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A SPECIAL DECOMPOSITION 
OF THE NILPOTENT CONE OF 

A CLASSICAL LIE ALGEBRA 

Hanspeter Kraft* Claudio Procesi 

1. Introduction 

1.1. The special unipotent classes of a simple group were introduced by Lusztig in [Lul] (last 
remark of the paper), in relation with special representations of Weyl groups. At the same 
time Spaltenstein remarked in [Spl] that there is a natural involution on a certain subset of 
the unipotent classes of a simple group (cf. [Sp2, chap. II. 1])- In case of a classical group it is 
induced by the standard involution of the unipotent classes in GL n (defined via the duality of 
the corresponding partitions) and has a purely combinatorial description [loc.cit]. It is not hard 
to see that this subset is exactly the set of special classes of Lusztig. Spaltenstein also notes 
that the sets 

C:=C\ M C 
C' special C'CC 

where C runs through the special classes, form a partition of the unipotent variety, i.e. any 
unipotent class is contained in a C for a unique special class C. For completness we will prove 
this in section 4 (Proposition 4.2). 

1.2. Lusztig conjectures in [Lu2, Conjecture 3] that the varieties C for special classes C are 
rational homology manifolds. This has been verified for "minimal" special classes in [loc.cit], 
and for E6, E-J, E8 in a remark in [BS]. The case F4 can be handled using [Sh], and for G2 it 
is quite easy. 

The purpose of this paper is to prove it for the classical groups. 

Theorem. Let C be a special unipotent conjugacy class of a classical group. Define C as above. 
Then C consists of 2d conjugacy classes, where d is the number of irreducible components of 
C\C. There is a smooth variety Y with an action of the group • Z 2 x • • • x Z 2 , d copies, and an 
isomorphism 

Y/Z2 x • • • x Z 2 ^ C 

which identifies the stratification of C by conjugacy classes with the stratification of the quotient 
by isotropy groups. (These are the 2d subproducts of Z2

d.) In particular C is a rational homology 
manifold. 

* Partially supported by Schweizerischer Nationalfonds 
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1.3. The partition of the unipotent variety into subsets C can also be justified by the following 

result of Lusztig. 

Proposition. Let Ci, C2 be two unipotent classes and let pi, p2 be the Springer representation 
of the Weyl group W corresponding to (Ci, 1), (C2,1), where 1 is the constant sheaf Then C\ 
and C2 belong to the same C if and only if px and p2 belong to the same two sided cell of W. 

1.4. The paper depends in an essential way from the results and methods of [KP2] of which 
it should be considered as a continuation. We try to help the reader to extract the necessary 
information from there by recalling as we proceed the main definitions. 

Acknowledgement. We like to thank George Lusztig for pointing out to us his conjecture 
and for his helpful remarks concerning this introduction. 

2. Conjugacy Classes and Partitions 

2.1. Let e be +1 or — 1. A finite dimensional vector space V with a non-degenerate form ( , ) 
such that (u,v) = e(v,u) for all u,v G V will be called a quadratic space of type e (shortly 
an orthogonal space in case e = 1, a symplectic space in case e = —1). We denote by G(V) 
the subgroup of GL(V) leaving the form invariant. So we have G(V) = 0n or G(V) = Spn, 
n = dimV, according to e = 1 or e = —1. Similarly g(V) denotes the Lie algebra of G(V). 

2.2. For any quadratic space V of type e the conjugacy classVBWWWof a nilpotent element 
D 6 g(V) is completely determined by its conjugacy class in End(V), hence by its associated 
partition À = (Ai, A2,... , As), 

Ai > A2 > . . . > Xs > 0, |A| := 
s 

1=1 
At- = dim V, 

given by the sizes of the blocks of the Jordan normal form of D in EndC^) (cf.[KP2, 2.1]. If we 
denote by A = (Ai, A2,.. . , A5) the dual partition (i.e. A,- := #{j \ Xj > i}) we have for all j 

dimkerl}-7 = 
j 

x< 

<x 
bc< 

2.3. The partition A associated to a nilpotent D G g(^) satisfies the following condition (cf. 
[KP2, 2.2]): 

Y£) If V is orthogonal (V is symplectic) every row of even length (of odd length) occurs an 
even number of times. 

Such partitions will be called e-partitions. We denote by C€i\ the associated nilpotent conjugacy 
class in g(V), where V is a quadratic space of type e of dimension |A|. 
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2.4. It is convenient to represent the partitions geometrically as Young-diagrams with rows 
consisting of Ai, A2,.. . , Ae boxes respectively. Then the dual partition A is defined by setting Xj 
equal to the length of the jth column of the diagram of A. 

Also the inclusion behavior C5j<7 С Се,\ has a purely combinatorial description: A necessary 
and sufficient condition is that the diagram a is obtained from A by moving down a number of 
boxes (cf. [KP2, 2.5]). In this case we write cr < A and call cr an e-degeneration of A. 

3. Special Conjugacy Classes 

3.1. Let C = CC,A be a nilpotent conjugacy class. It is not difficult to determine in terms of 
the partition A whether the class C is special in the sense of Lusztig [Lul] (cf. Introduction). We 
use the following definition which is easily seen to be equivalent to the one given by Spaltenstein 
[Sp2] (see also [Ke, §6]). 

Definition. Let A be an £-partition. Define the sequence (.Si, s2, s3, • • •) by 

Si = 
Ai + A2 + . . . + A,-, 
l + Aa + Aa + .- . + A,-!, 

if |A| is even; 
if |A| is odd. 

Then A is called special if the numbers s2, s4, s6,... are all even. 

3.2. Remark. The following two assertions are easily deduced from the definitions. 

(a) Let cr be an orthogonal partition with \a\ even and let a1 be the symplectic partition 
obtained from a by removing the first column. Then \a'\ is even, and a' is special if and 
only if cr is special. 

(b) Let cr be a orthogonal partition with \cr\ odd and assume that the first row G\ is odd. 
Denote by cr° the orthogonal partition obtained from a by removing the first row. Then 
|cr°| is even and cr° is special if and only if a is special. 

3.3. Lemma. Let a be a symplectic partition. Then cr is special if and only if d is symplectic 
and special. 

PROOF: For a symplectic partition cr it is clear that a is special, i.e. that all sums d\ + a2 + 
. . . + 2̂t are even, since since every odd row has to occur an even number of times. To prove that 
for a special partition cr the dual a is symplectic, it suffices to show that either a1 = a2 or that 
di and <72 both are even. In fact this implies that the partition cr" obtained from a by removing 
the first two columns, is again special (and symplectic), and by induction we may assume that 
its dual a" is symplectic. Since a is obtained from a" by adding two rows of either the same 
length or both of even length the partition a is symplectic too. It remains to show that for 
di =fi cr2 both di and a2 are even. Now / := d\ > a2 and si = \cr\ is even. Hence 3/_i = |cr| — 1 is 
odd and therefore / has to be even. Since cr is symplectic d\ — a2 = #rows of length one is even 
and the claim follows. • 

3.4. Lemma. Let a be an orthogonal partition with \<r\ odd. Then a is special if and only 
if Э is orthogonal and special. 
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PROOF: Clearly d\ is odd. Now add a new row of odd length > <7i and remove the first column, 
which is now even, to obtain a symplectic partition v. It follows from (a) and (b) that v is special 
in case cr is special, and then V is special and symplectic by (c). Now a is obtained from V by 
adding first an even column and then an odd row, hence d is special and orthogonal. • 

4. Small Degenerations 

4.1. A degeneration cr < A is called minimal if cr < fi < A implies fi = cr or fi = A. In 
[KP2] we have established an equivalence relation between degenerations. Under this relation 
the minimal degenerations fall into 8 classes a, b, c,..., h which are presented in [KP2, 3.4 table 
1]. In the following we will use degenerations of type a and g which are equivalent to the pairs 
(l2n) < (2, l2n"2) of symplectic partitions. 

In addition we have introduced in [KP2, 13.6] the concept of a degeneration a < A being 
decomposed into independent degeneration. This means that we can decompose A and a into 
blocks consisting of consecutive rows 

cw xw 

A<2> ww 
A = a = 

AM ^$ù 

such that all A^,x<<are e-partitions, that A^ has the same number of rows ascwssexcept 
perhaps the last \(s\ and thatw<,:;nnis a degeneration of A^. 

Definition. An e-degeneration cr < A is called small if cr is obtained from A by independent 
minimal degenerations of type a or g. 

Similarly we say that a degeneration C C C of nilpotent conjugacy classes in g(T^) is small if 
the degeneration of the corresponding e-partitions is small. 

4.2. Proposition (Spaltenstein). Given an e-partition cr there is a uniquely determined 
minimal special e-partition A such that a < A. In addition the e-degeneration cr < A is small. 

PROOF: (1) We first consider the case where cr is symplectic. Assume that s2i is even for 
i = 1,... , r — 1 and that s2r is odd. (See 3.1 for the definition of st-.) Then cr2r-\ is even and 
a2r is odd, and there is an r' > r such that a2r = (T2r+i = ... = cr2r>-\ > cr2r>. Now define 

4 = 
xvv< 
02r'-l — 1> 
< 

for i = 2r; 
for i = 2r' - 1; 
in all other cases. 

It is easy to see that cr' is again symplectic and that a' < a is a minimal degeneration of type a 
(if r' — r +1) or g (if r' > r +1) (see [KP2, 3.4 table I]). In particular it is a small degeneration. 
Furthermore the sequence (s[, s'2, S3,...) for a' (i.e. s'{ := cr[ + cr2 + . . . + crt-) has the property 
that 53,- is even for i = 1,2,..., r' — 1. To finish the proof in the symplectic case it suffices by 
induction to show that for any special symplectic partition A > cr we also have A > a'. Let 

U := A! + A2 + . . . + Ai. By assumption At- > cr,- for all i and \2j is even for all j . By definition 
we have 

www Si, 
Si + 1, 

for t < 2r - 1 and i > 2r' - 1; 

for 2r <i< 2r' - 1. 
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Hence we have to show that 

(*) tj > Sj for 2r < j < 2r' - 1. 

B y assumption s2r, s2r+2, • • • , s2r/_2 axe all o d d and so (* ) is satisfied for the even j ' s . Now 
assume that t2k+i = $2k+i for some k with r < k < r' — 1. Then \2k+i — t2k+i —hk < $2k+i — 52fc> 
hence A2jt+2 < A2jb+i < <r2k+i = o~2k+2, and so t2k+2 = t2k+i + A2fc+2 < S2*+i +02fc+2 = s2£+2 which 
is a contradiction. 

(2) Now let a be orthogonal and |<r| even and denote by cr° the symplectic partition obtained 
from a by adding a column of length B\. We have seen in (1) that there is a unique minimal 
special symplectic partition A0 > <J° and that the degeneration a0 < A0 is small. Since the 
first two columns of o~° have the same length it follows that A°i = a°i = a\. Removing the 
first column we obtain a special orthogonal partition A (Remark (a)) such that a is a small 
degeneration of A, and clearly A is also minimal under these conditions. 

(3) Finally assume that a is orthogonal with |<r| odd. This time we add a first row of odd 
length > G\ + 2 to obtain an orthogonal partition a0 with |cr°| even, and proceed like in (2), 
using Remark (b). • 

4.3. Proposition. The map a h-> a induces a duality on the set P2̂ mp of special symplectic 
partitions of 2n and on the set PJn+i of special orthogonal partitions of 2n -f 1. In addition 
there is a bijection 

•p orth sr2n+l w Psymp 2n 

respecting the partial ordering and the duality. 

PROOF: The first part is a reformulation of Lemma 3.3 and 3.4. Furthermore we define a 
map P2^x —• P2nmp in the following way: Remove the last box from the special orthogonal 
partition cr to get a partition a' of 2n. Now there is a uniquely determined maximal symplectic 
partition A < & and one shows that this A is special. We leave the details to the reader. • 

5. Geometry of Small Degenerations 

5.1. Let us start with a quadratic space V of type e and a nilpotent element D 6 g(V) with 
conjugacy class CD = CC,A- The image U := D(V) is in a natural way a quadratic space of type 
—e and D' := D\u is a nilpotent element of g(U) with conjugacy class CD> = C-E,\>, where A' 
is obtained from A by removing the first column [KP2, 4.1]. Furthermore we get the following 
diagram: 

Hom(V, U) 7T g(E0 
•P< 

w< 

The two maps are defined by ir(X) := XX* and p(X) := X*X, where X* : U -* V is the dual 
map of X. (We identify U* with U and V* with V using the non-degenerate form ( , ).) 7r and 
p are the quotient maps under G(V) and G(U) respectively [KP2, 1.2]. 

We embed Hom(V,[7) in Hom(V,^) x Eom(U,V) b y l n (X,X*). The G(V) x G(U)-
orbits in Hom(V, U) are completely determined by the corresponding GL(F) x GL(J7)-orbits in 
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Hom(y, U) x Hom(*7, V) which are classified by their a6-diagrams (cf. [KP2, §6] and [KP1, §4]). 
Given the afr-diaeram of X. e.g. 

bababab 
babab 
babab 
bob 
ba 
ab 

then the Young-diagrams of n(X) and p{X) are obtained from it by removing all a's (resp. all 
b's), e.g. 

bbbb aaa 
bbb aa 
bbb and aa 
m a 
b a 
b a 

representing the partitions (4,3,3,2,1,1) and (3,2,2,1,1,1). This fact allows to discuss in detail 
the decomposition into orbits of 7r-1(C) for a given conjugacy class C; it will be used in the 
proof of Lemma 5.3 below. 

Now put JVE|A : = 7r_1((7_c,A0-

5.2. Lemma. Let Cej(T C Cc>\ with d\ = \\. Then 

(a) Oa := p 1(Ce,ff) is an orbit under G(U) x G(V) contained in NCt\. 

(b) *(Oa) = C-s-
(c) G(U) acts freely on Oa. 
(d) 7T is smooth on Oa. 

PROOF: (a) and (b) follow from [KP2, Lemma 4.3]. Since d\ = X\ the elements of Ce,a have the 
same rank as those of CC>A, namely dim 17, hence /9~1(CCT<R) C {X G Hom(V, 17") | X surjective}. 
Now (c) and (d) follow from [KP2, Proposition 11.1]. • 

5.3. Lemma. Assume V symplectic, hence U orthogonal, and let C-if(T C C_I,A with Ai = 
d1 — 1 and A2 = (J2 + 1. Then 

(a) 0ff := p 1(C_i <7) is an orbit under G(U) x G(V) contained in iV_i A-
(b) 7r(0a) = C\>(T», where a" is obtained from a by removing the first row and then adding one 

box. 
'c) The connected component G(U)° = SO(U) acts freely on 0a, and the stabilizer of X £ 0a 

is Zo. 
(d) 7T is smooth on 0a. 

PROOF: Since dimU = dimV — AA there is a unique a6-diagram with dim 17 a's lying on top 
of A, i.e. which by removing the a's gives A. (It is obtained by inserting between all consecutive 
b's of A an a.) Hence OA : = P~1(C_I,A) is the G(U) x G(V)-orbit with this a6-diagram. By 
assumption the last parts of A and a have the form 

; . . . , 2 , i , . . . , i ) 
2s-l 

and (...,1,1,....1,1), 
2s 
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where 2s — d\ — d2. In particular rkjD = dimU — 1 for D G C-i,<r- As a consequence the 
a6-diagram of 0\ has the following last part: 

last 25 — 1 rows 

bab 
b 
h 

b 

But then there is only one possibility for an a&-diagram on top of C-iy. The first a2 rows are 
completely determined by a and A and are the same as for 0\, and the last part must have the 
following form (see [KP2, 6.3 table III]): 

last 25 + 1 rows 

a 
b 
b 
b 

b 

Hence /9~1(CC)CT) is an orbit and 7r(/9"1(C£)<T)) = C_e><7", where a" is obtained from a by 
removing the first row and then adding one box. This gives (a) and (b). 

Now (c) follows from [KP2, Proposition 11.5] since 

P~\C£y<T) C L" := {X e Hom(F, U) \ rkp(X) > dim!7 - 1} \ L' 

where 
V := {X G Eom(V, U) \ X surjective}, 

and (d) follows from [KP2, Proposition 11.4], since 

L° := {X I codimX(T0 < 1} D L" 

because xkX*X < rkX. m 

5.4. We now recall the fundamental construction of [KP2] associated to a nilpotent element 
D G g(^) with conjugacy class Ce>\ [KP2, §5]. It is obtained by iterating the construction 
above. The spaces V{ := D%(V) are quadratic of type (—1)*£ and Di := D\v G g(K) is nilpotent 
with Young-diagram A,- obtained from A by removing the first i rows. By forming an iterated 
fiber product we get the following diagram: 

Z 4> ) cx cDt = o 

ND 7T ww 
9 

CD 
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Bv construction all the squares in this diagram are fibre products. As a subdiagram we obtain 

(**> 

Z <t> ) ww 
< x< 

ND 7T ww 
x w 

cD 

where the composition 0 := poO' : Z -+ CD ) is the quotient map under the group 

G:= G(V1)xG(V2)x...xG(Vt). 

5.5. Proposition. Let C' C Co oe a small degeneration. Then Z is smooth in Z' := 0_1(C") 
and the connected component G° of the group G acts freely on Z'. Furthermore the stabilizer 
in G of any point of Z' is isomorphic to Z^, where d is the number of minimal degenerations 
needed to obtain the e-diagram of C' from that ofCjj. 

PROOF: Let C' = CE%A and CD = G£t\. Since a < A is a small degeneration we have either 
ax = Ai or V is symplectic (and V\ orthogonal) and Ax = d\ — 1 > A2 = S2 + 1 (see Definition). 
It follows from Lemma 5.2 and 5.3 that TT is smooth on Nf := p~1(C/) and that G(Vi)0 acts 
freely on N'. The fibre product diagram (**) implies that <f> is smooth on Z' and that G(Vi)° 
acts freely on Z'. Furthermore 7r(p_1(C")) is a conjugacy class C[ C CDX with £-diagram cr' 
obtained from a by cancelling the first row (and adding one box in case Ai = <Ti — 1). It is clear 
from this that C[ C CDX is again a small degeneration. From the following diagram 

Z' c z w Zx D Z[ 
10' c 

M C ND 7T GDÌ 3 C[ 

< 
C C CD 

we see that the outer square 
Z' 4> 

Z[ 

M 7T Ci 
is cartesian too. hence the claim follows bv induction. • 

6. A Special Decomposition 
6.1. Definition. For a special e-partition A we define 

Sx := U^cx 
w 

where the union is taken over all a such that A is the minimal special e-partition > cr. 

It follows from Proposition 2.1 that 5A is a locally closed sub variety of g(F), and that 

Sx = U ctA.. 
A special 
A'<A 
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6.2. Theorem. Let X be a special e-degeneration and let d be the number of different min­
imal degenerations of X of type a or g. Then S\ consists of 2d conjugacy classes, and there is a 
smooth variety Y\ with an action of the group Z2 x • • • x Z2, d copies, and an isomorphism 

Sx * Yx/Z2 x . - - x Z2 

which identifies the stratification of S\ by conjugacy classes with the stratification by isotropy 
groups. 

PROOF: It follows from Proposition 4.2 that every conjugacy class C' C S\ is a small de­
generation of C\. Hence 6~1{S\) is a smooth open subvariety of Z with a free action of 
G° by Proposition 5.5. As a consequence Y\ := Z\/G° is smooth too and S\ ~ Z\/F with 
F = G/G° ~ Z2 x • • • x Z2, d copies. The rest is clear. • 

6.3. Corollary. The variety S\ is a rational homology manifold. 
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