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1 Introduction

In [14], we introduced the notion of an elliptic pair (M,F) on a complex manifold
X. Recall that this is the data of a (let us say, right) coherent Dx-module M and
an IR-constructible sheaf F' (more precisely, objects of derived categories), these data
satisfying:

char(M) N SS(F) Cc Tx X, (1.1)

where char(M) is the characteristic variety of M, SS(F) is the micro-support of F,
(defined in [7]), and T%X is the zero-section of the cotangent bundle to X. More
generally, if f : X — Y is a morphism of complex manifolds, we defined the notion of
an f-elliptic pair, replacing in (1.1) char(M) by chars(M), the relative characteristic
variety.

In [14], we give four basic results on elliptic pairs: we prove a finiteness theorem
(coherence of the direct images of F' ® M, assuming (M, F) is an f-elliptic pair with
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proper support), a duality theorem (in the above situation, duality commutes with
direct images), a Kiinneth formula and we prove that microlocalization commutes with
direct images.

In this second paper on elliptic pairs, expanding results announced in [12, 13], we
will attach a cohomology class to (M, F') and prove an index formula. More precisely,
let Ap = char(M), A; = SS(F'), let dx = dimg X and denote by wx the dualizing
complex on X (hence wx ~ Cx[2dx], since X is oriented). Assuming (M, F) is elliptic,
we construct a cohomology class:

peu(M, F) € Ha%, (T*X;Crex) (= HY o, (T X; 77 wx))

that we call the "microlocal Euler class” of (M, F). This class is constructed using a
diagonal procedure, like in the proof of the Lefschetz formula for constructible sheaves
by Kashiwara [6] (see also [7, Chapter IX]), but working here in the framework of
D-modules. Set for short:

[L('!U(M) = p’eu(My(Dx)y
peu(F) = peu(Qx, F).

Then the two main results of this paper may be stated as follows.

1) One has the formula:
peu(M, F) = peu(M) *, peu(F), (1.2)
where the operation *,:
HR(T* X577 wx) x HY (T*X; 77 wx) — HRyqa, (T X377 wx)
is defined by integration along the fibers of the map:
s: T X xxT'X —T'X, s(x;6,&) = (z;& + &)
(this map is proper, thanks to the ellipticity hypothesis).

2) Assume (M, F) is f-elliptic with proper support. One knows by [14] that f (F'®
M) is Dy-coherent, and we prove the formula:

ueu(_}i!(FQZ) M)) = f, peu(M, F), (1.3)
where f, is the morphism:
HR()-H\l(T*X; W—le) — H‘(f),rtflfl(Ao,fAl)(T*Y; 71'_1(4})/)

deduced from the integration morphism Rfiwx — wy, (see [7, Chapter IX, §3]).
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These two theorems will be proved along the same lines as the corresponding results
for constructible sheaves (see [7]). We will use various commutative diagrams in derived
categories to express the compatibility of the functors involved, and as usual in these
matters we do not distinguish between commutative and anti-commutative diagrams.
Hence the results should be understood up to sign.

Using these two formulas, we find in particular that if (M, F') is an elliptic pair with
compact support, then:

X(RD(X; F @ M @%_Ox)) = /T ., Heu(M) U reu(F) (1.4)

where x(-) denotes the Euler-Poincaré index and U the cup product.

If M is a real analytic compact manifold and X is a complexification of M, then
(M, Cp) is an elliptic pair if and only if M is elliptic on M in the usual sense. Hence
formula (1.4) is similar to the Atiyah-Singer formula [1].

By formula (1.2), we see that to compute peu(M, F), it is enough to compute
separately peu(M) and peu(F). It is easily shown that peu(F') is nothing but the
" characteristic cycle” of F' constructed by Kashiwara (loc. cit.). This is a Lagrangian
cycle whose calculation is made at generic points and thus offers no difficulties (see [7,
Chapter IX, §3]). Hence the remaining problem is to understand peu(M). At this step
our results are essentially conjectural. Assume M is endowed with a good filtration and
denote by oa(M) the image of gr(M) in the Grothendieck group of coherent Or. x-
modules supported by A, the characteristic variety of M. In the last section we make
the two following conjectures (1.5) and (1.6) below:

[cha(oa(M))Un*tdx(TX)P =0 for j>2dx (1.5)

where chy(-) and tdx(TX) denote as usual the local Chern character with support in

A and the Todd class of X, respectively, and [-]’ is the homogeneous part of degree j
in GB]CHK(T*X; Crx),

peu(M) = [cha(oa(M)) U n*tdx (T X)), (1.6)

As an evidence for these conjectures, we prove that both sides of (1.6) are compatible
to proper direct images, external products and non-characteristic inverse images, and
moreover they coincide in the two extreme cases where M is holonomic or is induced
by a coherent Ox-module.

The Atiyah-Singer theorem, in its K-theoretical version, has recently been general-
ized to the relative case by Boutet de Monvel and Malgrange [3]. Our results provide a
relative index formula in the cohomological setting, and the proof of the above conjec-
tures would give a precise link with the Atiyah-Singer theorem. We hope to come back
to these conjectures in a next future.

2 Review on sheaves

In this section, we fix some notations and recall a few results of [7].

63



P. SCHAPIRA, J.-P. SCHNEIDERS

Let X be a real analytic manifold. One denotes by 7: TX — X and 7 : T* X —>
X the tangent and cotangent bundles to X, respectively. If Y is a submanifold of X, one
denotes by Ty X and Ty X the normal and conormal bundles to Y in X, respectively.
In particular, Tx X denotes the zero-section of 7* X, that ones identifies to X. If A is a
subset of T* X, one denotes by A® its image by the antipodal map.

One denotes by § : X — X x X the diagonal embedding, and we identify X to
its image A and T*X to TX(X x X) by the first projection defined on X x X and
T*(X x X) ~T*X x T*X, respectively.

If X and Y are two manifolds, one denotes by ¢; and ¢ the first and second projec-
tion defined on X x Y.

One denotes by D(X) the derived category of the category of sheaves of C-vector
spaces, and by DP(X) the full triangulated subcategory consisting of objects with
bounded cohomology. If Z is a subset of X, one denotes by €z the sheaf on X which
is constant with stalk € on Z and zero on X \ Z.

One denotes by orx the orientation sheaf on X and by wx the dualizing complex
on X. Hence:

wx ~ orx|[dim X]

where dim X is the real dimension of X. More generally, if f is a morphism from X to
Y, one denotes by wx/y the relative dualizing complex. Hence:

-1 ®-1
wX/ysz®f wy .

One denotes by f~!, Rf., Rfi, f',®, RHom the usual classical operations on sheaves
and we denote by [X] the external product. We shall use the two duality functors:

D' F = RHom(F, Cx), 2.1)
DxF = RHO‘TTL(F,LUX). (22)

If there is no risk of confusion, we write D' or D instead of DY or Dx.

If F is an object of DP(X), one denotes by SS(F') its micro-support, defined in [7], a
closed conic involutive subset of T*X. Moreover, we shall use the functor uys of Sato’s
microlocalization along M. Recall that for F' in DP(X)

supp upm(F) C Ty X N SS(F).

Now, recall that an object F' of D?(X) is called weakly IR-constructible (w-IR-construc-
tible, for short) if there is a subanalytic stratification X = |, X, such that for all o, all
J, the sheaves H’(F),x, are locally constant. If moreover, for each z € X, each j € Z,
the stalk H’(F), is finite dimensional, one says that F' is R-constructible. One denotes
by DE_g_.(X) (resp. D%_.(X)) the full triangulated subcategory of D*(X) consisting
of w-IR-constructible (resp. IR-constructible) objects. It follows from the involutivity
of the micro-support that F' is w-IR-constructible if and only if SS(F') is a closed conic
subanalytic Lagrangian subset of 7% X.
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Let f: X — Y be a morphism of real analytic manifolds. To f one associates the
maps:

TX —» X xy TY —TY, (2.3)
T*X o X xy TV —=T*Y. (2.4)

One says that f is non-characteristic with respect to a closed conic subset A of T*Y if:
LA NN (T X) € X xy Ty Y. (2.5)
Let F € D*(X), G € D®(Y). Recall that:
(i) if f is non-characteristic with respect to SS(G), then:

SS(f'G) C'f'f71SS(G), (2.6)

(ii)) if f is proper on supp(F), then:
SS(Rf.F) C f' f~H(SS(F)), 2.7)

(iii) one has:
SS(FXIG) C SS(F) x SS(G). (2.8)

Finally, let us recall some microlocal constructions of [7, Chapter IX] that we shall use.
Let Ax and Ay be two closed conic subsets of T*X and T*Y, respectively, and
consider the diagram:

¢
™X f X Xy T*Y fx ™Y

™ 1| ™|

Xe—x—— 1 .y
Set for short:
fuAx) = f 7 (Ax), (2.9)
ffAy) = *f i (Ay). (2.10)

a) Assume f is proper on Tx X N Ax, (or equivalently, fr is proper on Ax). Using the
morphism:
Rfamn 'wx — 17 Rfiwx — 75 wy, (2.11)

we get the morphisms, for all j € Z:

fu:H,{x(T*X;W—le) — H,jf,,l(Ax)(X xy T*Y; 77 wy)
— H}“(Ax)(T*Y;‘irqu). (2.12)
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b) Assume f is non-characteristic for Ay (i.e., *f’ is proper on f-!(Ay)). Using the
natural morphism (see [7]):

R f'\ =t f~lwy — 1wy, (2.13)
we get for all j € Z, the morphisms:
B (TYmley) — Hi, (X xy T'Y ;77! flwy)
— ;,,(Ay)(T*X;’IT"IU.Jx). (2.14)

Note that the morphism (2.13) may also be obtained as follows. On a manifold Z, there
is a natural isomorphism: wglwz ~ wr+z/z. Hence we have the chain of morphisms:

Rfm'flwy =~ RS\ floryy
~  Rf\wxxyTy/x

— Wrex/x

o~ w}lwx.

¢) Using the natural isomorphism:
wx Kwy =~ wxxy,
we get the morphism:

X : H,{X (T*X; 7 wy) x HKY(T*Y;W_lwy)

— H{ oy (T X x Yimwxxy). (2.15)
d) Let Ap and A; be two closed conic subsets of T* X satisfying:
AgNA CTxX. (2.16)
Setting:
x, =0o

we get a morphism:
*,, 0 H,’;D(T*X;ﬂ'_lwx) x Hy (T*X;7 7 wyx) — Hf;tf_Al(T*X;w"lwx). (2.17)

Note that the morphism *, (which is not the cup-product) may also be defined as the
composite of:

Hi (T*X; 77 wy) x HE (T*X; 77 wx) (2.18)

jtk * *y. —1
— Higoon, T X xx T* X517 wx ® wx)

Jtk * Y. 1
:7) HA0+A1 (T X? Tf wx)

where &} is associated to the embedding T* X x x T*X e T*X x T*X and 6, to the
map "
"X xxT*X - T'X (256,6) - (z; 61+ &2)-
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3 Euler class of elliptic pairs

From now on, all manifolds and morphisms of manifolds are complex analytic. If X
is a complex manifold, we shall often identify X and X®, the real analytic underlying
manifold. We shall also identify (7*X)® with T*X®, as in [7]. We denote by dx the
complex dimension of X. Hence,

Since X is oriented, we identify the orientation sheaf oryx with the constant sheaf Cx,
and the dualizing complex wx with Cx[2dx].

We denote by Ox the sheaf of holomorphic functions on X, by Qx the sheaf of holo-
morphic dx-forms and by Dy the sheaf of rings of (finite order) holomorphic differential
operators on X. If Y is another complex manifold and if F is a sheaf of Oxxy-modules,
one sets:

FOdy) — ¢ 1oy %y,

and one defines similarly F(@x:0) or Fldx.dv)

We shall follow the notations of 7] for D-modules. In particular, Mod(Dx) denotes
the category of left Dx-modules, D(Dx) its derived category, and D%, (Dx) the full
triangulated subcategory of D(Dx) consisting of complexes with bounded and coherent
cohomology. Replacing Dx by D¥, we have similar notations for right Dx-modules. In
fact, if there is no risk of confusion, we shall often make no differences between right
and left D-modules and write Dx instead of DY.

In the sequel, we will often need to work with bimodule structures. Let k be a field.
Recall that if A and B are k-algebras, giving a left (A,B)-bimodule structure on an
abelian group M is equivalent to give M a structure of a left A ®, B-module. Using
this point of view it is easy to extend to bimodules the notions and notations defined
usually for modules. For example, we will denote by Mod(Dx|s ® Dxs) the category
of left Dx|s-bimodules and by D(Dx|s ® Dxjs) the corresponding derived category.

The characteristic variety of an object M of D?, (D) is denoted by char(M). This
is a closed conic involutive analytic subset of 7*X [10], and we have the formula (7,
Theorem 11.3.3]:

char(M) = SS(M ®£x Ox). (3.1)

As usual, one denotes by Bz x the simple holonomic left Dx-module associated to a
closed complex submanifold Z of X. We denote by f -1 £, X the operations of inverse
image, proper direct image, and external product for D-modules, and we denote by Dy
the dualizing functor. Recall that if M is a right Dx-module, then

Dx(M) = RHom, (M, Kx)

where
Kx = Qx[dx]| ®, Dx
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as a right Dx ® Dx-module. Notice the isomorphism of Dx ® D¥-modules:

8§Dx ~ By, (3.2)
which induces the isomorphism of DF ® D¥-modules:

8K x ~ BEX).

By this isomorphism, Kx is naturally endowed with a structure of a right § Dy x-
module and
6Kx = 6Qx[dx].

Let us recall the notion of an elliptic pair introduced in [14].

Definition 3.1 An elliptic pair (M,F) on X is the data of M € DE,(D¥) and
F € DY _.(X) satisfying:
char(M) N SS(F) Cc TxX.

The same definition holds for left Dx-modules.

Proposition 3.2 Let (M, F) be an elliptic pair on X. Then there are canonical mor-
phisms:

(i) &8RHomp (FOM,F @ M) — (F @ M)R(D'F @ DM) ®{;XXX Oxxx,
(i) F’ MXD'F ® DM ®1§Xxx Oxxx — bwx.

Proof: (i) Let D% denote the ring of infinite order holomorphic differential operators.
Sato’s isomorphism:
D = 6'0%¥ dx]

entails the morphism:

8§Dx — 0L dx]. (3.3)
Set for short:
P=FM.

Applying the functor ¢;'P ®qu‘le - to (3.3), then the functor RHom ¢ 1Dx (5P, "),
and using the isomorphism:

&6 RHomp, (P, P) ~ RHom -1, (5P, &6P),
we get the morphism:

8iRHomy, (P, P) — RHom 15 (03P, P @y O dx]).
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Then:

- - d
RHom -1p, (43P, a7 'P @1, Ok ldx])

~ RMom(q;'F, RHom ip, (45" M, 7P ©Lp, 0L [dx])
~ RHom(g;'F,PRIDxM &5 o, Oxxx)
~ R’Hom(q,;lF,’PQxM ®£x><x Oxxx)-

The micro-support of P X DxM QL Oxxx is contained in T*X x char(M), hence
= Dxxx

it intersects SS(g; ' F) inside the zero-section of T*(X x X). Using [7, Prop. 5.4.14],
we get the isomorphisms:

RHO’TTL((];IF,PQXM ®£Xxx Oxxx)
=~ ' DF® [’P_QXM ®£XXX OxXx]
e (FOM)R(D'F®DM)&;  Oxxx.

(ii) Set for short:
Ly =(FOM)R(D'FRDM)®  Oxxx (3-4)
Using the Dxx x-linear morphism:
FMERDF®DM — 6Kx,
we get the sequence of morphisms:

Ly — &Kx ®1l)'x)(x Oxxx
~  §Qx[dx] ®113xXx Oxxx
~ 6 [Qx [dx] ®£x Dx—_xxx ®F

6Qx[dx] ®{;x Ox
~  bwy.

6_10Xxx]

Dxxx

12

O

Using the morphisms defined in the preceding proposition, we can now construct
the microlocal Euler class of the elliptic pair (M, F'). Set:

A = char(M) + SS(F)
Then SS(Lx) C A x A* where Ly is defined in (3.4), and

supp(uaLyx) C A.
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By paraphrasing Kashiwara’s construction of the characteristic cycle of IR-constructible
sheaves, [6], we obtain the sequence of morphisms:

RHomp (FOM,FOM) — 6Ly
~ R?T*;LALX
R?T*RFA/,LALX
— Rm,RT ppabwx
Rm,RUAT " wy.

1R

Applying H°RI'(X;-), we find the morphism:
Homy, (F ® M,F @ M) — HR(T*X;7"'wx). (3.5)

(Recall that
HYT*X;7n wy) ~ HXX(T*X; Crex).)

Definition 3.3 Let (M, F) be an elliptic pair. The image of idpgas by the morphism
(3.5) is the microlocal Euler class of (M, F)

peu(M, F) € thar(M)+SS(F)(T*X§ 7 wx)
Its restriction to the zero-section of T* X is the Euler class of (M, F)
eu(M, F) € Hgpp mynsupp() (X3 wx)

If M is a left Dx-module, we define the microlocal Euler class of (M, F') as being that
of (Qx ®p, M, F). We also introduce the following notations. For M € Db, (Dx) and
F € D%_.(X), we set:

peuM) = peu(M, Cx),
peu(F) = peu(Qx, F).
4 The product formula
Let (M,F) be an elliptic pair on the complex manifold X. Set:
Ao = char(M), A, = SS(F).
Then:

peu(M) € Hy (T*X;7 'wy),
peu(F) € HR (T*X;n 'wy),
peu(M, F) € Hy 4 (T*X;7 ' wy).

The operation *, being that defined in §2, the aim of this section is to prove:
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Theorem 4.1 Let (M, F) be an elliptic pair. Then:
peu(M, F) = peu(M) *, peu(F)

The proof decomposes into several steps. In Proposition 4.2 below, and its proof, X
will denote a real analytic manifold. In this statement and its proof as well as in the
proof of Theorem 5.1, we shall not write the symbol “R” of derived functors, for short;
e.g. Hom(-,-) means RHom(:,-), 7. means Rm,, etc.

We denote by X; (i =1, 2, 3, 4) a copy of X and we write

(X xX)x (X xX)=X; x Xy x X3 x X,
For J C {1,2,3,4} and any set Z, we introduce the notation

51']‘5 H XgXZ—>HXg)<Z
eJ\{j} teJ

for the diagonal embedding sending (2¢)ecs\(j} to (%e)ees with z; = x;. Similarly, we
introduce the notation

6ijk3 H X[XZ—>HX1XZ
eeJ\{j,k} LeJ

for the diagonal embedding sending (z¢)ees\(jk} to (%e)ecs With z; = xx = ;. If there
is no risk of confusion, we simply write § for any of these morphisms.

On a product, we denote by ¢; the projection to X;.

We shall make a frequent use of the morphism of functors

55" — &; @ wy. (4.1)
Now, we assume to be given:
FeDb (X)), GeD"X), HeDX xX).

We set:
K =GXIDF
Ao =S8S(K), A,=SS(H)
A=Ti(X xX)NA;, i=0,1
We identify Tx (X x X) to T*X by the first projection. We shall assume:

Ko NAS C Tk, x(X x X). (4.2)
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Proposition 4.2 The diagrams below commute.

Hom(F,G) ® 8'H Hom(F,G ® §'H)
~ ¢y
S§K®6H Hom(F,8'(¢7'G ® H))
~ (2) §(K®@How§™)
T lpoka K @ mla uaH Tl aornpa(K ® H® W)

First, we state three lemmas whose proofs are easy verifications left to the reader.

Lemma 4.3 The diagram:

Hom(F,G) ® 8§ H Hom(F,G ® 6 H)

|

Hom(F,8'(¢7G ® H))

is isomorphic to:
7l8. 565 (K R H) —— 84,673,164, (K =1 H)
812814055 (K X1 H)
Note that the morphisms
5515!12 - 5!1251_31
or
51_315:!34 - 5!1461_31

are defined as follows. Consider a cartesian square:

Then we have the natural morphism:
prto Xy — pyo X!

defined by:
pupy A 2 AN — AFL
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Lemma 4.4 The diagram below commutes:

5!12653152—41(1( H)® WSG(’ — 51261451 (K.H)
¥y Jﬁ
Sio3(K X H) ® wx

Moreover, assuming (4.2), a, 3 and <y are isomorphisms.

Note that o is defined through:

-1 o @1 !
by BwWyx  — by

and
812654 = 815614,
and 7y is defined through:

-1

6565 @ WSt — 681565, ® wx.

Lemma 4.5 The diagram below commutes:

673 612654 (K X1 H) (KX H)

5!1234(K H) @ wx

Proof of Proposition 4.2: Diagram (1) obviously commutes. To prove that (2) com-
mutes, we decompose it in the diagram below, after applying Lemma 4.3:

K ®6H /6126“513 (KX H)
~ 1234(K-H)®WX 12 K®H®UJX 1)
Tl pota K @ T A pa H W*FA0+A1;U'A K RH® w® 1)

In this diagram, the sub-diagram (6) commutes by Lemma 4.5, the sub-diagram (5)
commutes by Lemma 4.4, the sub-diagram (4) commutes by (7, Prop. 4.3.5] and the
sub-diagram (3) obviously commutes. Hence the full diagram commutes. a
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Proof of Theorem 4.1: We shall apply Proposition 4.2 with G = F, H = M
DM ®II;X)<X Oxxx (hence K = F[XIDF). Note that we have trace morphisms:

K — 6!&))(,

H — (S!qu.

Consider the diagrams:

Hom(F, F) ® Homp, (M, M) Homp (F@O M, F M)
(7)
Hom(F,F) @ §'H Hom(F,F ® §'H)
§K®6'H (8) §(K® Howd™)
T lpcua K @ Ml pa H Tl aosa ia (K © H @ wg?)
9)
Tl popbabiwx @ m.La pabiwx Tl Ao pa (bwx @ Swx @ wg™!)
W*FAOW_IWX ®7F*FA17F_1(UX W*FA0+A17T_IWX

Diagrams (7) and (10) obviously commute, diagram (8) commutes by Proposition 4.2
and diagram (9) commutes since it is obtained by applying the morphism of functors:

Tl aopa(5) ® mla ua(r) — mlagiatalt ® - @ wg™)

obtained from [7, Prop. 4.3.5] to K — &wx and H —- $iwx. To conclude the proof, it
remains to notice that the sequence of morphisms in the second column of the preceding
diagrams (7) and (8) is the same as the morphism

bHom(FQ M, FQ M) — K®H®w§"‘ =Ly

obtained in 3.2. Then, applying H°RI'(X;-) to the preceding diagram, we find the
commutative diagram:

Hom(F), F) ® Homp, (M, M) Hom,, (F®@ M, F® M)

H (T*X; 7™ wx) @ Hy, (T X;m 7 wx) Hi i, (T X7 wx)
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5 The direct image formula

Let f : X — Y be a morphism of complex manifolds, and let (M, F') be an elliptic pair
on X. Under suitable conditions that we shall recall now, it is proved in [14] that the
direct image f,(F ® M) belongs to D%, (Dy). The aim of this section is to prove that
in this situation, the microlocal Euler class of this image is the image by the morphism
(2.12) of that of (M, F).

Let us first recall the definition of chary(M), the relative characteristic variety of
M, (see [11, 14]). If f is smooth, one denotes by Dxy the sub-ring.of Dx generated
by the vertical vector fields, one locally chooses Mo, a coherent Dx|y-submodule of M
which generates it, and one sets:

chary(M) = char(Dx ®p, . Mo).

X|Y

One checks easily that this does not depend on the choice of My. In the general case
(f not necessarily smooth), one decomposes f by its graph as:

f:X—_»XXYT»Y

and one sets:
chary(M) = %'i; char, (4 M).

Let M € DB, (Dx) and let F' € DY __(X). One says that (M, F) is f-elliptic if

coh
char;(M) N SS(F) C T X.

Since chars(M) contains char(M), an f-elliptic pair is elliptic. Let D,.q(Dx) denote
the full triangulated subcategory of D2, (Dx) generated by the objects M such that
for all j € Z and all compact subset K of X, H'(M) may be endowed with a good
filtration in a neighborhood of K. If (M, F') is f-elliptic and moreover M belongs to
D?,.q(Dx), one says that (M, F) is a good f-elliptic pair. If moreover f is proper on
supp M Nsupp F, one says that (M, F) has f-proper support. It is proved in [14] that
if (M, F) is a good f-elliptic pair with f-proper support, then f (F ® M) belongs to
Dg,.q(Dy). Let Ag = char(M), A; = SS(F). We have the canonical morphism:

fut Hpon,(T* X577 lwy) — H?“(A0+A1)(T*Y;7r‘lwy).
Theorem 5.1 Assume (M,F) is an f-elliptic pair with f-proper support. Then:
peu(f,(F ® M)) = fu peu(M, F) = fu(peu(M) x, peu(F)).

Proof: 'The proof will decompose into several steps. For short, during this proof, we
will not write the symbol “R” or “L” of right or left derived functors. We introduce
the notations:

X=XxX, f=fxf:XxX—YxY.
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We dénote by 6x the diagonal embedding X <—e X x X, and if there is no risk of
confusion, we write 6 instead of 6x- We also set for short:

L. = (F ®mM EjDoF ®bDM™M ®. O
L, = L,(FeM)mD(I(FEM))®.- °y

By the results of [14], we have the isomorphisms:

l..Lx ~»~ f(F® Mm DF ®pbm ®p, V._.) ®_ O

+*- I,(FeM)mE,(D'F®DM)®,0,

Consider the diagram:

f,Hom,(F @MF® M) AHOMME  ®@MJIF ® M)
|

T\6L. * ST\Lx

Ne ATV ' "AXMAXNX K*FANAALX *Tr*rANAZ/y

No/TTV' TRIABNUIX—A A NAYNS\Gx

(5)

4 4
'6) 7r.r,/x.,5!/1u;x e 7r*r,MA <WY

| |

i X i
n*fN\F~"Axr~Ux N*TA/K~F\LOx « MAyY K~LJy

It is enough to prove it is commutative. In fact, applying H°KT(Y; <) to it we get the
commutative diagram:

Hom~,(F OM, FO M) *Hom~(/,(F O M)J(F 0 M)

Hew (T*X; 7T-W) . (T'y ;TT V)-

Diaeram (2) commutes since

0 —»

is the restriction to the zéro section of:

h\f VA* —~AMr/i
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