., N aswell as a family of holomorphic sections CT)]- : UJ’. — Iso(E, X x
B) such that the sections

Tjo:=®;® ' —id: U} — X xEndB, 1<) k<N,
are fiber compact. Then, by Lemma 2.4, the set

[Fub|be@nToxs. bi=1.1<jk=N] 4

is relatively compact in (U inN Uy) x B. Let ¢ > 0 be a number which will be
chosen below. As B has the compact approximation property and (5.4) is relatively
compact, we can find a compact linear operator Q € End B such that, if we denote
the corresponding constant section of X x End B also by Q,

ITjeb — OT b <& forallb e (U; NTy) x Bwith b =1.  (5.5)

Setting 0 = idy ® O, P =idygp — O, Tjx = id, @ Tji, @; = idy, ® B, we get
holomorphic sections P, Q : X — End(V ® B), ®; : UJ’. —> Iso(V®E,VQ B)
and I"jy U;. NU; — End (V ® B). Then

@0 =idygp+Tjx  onUjNU;, 1=<jk=<N. (5.6)
Hence q:;‘P(cbj—cbk) = @;‘P(q>‘,c1>,;1—idV®B)q>k = CIDJTIPF‘,,{CDk on U/NU}.

Therefore now we can choose the ¢ in (5.5) so small that, for each f € C’g’ g (X, V®
E),

- 1 _ .
|®7 P(@; =@ f < Ifl on UjnUk,  1<jk<N. (57)

Take C° functions Xj: X — [0, 1], j=1, ..., N, such that the family X12, AU XZ%,

forms a partition of unity subordinated to the covering Uy, ..., Uy. Set A i = X%.
Define bounded linear operators

T T/ :C), (X, V®E)>C{, (X.VRE), r=q.q+]1,
(where Ty := Ty := 0if g =0and 7, | :=T," | :=0if g = n) and

n+l T

K'.L',S,K".L":C},(X.V®E) — C§ (X.VQE),
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setting

N N
T f=) 1@ A POIS r=q,q+1, Sf=)_ 2@ P(® — )i f,
Jik=1 jik=1

N N
K'f=Y 0 A AgPOAS, L' f==) 3@ Agp1 PO, @0 A f),
Jk=1 jok=1
N
Tr//fZZXjCD;IArQ(Dijfs r=q,q+1,

J=1

N N
K'f=) 0xj "D Ag0®,x;f, L'f==) x;®; ' Ag10%,;@x; A /),
j=l1 j=1
where the notation is simplified: for example, @ stands forid ,,, ,.« ® Pk. Then it
X
follows from Proposition 3.2, formula (5.3) and ) A; = 1 that

N
ATy f + Ty 0f =K'+ L' +S)f+Y 207 PO, f
j=1
and
_ _ N
0T, f+ T 0f =K'+ L")+ Y 2000, f.
J.k=1

forall f € (?f))’q(X, V ® E). Hence, setting 7, := T + T, we get
ATy + Typ1d=id+ S+ K +L' +K'+L" on C) (X.V®E). (58)

Lemma 5.1. The operators id 4+ S, 0 < t < 1, are isomorphisms ofcg’q X, Ve®
E), and K', L', K", L"” are compact as endomorphisms ofcgq(X, VQE).

Proof. If we introduce in Cg, (X, V ® E) the max-norm with respect to the fiber

norm of V' ® E chosen above, then, by (5.7), the corresponding operator norm of
tSis < r/2. Hence id + ¢S is invertible. The compactness of K” follows, because
the section id o, T} ® Q of AOa TX* ® V ® B is fiber compact, A, acts continuously

from Cg’q(X, V ® B) to Cg‘,q_l(X, V ® B) and therefore, by Proposition 2.8, A, Q
is compact as operator acting between Cg’q (X,V ® B) and ngq_l (X,V®B). The
compactness of L” follows in the same way. As » A, = 1, > 91; = 0 and, by
(5.6), <I>]71 = <I>,j1 — d>;1Fj., on U, NUj;, we see that

N
K'f== Y MorjA®;'T;A PO,
v, j.k=1
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By means of Lemma 2.5 this shows that K’ is compact, because A, acts continu-

ously from Cg,q (X,V ® B) to C;"qil(X, V ® B) and each Fjv is fiber compact.

Finally, as >_ &, = 1, 25)% = 0 and, by (5.6), &y = ®, — ',y ®; on U N U,
we see that

N
L/f = Z )»jd);lAq+1PkaCDk(Av Ik A ),
v, j.k=1

which implies the compactness of each L’ by means of Proposition 2.8. U

Now we set
Mit)=id+t(S+K' +L +K"+ L") for 0<rt<l1.

By Lemma 5.1, each M(t) is a Fredholm operator in Cg’ q (X,V ® E). It follows
from (5.8) that Zg’ p (X, V ® E) is an invariant subspace of M (1). This implies that
Zg’q(X, V ® E) is also an invariant subspace of S+ K'+ L'+ K"+ L" = M(1)—id
and, hence, each of the operators M (t), i.e.

N(t):=M(t
® ®) zy ,(X.VE)

is an endomorphism of Zg’ q(X ,VQ®E)forallt € [0, 1]. Since M(t) is Fredholm,
the kernel of N (¢) is of finite dimension and the image of N (¢) is topologically
closed. Since N (t) depends continuously on ¢, this implies that either, for all ¢ €
[0, 1], the image of N (¢) has infinite codimension in Zg’ q (X, V®E),orforallt €

[0, 1], the image of N (¢) has finite codimension in Zg’q(X, V®E). As N(O) =id,

we conclude that the image of N(¢) has finite codimension for all ¢+ € [0, 1]. In
particular, the space

(id+S+K'+L' +K"+L")(2),(X,V®E))

is of finite codimension in qu(X, V®E). As, by (5.8), this space is zero if g = 0
and contained in 3C) ,_| (X, V ® E) if ¢ > 1, this implies (5.1).
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