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1 Introduction 

In [14], we introduced the notion of an elliptic pair (M,F) on a complex manifold 
X. Recall that this is the data of a (let us say, right) coherent X>x-module M and 
an IR-constructible sheaf F (more precisely, objects of derived categories), these data 
satisfying: 

char(AI) H SS(F) c T£X, (1.1) 
where char(X) is the characteristic variety of M, SS(F) is the micro-support of F, 
(defined in [7]), and Tj^X is the zero-section of the cotangent bundle to X. More 
generally, if / : X —> Y is a morphism of complex manifolds, we defined the notion of 
an /-elliptic pair, replacing in (1.1) char(jM) by char/(A<), the relative characteristic 
variety. 

In [14], we give four basic results on elliptic pairs: we prove a finiteness theorem 
(coherence of the direct images of F ® M, assuming (M, F) is an /-elliptic pair with 
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proper support), a duality theorem (in the above situation, duality commutes with 
direct images), a Kunneth formula and we prove that microlocalization commutes with 
direct images. 

In this second paper on elliptic pairs, expanding results announced in [12, 13], we 
will attach a cohomology class to (M, F) and prove an index formula. More precisely, 
let A0 — char(A^), Ai = SS{F), let dx — dim^X and denote by ux the dualizing 
complex on X (hence UJX — (Ex[2dx]5 since X is oriented). Assuming (M F) is elliptic, 
we construct a cohomology class: 

Heu(M,F) e H%*Al(T*X; <ST.X) (~ <+Al(T*X;ir~V)) 

that we call the "microfocal Euler class" of (M,F). This class is constructed using a 
diagonal procedure, like in the proof of the Lefschetz formula for constructible sheaves 
by Kashiwara [6] (see also [7, Chapter IX]), but working here in the framework of 
P-modules. Set for short: 

fieu(M) = iie\i(M,<Ex), 
/xeu(F) = /xeu(fix, F). 

Then the two main results of this paper may be stated as follows. 

1) One has the formula: 

fie\i(M,F) = fieu(M) *M /zeu(F), (1.2) 

where the operation *M: 

< ( r X ; 7 r - W ) x HKT'X;*-1^) —* <+Al ( rX;7 r -V) 

is defined by integration along the fibers of the map: 

s : T*X xx T*X — T*X, s(x;6,6) = (x;6 + 6) 

(this map is proper, thanks to the ellipticity hypothesis). 

2) Assume (M,F) is /-elliptic with proper support. One knows by [14] that / , (F0 
M) is X>y-coherent, and we prove the formula: 

/ieu(/,(F0^)) = f^eu(M,F), (1.3) 

where /M is the morphism: 

< + A l ( f X ; i - W ) — ^(/,-1(Ao+Al)(rr;7r-V) 

deduced from the integration morphism Rf\ux —> vy, (see [7, Chapter IX, §3]). 
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These two theorems will be proved along the same lines as the corresponding results 
for constructible sheaves (see [7]). We will use various commutative diagrams in derived 
categories to express the compatibility of the functors involved, and as usual in these 
matters we do not distinguish between commutative and anti-commutative diagrams. 
Hence the results should be understood up to sign. 

Using these two formulas, we find in particular that if (M, F) is an elliptic pair with 
compact support, then: 

X(Rr(X; F®M®^X OX)) = T*x »eu(M) U /xeu(F) (1.4) 

where x(') denotes the Euler-Poincare index and U the cup product. 
If M is a real analytic compact manifold and X is a complexification of M, then 

(A4, (EM) is an elliptic pair if and only if M is elliptic on M in the usual sense. Hence 
formula (1.4) is similar to the Atiyah-Singer formula [1]. 

By formula (1.2), we see that to compute iie\i(M,F), it is enough to compute 
separately ^eu(.M) and fien(F). It is easily shown that fien(F) is nothing but the 
"characteristic cycle" of F constructed by Kashiwara (loc. cit.). This is a Lagrangian 
cycle whose calculation is made at generic points and thus offers no difficulties (see [7, 
Chapter IX, §3]). Hence the remaining problem is to understand fj,e\i(M). At this step 
our results are essentially conjectural. Assume M is endowed with a good filtration and 
denote by crA(A4) the image of gr(M) in the Grothendieck group of coherent OT+X-
modules supported by A, the characteristic variety of M. In the last section we make 
the two following conjectures (1.5) and (1.6) below: 

[chA(aA(M)) U 7T*tdx(TX)}j = 0 for j > 2dx (1.5) 

where chA(-) and tdx(TX) denote as usual the local Chern character with support in 
A and the Todd class of X, respectively, and is the homogeneous part of degree j 
in ekH£(T*Xi<Er*x), 

fieu(M) = [chA(aA{M)) U n*tdx{TX)]2dx. (1.6) 

As an evidence for these conjectures, we prove that both sides of (1.6) are compatible 
to proper direct images, external products and non-characteristic inverse images, and 
moreover they coincide in the two extreme cases where M is holonomic or is induced 
by a coherent Ox-module. 

The Atiyah-Singer theorem, in its K-theoretical version, has recently been general­
ized to the relative case by Boutet de Monvel and Malgrange [3]. Our results provide a 
relative index formula in the cohomological setting, and the proof of the above conjec­
tures would give a precise link with the Atiyah-Singer theorem. We hope to come back 
to these conjectures in a next future. 

2 Review on sheaves 

In this section, we fix some notations and recall a few results of [7]. 
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Let X be a real analytic manifold. One denotes by r : TX —• X and n : T*X —• 
X the tangent and cotangent bundles to X, respectively. If Y is a submanifold of X, one 
denotes by TyX and TYX the normal and conormal bundles to F in X, respectively. 
In particular, T£Xdenotes the zero-section of T*Xy that ones identifies to X. If A is a 
subset of T*X, one denotes by Aa its image by the antipodal map. 

One denotes by 8 : X <—• X x X the diagonal embedding, and we identify X to 
its image A and T*X to T±(X x X) by the first projection defined on X x X and 
T\X x X) ~ T*X x T*X, respectively. 

If X and V are two manifolds, one denotes by q\ and q2 the first and second projec­
tion defined on X x Y. 

One denotes by T>(X) the derived category of the category of sheaves of (C-vector 
spaces, and by Db(X) the full triangulated subcategory consisting of objects with 
bounded cohomology. If Z is a subset of X, one denotes by <Ez the sheaf on X which 
is constant with stalk (C on Z and zero on X \ Z. 

One denotes by orx the orientation sheaf on X and by UJX the dualizing complex 
on X. Hence: 

UJX — orx [dim X] 
where dimX is the real dimension of X. More generally, if / is a morphism from X to 
Y, one denotes by LJX/Y the relative dualizing complex. Hence: 

Wx/Y - Ux <S> f Wy • 

One denotes by / 1,Rf*,Rf\,f\®,RHom the usual classical operations on sheaves 
and we denote by [x] the external product. We shall use the two duality functors: 

D'XF = KHom(F, <EX), (2.1) 
DXF = RHom(F, шх). (2.2) 

If there is no risk of confusion, we write D' or D instead of D'x or DX-
If F is an object of Db(X), one denotes by SS(F) its micro-support, defined in [7], a 

closed conic involutive subset of T*X. Moreover, we shall use the functor fiM of Sato's 
microlocalization along M. Recall that for F in T>h(X) 

snppfiM(F)cT*MXnSS(F). 

Now, recall that an object F of Db(X) is called weakly Ht-constructible (w-IR-construc-
tible, for short) if there is a subanalytic stratification X = \JaXa such that for all a, all 
j , the sheaves Hj(F)\xa are locally constant. If moreover, for each x G l , each j e Z, 
the stalk Hj(F)x is finite dimensional, one says that F is IR-constructible. One denotes 
by DW-JR-C(X) (resp. D^_C(X)) the full triangulated subcategory of T>b(X) consisting 
of w-IR-constructible (resp. IR-constructible) objects. It follows from the involutivity 
of the micro-support that F is w-IR-constructible if and only if SS(F) is a closed conic 
subanalytic Lagrangian subset of T*X. 
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Let / : X —• Y be a morphism of real analytic manifolds. To / one associates the 
maps: 

TX —>XxYTY —• TY, (2.3) 
T*X <— X xy T*Y —• T*Y. (2.4) 

One says that / is non-characteristic with respect to a closed conic subset A of T*Y if: 

/-X(A) n %f-\TxX) CXxY TYY. (2.5) 

Let F 6 T>b(X), G e Db(y). Recall that: 

(i) if / is non-characteristic with respect to SS(G), then: 

SSif-'G) c tf'f^SSiG), (2.6) 

(ii)) if / is proper on supp(F), then: 

SS(Rf.F) c tff-1 (SS(F)), (2.7) 

(iii) one has: 
SS(FmG) C SS(F) x SS{G). (2.8) 

Finally, let us recall some microlocal constructions of [7, Chapter IX] that we shall use. 
Let Ax and Ay be two closed conic subsets of T*X and T*Y, respectively, and 

consider the diagram: 

T*X< *f X xY T*Y f* )T*Y 

7Tx 7Г 7Ty 
X X / Y 

Set for short: 

/.(Ax) = /// '- '(Ax), (2.9) 
/"(Ay) = 77._1(Ay). (2.10) 

a) Assume / is proper on T£X fl Ax, (or equivalently, fr is proper on Ax)- Using the 
morphism: 

Rf^TT^ux —• KylRf\Ljx —> fly W, (2-H) 
we get the morphisms, for all j G 1L\ 

f„ : H{x(T*X;7T-VY) — Hff,.1(Ax)(X xY T*Y;TTW) 
— Hlfx {Ax)(rY;n-^). (2.12) 
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b) Assume / is non-characteristic for Ay (i.e., */' is proper on fn ̂ Ay)). Using the 
natural morphism (see [7]): 

i?7V"7~ V — TT^W, (2.13) 

we get for all j G2, the morphisms: 

/" : f f i y ( rr ;* -V) — ff;_1(Ay)(XxrT*y;ir-1/-W) 
—» ^^(T-XjTr-'wx). (2.14) 

Note that the morphism (2.13) may also be obtained as follows. On a manifold Z, there 
is a natural isomorphism: TT^1UZ — ^T*Z/Z- Hence we have the chain of morphisms: 

ñ 7 > - 7 - V F-1 WY ̂  I?f'\f«Vl*Y/Y 
~ tff'lUxxYT'Y/X 

—• Шт*Х/Х 
- TT^ÜÜX. 

c) Using the natural isomorphism: 

W X X WY = WX x Y ! 

we get the morphism: 

H : H{X(T*X;«-1CJX) x HKAY (T^Y;^1^WY) 

— H{+*AJT*X x Y; Tr-Wxy). (2.15) 

d) Let Ao and Ai be two closed conic subsets of T*X satisfying: 

Ago Ax cT£X. (2.16) 

Setting: 
*M = £M o [x] 

we get a morphism: 

*„ : H{0{T*X;*-^X) x fl^T'X; T-1 Wy — ^Hj+kAl(T*X;7r"W). (2.17) 

Note that the morphism *M (which is not the cup-product) may also be defined as the 
composite of: 

H{0(T*X;n-^x) x ^ ( T ^ T T - V ) (2.18) 

0*x 
C x A , (T*X xx T*X; TT" V ® Wjc) 

4Í 
Hi+k A+a1 (T* Xi tt-1 Wx) 

where 6; is associated to the embedding T*X x x T*X —• T*X x T*X and % to the 
map 

T*X y.xT*X—*TrX, (x; E1, E2)— (xi E1 + E2). 

66 



ELLIPTIC PAIRS II. EULER CLASS AND RELATIVE INDEX THEOREM 

3 Euler class of elliptic pairs 

From now on, all manifolds and morphisms of manifolds are complex analytic. If X 
is a complex manifold, we shall often identify X and X51, the real analytic underlying 
manifold. We shall also identify (T*X)R with T*X^, as in [7]. We denote by dx the 
complex dimension of X. Hence, 

dimXR = 2(fr. 

Since X is oriented, we identify the orientation sheaf orx with the constant sheaf (Ex, 
and the dualizing complex UJX with (Cx[2dx]-

We denote by Ox the sheaf of holomorphic functions on X, by ft,x the sheaf of holo­
morphic dx-forms and by Vx the sheaf of rings of (finite order) holomorphic differential 
operators on X. If Y is another complex manifold and if T is a sheaf of (9xxy-modules, 
one sets: 

F '(0,dy) = F a 1 OY q2 lQY, 
and one defines similarly J*dxfl) or T{dx4Y\ 

We shall follow the notations of [7] for D-modules. In particular, Mod(Vx) denotes 
the category of left £>x-rnodules, *D(Vx) its derived category, and D^oh(Vx) the full 
triangulated subcategory of T>(Vx) consisting of complexes with bounded and coherent 
cohomology. Replacing Vx by V^, we have similar notations for right £>x-modules. In 
fact, if there is no risk of confusion, we shall often make no differences between right 
and left ^-modules and write Vx instead of Vx-

In the sequel, we will often need to work with bimodule structures. Let k be a field. 
Recall that if A and B are fc-algebras, giving a left (A,£?)-bimodule structure on an 
abelian group M is equivalent to give M a structure of a left A <g>k E-module. Using 
this point of view it is easy to extend to bimodules the notions and notations defined 
usually for modules. For example, we will denote by Mod(Vx\s ® Vx\s) the category 
of left Px|5-bimodules and by D(Z>x|s 0 VX\s) the corresponding derived category. 

The characteristic variety of an object M of D^oh(Vx) is denoted by char(A^). This 
is a closed conic involutive analytic subset of T*X [10], and we have the formula [7, 
Theorem 11.3.3]: 

char(-M) = SS(M <8>£x Ox). (3.1) 
As usual, one denotes by Bz\x the simple holonomic left Dx-module associated to a 
closed complex submanifold Z of X. We denote by F-1, f1 S the operations of inverse 
image, proper direct image, and external product for P-modules, and we denote by Dx 
the dualizing functor. Recall that if M is a right £>x-module, then 

Dx(M) = RHamVx(M,K;x) 

where 
KX = Ox [dx] OoX DX 
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as a right Vx 0 Vx -module. Notice the isomorphism of Vx 0 Z^F-modules: 

b(Vx ^ B >(04x) 
'A\XxX' (3.2) 

which induces the isomorphism of V°x 0 V°x'-modules: 

6\Kx ^ B (dx,dx) 
A|XxX* 

By this isomorphism, Kx is naturally endowed with a structure of a right 8~lVxxx~ 
module and 

&Xx = S\Qx[dx]-
Let us recall the notion of an elliptic pair introduced in [14]. 

Definition 3.1 An elliptic pair (M,F) on X is the data of M G D|?oh(£>̂ ) and 
F e Dk_c(X) satisfying: 

char(X) n SS(F) c T*XX. 
The same definition holds for left X>x-modules. 
Proposition 3.2 Let (M,F) be an elliptic pair on X. Then there are canonical mor­
phisms: 

(i) 6\KHomVx(F®M,F®M) —> (F® M)Щ(D'F <g> DM)OL DXXX Ox*x, 

(ii) F®MmD'F <g> DM ®¿xxx Oxxx —> 6,шх. 

Proof: (i) Let T>x denote the ring of infinite order holomorphic differential operators. 
Sato's isomorphism: 

DK = O! O (o dx) 'XxX [dx] 
entails the morphism: 

SiDx —• O ,(0,dx) 
XxX '[dx]- (3.3) 

Set for short: 
V = F®M. 

Applying the functor qilV ®qL-i<Dx ' to (3.3), then the functor RHomq-\Vx{q2lV, •), 
and using the isomorphism: 

6,RHomVx(V,P) ~ KHomq¿iVx{q;1V,6l'P), 

we get the morphism: 

6\RHomVx(V ,V) —• RHomq-iVx (fe1 P / q-1 P®,ri.q1 DX c o M -
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Then: 

RHomq-iVx {q^V, q?V ®^Vx 0{^x}[dx}) 
~ RHomiq^F, RHomq-,Vx (q^M, q?V ®^Vx Of^[dx])) 
~ RHom{q^F, VmRxM ®£xEPx Oxxx) 
~ RHomiq^F, VMD_XM <8%XxX 0XxX). 

The micro-support of VMD_XM ®£x 0XxX is contained in T*X x char(A4), hence 
it intersects SS(q2~lF) inside the zero-section of T*(X x X). Using [7, Prop. 5.4.14], 
we get the isomorphisms: 

RHom(q2 1F,VM DXM ®%x%x 0XxX) 
— q^D'F ® [vmDxM ®%xxx 0XxX] 

(F®M)M(D'F® DM) ®%xxx 0XxX. 

(ii) Set for short: 

Lx = (F®M)m (D'F ® AM) OLdX,x 0XxX (3.4) 

Using the £>xxx-hnear morphism: 

F®M№D'F®DM —>6\KX> 

we get the sequence of morphisms: 

Lx —• S\ICx ®vXxX °XxX 
* №x[dx] ®£XxX Ox*x 
^ Si [nx[dx] ®£x Vx^xxx ®i-iVxxX 6~lc,xxx 
^ №x[dx\®ixOx 
~ 6\U)X-

Using the morphisms defined in the preceding proposition, we can now construct 
the microlocal Euler class of the elliptic pair (M>F). Set: 

A = char(JW) + SS(F) 

Then SS(LX) C A x A° where Lx is defined in (3.4), and 

supp(/xA£x) C A. 
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By paraphrasing Kashiwara's construction of the characteristic cycle of IR-constructible 
sheaves, [6], we obtain the sequence of morphisms: 

KHomv (F®M,F® M) —• 8LLX 
~ R^LLALX 
~ R7r*RTA^ALX 

—• R-K*RTKLLA8\UJX 
~ R7r*RTA7r UJx> 

Applying H°KT(X; •), we find the morphism: 

RomVx(F®M,F®M) #£(T*X; TT"1^). (3.5) 

(Recall that 
#°(T*X;7r-V) ^ H2Adx(T*X;<ET*x)-) 

Definition 3.3 Let (M, F) be an elliptic pair. The image of idF®M by the morphism 
(3.5) is the microlocal Euler class of {M,F) 

l*u(M,F) e *Cr<A<)+5s<F)Cr*X;7r-V) 

Its restriction to the zero-section of T*X is the Euler class of (A4,F) 

eu(M,F) e H^pp{M)nsupp{F)(X]ux) 

If M is a left Vx-module, we define the microlocal Euler class of (M, F) as being that 
of (Qx ®ox -M,F). We also introduce the following notations. For M € D^oh(Vx) and 
F e D ^ J U ) , we set: 

fieu(M) = /xeu(A ,̂(Cx), 
/xeu(F) = /xeu(f2x,F). 

4 The product formula 

Let (M,F) be an elliptic pair on the complex manifold X. Set: 

A0 = char(A<), AX = SS(F). 

Then: 

^eu(M) G flS0(rX;7r-V), 
/xeu(F) G ^ ( r ^ T T - W ) , 

/ieu(M,F) G ^ ^ ( r ^ T r - W ) . 

The operation *M being that defined in §2, the aim of this section is to prove: 
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Theorem 4.1 Let (M, F) be an elliptic pair. Then: 

fieu(M, F) = fieu(M) *M fie\i(F) 

The proof decomposes into several steps. In Proposition 4.2 below, and its proof, X 
will denote a real analytic manifold. In this statement and its proof as well as in the 
proof of Theorem 5.1, we shall not write the symbol "R" of derived functors, for short; 
e.g. Hom('} •) means RHom(', •), 7r* means ifor*, etc. 

We denote by X{ (i = 1, 2, 3, 4) a copy of X and we write 

(X x X) x (X x X) = Xx x X2 x X3 x XA. 

For J C {1,2,3,4} and any set Z, we introduce the notation 

Sij: J] Xe x Z^ l[X£xZ 
ieJ\{j} teJ 

for the diagonal embedding sending (xi)tej\{jy to (xi)eej with Xj — Xi. Similarly, we 
introduce the notation 

Sijk: II Xi x Z^ HXiXZ 
ieJ\{j,k} eeJ 

for the diagonal embedding sending (x^^j^j^} to (xt)eej with Xj — Xk = X{. If there 
is no risk of confusion, we simply write 5 for any of these morphisms. 

On a product, we denote by </* the projection to Xi. 
We shall make a frequent use of the morphism of functors 

6-/ —+61J&UX. (4.1) 

Now, we assume to be given: 

F e dr-CPO> G e Db(X), H € Bb(X x X). 

We set: 
K = G\x\DF 

A0 = SS(K), AX = SS{H) 
Ai = Tl(X xX)nAu t = 0,1 

We identify T^(X x X) to T*X by the first projection. We shall assume: 
A o n A J c I J ^ X x X ) . (4.2) 
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Proposition 4.2 The diagrams below commute. 

Hom(F, G)®8XH • Hom(F, G ® 8XH) 

(1) 

6-K®8-H- >Hom{F,8\qîlG®H)) 

(2) 8\K®H®wx-1) 

7r.rAo/XA# 0 7T.rAl/XA# * 7r.rAo+Al/iA(X 0 H 0 a;|_1) 

First, we state three lemmas whose proofs are easy verifications left to the reader. 

Lemma 4.3 The diagram: 

Hom{F, G) ® 8'H • Hom(F, G ® 8'H) 

Hom{F,8\q?G®H)) 

is isomorphic to: 

6£6\MK m H) • 8[26^8l3i{K m H) 

01 02 013-1 (K X H) 

Note that the morphisms 
1̂31̂ 12 Y ^12^13 

or 
*13l534 > 614*131 

are defined as follows. Consider a cartesian square: 

Zi z 
yi 

M2 A2 

1̂2 
Ml 

2̂ 

Then we have the natural morphism: 

P2 1 0 Ai —• fi[ o A2 1 

defined by: 
ßvß2 1 ^ i — ^ 2 — * 1̂ 2l-— 2-1. 
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Lemma 4.4 The diagram below commutes: 

6\26[46^ (К Ш Н)O WX 0-1 a 6\26[46^ (К Ш Н) 

7 P 
8[234(K№H)®UJx 

Moreover, assuming (4.2), a, ¡3 and 7 are isomorphisms. 

Note that a is defined through: 

024 -1 O WX0-1 — 024 

and 
¿Í2¿24 -¿Í2¿14> 

and 7 is defined through: 

¿13 ¿24 ® Cjf • ¿'13*24 ® X̂-

Lemma 4.5 The diagram below commutes: 

6\26[46^ (К Ш Н) 6\26[46^ (К Ш Н) 

0\1 2344 (К X Н) O WX 

Proof of Proposition 4.2: Diagram (1) obviously commutes. To prove that (2) com­
mutes, we decompose it in the diagram below, after applying Lemma 4.3: 

8-K ® 6'H 6\26[46^ (К Ш Н) 

(6) 

(3) 8\234(K\x]H)®ux (5) 6\2(K ® H <g> wf-1) 

(4) 

TT.rAo+AiMA^®^®^-1 AH TT.rAo+AiMA^®^®^-1) 

In this diagram, the sub-diagram (6) commutes by Lemma 4.5, the sub-diagram (5) 
commutes by Lemma 4.4, the sub-diagram (4) commutes by [7, Prop. 4.3.5] and the 
sub-diagram (3) obviously commutes. Hence the full diagram commutes. • 
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Proof of Theorem 4.1: We shall apply Proposition 4.2 with G = F, H = M [xj 
HM 0 ^ x Oxxx (hence K — F\x\DF). Note that we have trace morphisms: 

К —• 6\ÜÜXÍ 
H • SiLüx-

Consider the diagrams: 

Hom(F,F)®'HomVx{M,M) •HomVx(F®M,F®M) 

(7) 

Hom(F,F)®6lH- Hom(F, F ® 8-H) 

8-K 0 8-H (8) (5!(iT0^0o;|-1) 

7r*rAo/iA^ 0 7r*rAl/XA# " • 7r.rAo+AiMA(̂  0 # 0 ^f"1) 

(9) 

• 7r.rAo+AiMA(^ 0 # 0 ^f"1) DX > 7r.rAo+AiMA(*!̂ X 0 à\UX 0 - 1 ) 

(10) 

7T.rAo7r lUX 0 7T.rAl7r 1Wx 7̂Г*ГЛо+Л17Г lLüx 

Diagrams (7) and (10) obviously commute, diagram (8) commutes by Proposition 4.2 
and diagram (9) commutes since it is obtained by applying the morphism of functors: 

7T.rAo/iA(-) 0 7T+rAl/XA(-) • 7T*rAo+Al)UA(- ® ' ® 

obtained from [7, Prop. 4.3.5] to K —• 8\u)x and H —• 8\UJX- To conclude the proof, it 
remains to notice that the sequence of morphisms in the second column of the preceding 
diagrams (7) and (8) is the same as the morphism 

6{Hom(F 0 M,F 0 M) —+ K 0 H 0 UJ%~1 = Lx 

obtained in 3.2. Then, applying H°Rr(X] •) to the preceding diagram, we find the 
commutative diagram: 

Hom(F, F) 0 HomPx(M,M) • •HomPx(F0M,F0M) 

H°AO(T*X; IT-'LJX) 0 H°AI(T*X;IT-1LJX) • •̂ A0+Ai(̂ *̂ ;7r W ) 
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5 The direct image formula 

Let / : X —• Y be a morphism of complex manifolds, and let (M, F) be an elliptic pair 
on X. Under suitable conditions that we shall recall now, it is proved in [14] that the 
direct image /,(F <g> M) belongs to Dcoh(£V). The aim of this section is to prove that 
in this situation, the microlocal Euler class of this image is the image by the morphism 
(2.12) of that of (M,F). 

Let us first recall the definition of char/(A4), the relative characteristic variety of 
M, (see [11, 14]). If / is smooth, one denotes by VX\y the sub-ring, of Vx generated 
by the vertical vector fields, one locally chooses Mo, a coherent Z>x|Y-submodule of M 
which generates it, and one sets: 

char/(A<) = char(X>x 0 ^ M0). 

One checks easily that this does not depend on the choice of Mo. In the general case 
(/ not necessarily smooth), one decomposes / by its graph as: 

f: X—> X x Y—>Y 
J i Q 

and one sets: 
diaif(M) = ti'i~lcharq(ilM). 

Let M e D*oh(Vx) and let F e D^_C(X). One says that {M,F) is /-elliptic if 
char/(.M) H SS(F) CT*XX. 

Since char/(.M) contains char(A^), an /-elliptic pair is elliptic. Let DgQod(£>x) denote 
the full triangulated subcategory of Y>^oh(Vx) generated by the objects M such that 
for all j € H- and all compact subset K of X, Hj(Ai) may be endowed with a good 
filtration in a neighborhood of K. If (M,F) is /-elliptic and moreover M. belongs to 
DgQod(I>x), one says that (M,F) is a good /-elliptic pair. If moreover / is proper on 
supp M flsupp F, one says that (M, F) has /-proper support. It is proved in [14] that 
if (M,F) is a good /-elliptic pair with /-proper support, then /,(F ® M) belongs to 
DgQod(Py). Let A0 = char(A/l), Ai = SS(F). We have the canonical morphism: 

U •• H°Ao+M(T*X;ir-lux) — ^,Ao+Al)(TT;x-W). 

Theorem 5.1 Assume (M,F) is an f-elliptic pair with f-proper support. Then: 

/ieu(/,(F 0 M)) = ffi/ie\i(M,F) = f^eu(M) *M /ieu(F)). 

Proof: The proof will decompose into several steps. For short, during this proof, we 
will not write the symbol UR" or "L" of right or left derived functors. We introduce 
the notations: 

1 = 1 x 1, f = f x f:X x X—>YxY. 
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We dénote by 6x the diagonal embedding X <—• X x X, and if there is no risk of 
confusion, we write 6 instead of 6x- We also set for short: 

LX = (F ® M) Ej (D'F ® DM) ®1>X OX 

LY = L,(F®M)mD(l(F®M))X®D- °Y 

By the results of [14], we have the isomorphisms: 

l.Lx ^ f,(F® Mm D'F ® DM ®px V X _ Y ) ®D_I OY 

+*- l,(F®M)m£,(D'F®DM)®VfOY 

Consider the diagram: 

f,HomVx(F ®M,F® M) ^Hom^^F ® M)J,(F ® M)) 
I I 
* 4-

f\6Lx • S'f\Lx • S LY 

+ * -f 

I ' I 

^ • A î V ' ^ A x M A x ^ X yK*FAYllAYf\Lx •7r*rA y^A yZ/y 

•̂/TTÎV" TAXIIAx6\UJX—^*^AY^Ayf\S\(jJx (5) I I 

4- 4-

'6) 7r +r A y/x A y5!/!u;x •7r*rAYMAy<WY 
I I 

i X i 
n*fn\f'~l^Ax'IT~lUx yn*TAY'K~lf\LOx • ̂ ^Ay K~lLJy 

It is enough to prove it is commutative. In fact, applying H°KT(Y; •) to it we get the 
commutative diagram: 

Hom~ v (F 0 M, F 0 M) • Hom^(/, (F 0 M)Jt(F 0 M)) 

H°AX (T*X; 7T- W ) • ( T ' y ; TT V ) -

Diaeram (2) commutes since 
0 —» 

is the restriction to the zéro section of: 

h\f VA* — ^ M r / î 
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