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0. Introduction 

This paper arose from an attempt to get better understanding of 

the notion of Character sheaves introduced by G. Lusztig. It is be­

yond any doubt that Character sheaves play a fundamental role in the 

Representation theory: they are closely related to irreducible cha­

racters of (finite) Chevalley groups, to unipotent representations of 

complex reductive groups, and, perhaps, to many other matters as well. 

Unfortunately, there was no simple definition of a character sheaf. 

Lusztig tried various ones (see £Lul, Lu2, Lu4 ch. 13]), but all of 

them seem to be far too complicated for such a basic object and, more­

over, it was unclear (while known from tables) why these definitions 

were equivalent. The definition 1.2 below, given in terms of D-modu­

les, is,I believe, the simplest possible one. Also, it became gradual-

V.Ginsbrug, Moscow State Univ., Dept.of Math., 117234 Moscow, U.R.S.S. 

199 



V. GINSBURG 

ly apparent, that replacing the group G by an arbitrary symmetric va­
riety G/K provides a natural setting for the subject. In short, our 
conclusion can be informally summarized as follows: the class of D-
modules arising from character sheaves (in the "G/K-setting") is es­
sentially the same as the class of differential systems (i.e. D-mo-
dules) satisfied by K-finite matrix coefficients. 

Two ingredients of our approach are especially important to be 
mentioned here. The first one is the Harish-Chandra functor, taking 
D-modules on G/K to D-modules on the Flag manifold. The second is a 
compactification of G/K introduced by De Concini and Procesi [DP ] 
under the name of "complete symmetric variety". 

I am grateful to A. Beilinson for explaining to me the defini­
tion of a regular compactification. 

Quite recently, I have received a preprint by Mirkovic-Vilonen 
[MiViJ containing a different approach to some of the results of this 
papers. In particular, one should consult [MiVi] for a new simple cha­
racteristic free definition of character sheaves due to Lustig. 

1. Basic definitions and main results 

1.1. Let G denote a connected complex reductive Lie group. Let 
© be an involutive automorphism of G and let K := G denote the 
fixed point subgroup of G. Let X = G/K be the "complex symmetric 
variety" associated to the pair (G; ©). 

Lemma 1.1. (i) K is a reductive subgroup of G; 
(ii) G/K is a smooth affine algebraic variety. 
For a proof of (i) the reader is referred to [HelgJ. (ii) fol­

lows from (i) since G/K is an orbit-space of the reductive group K 
acting freely on G, an affine variety. Such an orbit-space is known 
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to be an affine variety with its regular ring C[G/KJ being equal to 
C[GJK. 

Here are 2 basic examples of symmetric pairs (G, K). 
(i) Given a complex reductive group K set G = K * K and let 6 be 

the involution on G defined as e : (a, b) \—> (b, a). Then G = K 
(= the diagonal of K x K) . Such a symmetric pair (G = K X K , K) will be 
referred to as a diagonal pair. Consider the map r : G —> K, r(a, b) := 
a-b ^. The map r clearly factors through G/K and gives an isomor­
phism G/K = K. The left G-action on G/K corresponds to the K x K-ac-
tion on K by left and right translation. 

(ii) Let © be an involution on a complex reductive group G, K = 
G , and G^ a real form of G such that 1^ := K /1 GR is a maximal 
compact subgroup of GR. Then, G/K may be viewed as a "complexifica­
tion" of the symmetric space 

1.2. Let D(X) be the ring of global algebraic differential ope­
rators on X, let g and k be the Lie algebras of G and K and let 
U(g), U(k) denote the respective enveloping algebras. The action of G 
on X = G/K by left translation gives rise to a Lie algebra homomor-
phism: g —> "algebraic vector fields on X". The Lie algebra homomor-
phism can be naturally extended to an algebra homomorphism: U(g) —> 
D(X). Hence, any D(X)-module may be viewed as a U(g)-module, via the 
above homomorphism, and also as a module over a subalgebra of U(g) 
(e.g. U(k)),by restriction. 

Let Z(g) denote the center of U(g). 
Definition 1.2. A finitely generated D(X)-module M is said to 

be admissible if it is locally-finite both as a U(k)-module and as a 
Z(q)-module, that is 

dim U (k) -m < ©o and dim Z (g) »m < o© for any m 6. M. 

We remark that speaking about D(X)-modules is the same as speak­
ing about quasi-coherent sheaves of D-modules on X, for X is an affi-
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ne variety. Yet, there is no obvious way to rephrase the definition 

of admissible modules in terms of sheaves of D-modules because the 

algebras U(k) and Z(g) have global nature. A local (actually, even 

microlocal) characterisation of admissible modules is provided by 

theorem 1.4.2 below. 

oo 

Let f be a Z(g)-finite C -function on GR, a real form of G. 

If f is right-K^-invariant and left K^-finite, then the D(G/K)-mo­

dule generated by f is admissible. In particular, f satisfies a 

holonomic system with regular singularities (thm. 1.4.2). The assump­

tion of the right K^-invariance can be easily replaced by the 

right K^-finiteness. 

* 
1.3. Let T be a maximal torus of G, X(T) := Horn(T, C ) the lat 

* 
tice of weights, t the Lie algebra of T, and t the dual of t. We 

* 
view X(T) as a lattice in t . Let W be the Weyl group of (G, T), 

* 
acting on t, t , X(T), etc. We form the semidirect product W^ = 

a 
WXX(T), called the affine Weyl group. There is a natural W -action 

a 

on t by affine transformations. 

Maximal ideals of Z(G) can (and will) be parametrized by points 

of the orbit-space t /W via the Harish-Chandra homomorphism Z(g) = 
m * W 

C[t ] . Let I^ denote the maximal ideal of Z(g) corresponding to a 

point a € t . 

Given a locally-finite Z(g)-module M, one has a root space decom­

position 

V = 

a € t /w 

V 
A 

V = |v é V I 
q 
n v = 0, n » 0 j 

The module V is said to have a central character J £ t /W& if all 

the roots y in the above decomposition belong to the W -orbit in t 
a 

corresponding to 5 • 

Remark 1.3.1. Let T := t /X(T) be the torus dual to T and 
* * 

let G be the complex reductive Lie group containing T as a maximal 
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torus and dual to G in the sense of Langlands £Lan]. There are natu­
ral orbit space isomorphisms: 

* * /s* * t /W = T A? = the set of semisiitple conjugacy classes in G . a 
* 

Thus, there is a bijective correspondence between the set t /Wa 
a of all central characters and the set of semisimple conjugacy classes 

of the dual group. 
Admissible modules form an abelian category Admiss(X). Let 

Admiss(X, J ) denote the full subcategory of Admiss(X), consisting of 
those modules that have a central character ) $t /wa- Tne follow­
ing result will be proved in section 2. 

Theorem 1.3.2. Admiss(X) 
5 € t * Wa 

Admiss(X, 3 ), i.e. 

(i) any admissible module V is isomorphic to a finite direct 
sum of admissible modules that have central character and 

(ii) Hom(V1, V2) = 0, provided and V"2 have different central 
characters. 

Remark. In section 8 we111 prove a much stronger result, saying 
* 

that ExtD^ (V^r V2) = 0 for any admissible modules V̂^ and V2 with 
different central characters. Here the Ext-group is computed in the 
ambient category of all D(X)-modules. * L 1.4. Let g be the dual of g and k-** the annihilator of k 

•ff i -ff in g . The subspace k eg is stable under the coadjoint action of 
* * K on g . Further, let T X be the cotangent bundle on X. We observe 

that TQX, the cotangent space at the base point e £ G/K, can be na-
* i 

turally identified with (g/k) - k . Hence, there is a vector bundle 
isomorphism: 

T X = G x 
K 

ww 
^^ (1.4.1) 

The G-action on X induces a hamiltonian action of G on T X. This 
latter one gives rise to a moment map ju : T X —•> g . Using the iso­
morphism (1.4.1), the map ju can be described explicitly as follows: 
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ji : G x K 
^cx » (x, A ) -1 * 

x • 7i • x e g 
Let SSV denote the characteristic variety of a finitely-gene-

rated D(X) -module V and let NgC g be the nilpotent cone (= the 
* 

zero-variety of the set of invariant polynomials on g without 
constant term). 

Theorem 1.4.2. The following conditions are equivalent 
(i) V is an admissible D(X)-module; 
(ii) V is a regular holonomic D(X)-module such that 

SSV C ju -1 N g 0 k 
1 (*) 

The proof of theorem 1.4.2 is rather long. The implication 
(i) i) is proved in section 3 with the exception of the fact 
that an admissible module has regular singularities. The regularity 
follows from theorem 8.5.1 on the Harish-Chandra transformation. The 
proof of the implication (ii) zẑ >(i) is given in section 3. It heavi­
ly depends, however, on results of sections 4, 5 and of Appendix A, 
concerning characteristic varieties of D-modules on a regular compac­
tif ication. 

Remarks. (a) Write the Cartan decomposition g = k © p , where p 
is the (-1)-eigenspace of the involution on g induced by 0. Let g 
be identified with g via a ©-invariant Killing form isomorphism. 
Then we have: k"̂ "= p and N = variety of nilpotents in g, so that 
N g k „1 w N P (= the subvariety of nilpotent elements of p). The mo­
ment map (1.4.1) turns into the map: 

* 
ni : T X = G x K P —> g. 

(x, v) x«v-x -1 

(b) An estimate similar to 1.4.2 (*) was first considered by G. 
Laumon [Lai] in connection with the work of V. Drinfeld [Dr] on the 
Langlands1 conj ecture. 

1.5. < We'll see in section 3 that < 
<< 

•1 (N fi k L 
) is a Lagran-
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gian subvariety of T X. This observation suggests the following prob­
lem. 

Let H and K be Lie subgroups of a Lie group G, let g, h, k 
be the corresponding Lie algebras, and N an Ad G-stable conic subva-
riety of g . Set X = G/H and let ju : T X —> g be the moment map. 
The problem is to classify (for a given G) all the triples (H, K, N), 
such that ju (N (1 k ) is a Lagrangian subvariety of T X^and to study 
the category of holonomic modules on X whose characteristic varieties 
are contained in f1 

-1 (N k' s If N = 0 is a single coadjoint orbit 
* 

in g , then we have the following general criterion 
Proposition 1.5.1, The following properties are equivalent 

(i) J1 
-1 (0 ks s is a Lagrangian (resp. isotropic, coisotropic) sub-

* 
variety of T X; 

(ii) both 0 h and 0 k 1 are Lagrangian (resp. isotropic, co­
isotropic) subvarieties of the orbit 0, viewed as a symplectic 
manifold. 
Here are some interesting examples of triples (H, K, N) for a 

reductive group G. The case H = K = G and N = N is just that of 
admissible modules. Further, if H is a maximal unipotent subgroup 

9 
of G, K = G and N = N , the category in question is the category 

g 
of Harish-Chandra modules. Next, set G = SLN(C), X = G/H = Grass-
mann manifold, K = diagonal matrices, N = matrices of rank ̂  1 (= 

* 
the closure of the minimal orbit in g ). Then, one can show, that 

s -l E k JL = the closure of the union of conormal bundles to all 
1-codimensional B-orbits in X, where B runs over the set of n! Borel 
subgroups of G containing K. The category of holonomic modules on X 
arising in this case is formed by D-modules generated by the genera­
lized hypergeometric functions in the sense of I.M. Gel1fand et al 
[Gj, [ GG] There is a similar example for G = Sp2n (O and x = Lag­
rangian grassmannian. 
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