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LECTURES ON ZETA FUNCTIONS AND MOTIVES 
( according to Deninger and Kurokawa) 

YURI MANIN 

Steklov Institute & Columbia University 

§O. Introduction: 

These notes are based upon lectures given at Harvard University (Fall term 
1991), Columbia University (Spring term 1992), Yale University (Whittemore 
Lectures, 1991), and MSRI. 

Basically they represent propaganda for some beautiful recent ideas of Ch. 
Deninger and N. Kurokawa, shedding new light upon classical analogies between 
numbers and functions. 

The central question we address can be provocatively put as follows: if numbers 
are similar to polynomials in one variable over a finite field, what is the analogue 
of polynomials in several variables? Or, in more geometric terms, does there exist 
a category in which one can define "absolute Descartes powers" Spec Z x • • • x 
Spec Z? 

In [25], N. Kurokawa suggested that at least the zeta function of such an object 
can be defined via adding up zeroes of the Riemann zeta function. This agrees 
nicely with Ch. Deninger's representation of zeta functions as regularized infinite 
determinants [12]-[14] of certain "absolute Frobenius operators" acting upon a 
new cohomology theory. 

In the first section we describe a highly speculative picture of analogies between 
arithmetics over Fq and over Z, cast in the language reminiscent of Grothendieck's 
motives. We postulate the existence of a category with tensor product x whose 
objects correspond not only to the divisors of the Hasse-Weil zeta functions of 
schemes over Z, but also to Kurokawa's tensor divisors. This neatly leads to the 
introduction of an "absolute Tate motive" T, whose zeta function is —-^ and 
whose zeroth power is "the absolute point" which is the base for Kurokawa's 
direct products. We add some speculations about the role of T in the "algebraic 
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geometry over a one-element field," and in clarifying the structure of the gamma 
factors at infinity. 

The rest of the notes are devoted to more technical aspects of Kurokawa's 
tensor product. In the second section, we develop the classical Mellin transform 
approach to infinite determinants which is very convenient in dealing with tensor 
products. We slightly generalize the setting of [37] and [5] allowing logarithms in 
the asymptotic expansion of theta functions because they appear in our applica
tions. 

Finally, we discuss some examples of functions which were introduced indepen
dently of Kurokawa's construction but admit a natural tensor decomposition into 
simpler functions. They involve Barnes's multiple gamma functions, the Cohen-
Lenstra zeta function, and a version of Wigner-Bloch-Zagier polylogarithms, stud
ied independently by N. Kurokawa and M. Rovinskii. 

I am grateful to Ch. Deninger, N. Kurokawa, M. Kontsevich, B. Mazur, D. 
Zagier for numerous discussions and letters concerning the subject of this paper, 
and to D. Goldfeld for help in preparing these notes. 

§!• Abso lute Motives? 

1.1 Compar ing ze ta functions of a curve over Fq and of Z . 

Let V be a smooth absolutely irreducible curve over ¥q. Its zeta function is 

( i . i ) Z(V,s) = 
a 

l 
N aY 

p 
1-ddN(p)~ 

1 

where o runs over Fq -rational effective 0-cycles and p runs over closed points of 
V. Denote by V(Fqt) the set of geometric points rational over Fqt (for some fixed 
closure Fq). If we define V(Fq,y - {x € V(Fq/) | Fq(x) = Fg/}, we find from 
(1.1) that 

(1.2) Z(V,s) = 
oo 

/=1 

1 
w<<;,,l;:;v 

<lwwxvnv 
w<<;,: 

One can easily calculate #V(Fqf)° via #V(Fqd) with d\f\ and this last function 
is given by a Lefschetz type formula 

(1.3) # V ( F , / ) = 
w=0 

2 
( - l ) ™ T r ( F r ' HW(V)) = 1 -

l:;<w 

2i 
4>'i + if, 
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LECTURES ON ZETA FUNCTIONS AND MOTIVES 

where Fr is the Frobenius endomorphism acting on étale ^-adic cohomology groups 
of V, 4>j are its eigenvalues, and g is the genus of V. The Riemann conjecture 
proved by A. Weil states that <f>j are algebraic integers satisfying \</>j\ = q*. 
Combining (1.3) and (1.2) one gets a weight decomposition of Z(V,s): 

Z(V,s) = 
2 

w=0 
z(hw(vy,s)<ccv-ir~l nb 

n-i ,( i-^-«-) 
( 1 - , - ) ( ! 1 - w < , ; < ) wx 

(1.4) n, 
2 

w=0 
det (id-Fr-cvwq-3) HW(V) 

, (-1)— 1 

The weight w component is interpreted as the zeta function of "a piece" of V 
which is denoted hw(V) and is called "the pure weight it; submotive of V." It is 
an entire function of s of order 1 (actually a rational function of <?~a), and the 
weight w is just the doubled real part of its zeroes. 

Ch. Deninger in [12] suggested that a similar decomposition of the classical 
Riemann zeta function should be written as 

Z(SpecZ,s) : = 2 2 >7T 2 cv 
K2J 

ll;:<<x 

(1.5) 
3-p 
2 TT 

3 
27T 

3-1 
2TT 

? 
xx< 

u;=0 

2 
DET 

(s-id — $ 

2TT 
fr^(SpecZ) 

\ < - i r - 1 

(see also a remark in [23], p. 335). There the notation JJ^, as well as DET refers 
to the "zeta reffularization" of infinite Droducts. Bv definition. 

(1.6) 
wc:< 

A,- := exp 
d 

- dz 
i 

Kz 

lz=0 

whenever the Dirichlet series in the r.h.s. of (1.6) converges in some half-plane 
and can be holomorphically extended to a neighborhood of zero (this involves a 
choice of arguments of A,-). 

The second equality in (1.5) is a theorem which Deninger deduces for Re(s) >• 0 
from a classical explicit formula. The last equality postulates the existence of 
a new cohomology theory if?, endowed with a canonical "absolute Frobenius" 
endomorphism The Gamma-factor in (1.5), of course, should be interpreted 
as the Euler factor at infinity. Compactifying Spec Z to SpecZ then makes it 
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similar to a projective curve over Fq rather than to an affine one. If Riemann's 
conjecture is true, the "absolute weights" a; of a factor (1.5) should again be the 
doubled real part of its zeroes. 

The formal parallelism between (1.4) and (1.5) can be made even more striking. 
Firstly, the factors in (1.4) can be written as infinite determinants as well: 

according to Deninger, 

(1.7) 1 - Xq~3 = 
{«\q« = \} 

log 32 
. 2TT* 

{s - a ) , 

and the relevant cohomology spaces and $ can be constructed in an elementary 
and functorial way from, say, étale cohomology ([13],[14]). 

Secondly, the denominator in (1.4) is the inverse zeta function of Pj. , or equiv-
alently, the zeta function of the motive L° 0 L1 where L is the Tate motive over 
Fq. In a similar fashion we suggest that the denominator in (1.5) should be looked 
upon as the inverse zeta function of an "absolute motive" T° © T1 where T is the 
absolute Tate motive (something like L over a "field of one element"). We will 
introduce T, or rather its zeta function in §1.6 after reviewing briefly multidimen
sional schemes and Kurokawa's tensor product. 

1.2 Zeta and mot ives over Fq. 

The parallelism discussed in §1.1 is expected to persist in higher dimensions. 
However, a very large part of the overall picture, especially the global one, remains 
conjectural. We will try to describe the relevant facts and hypotheses in the same 
format over Fq and Z. 

A . T h e definition and the weight decompos i t ion of ze ta . 

Let Var/Fg be the category of smooth projective varieties V defined over Fq. 
For every V, one defines Z(V, s) by the same formulas (1.1) as for curves. A. Weil 
conjectured, and A. Grothendieck with collaborators proved that 

Z(V,s) = 
2dimV 

ui=0 
det (id-Fr-q-*) HW(V) 

(-1)—1 

(1.8) 
W 

Z(hw(V), sY-1^' . 

P. Deligne proved the Riemann-Weil conjecture: Re(p) = y for every real root 
p of Z(hw(V),s) (actually, in a considerably more general setting involving sheaf 
cohomology). 
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B. Various cohomology theories. 

The formula (1.8) is essentially equivalent to a Lefschetz type formula counting 
the number of fixed points of (the powers of) the Probenius endomorphism. The 
calculation itself is a formal consequence of several standard properties of a coho
mology theory, including H'(V x W) = H'(V) <g> H'(W), and JT (SpecF g ) = E 
(coefficient field of cohomology theory). For details, see [22]. 

An important byproduct of the work of Grothendieck was a realization that 
there exists not one but many various cohomology theories with necessary prop
erties, whose interrelations are otherwise not obvious. For example, the fact that 
the decomposition (1.8) constructed for H' = H'éi t with various t \ q does not 
depend on £, is not at all straightforward. 

C. Mot ives : a universal cohomology theory? 

Grothendieck, therefore, suggested that one look for a universal functor 

h : ( V a r / F g ) o p p —> Mot/¥q 

having (at least) the following properties: 
The target category M o t / F g must be an additive 17-linear (for a field of coef

ficients E) tensor category, with duality functor satisfying the standard axioms 
for finite dimensional linear spaces over E (technically speaking, a rigid tensor 
category). Furthermore, M o t / F g must be Z-graded. 

The functor h must satisfy the Kùnneth formula 

h(V x W) = h(V) ® h{W\ 

translate disjoint unions into direct sums, and verify additional axioms for the 
demonstration of Lefschetz' formula. 

Every concrete cohomology theory like H^t e must be a "realization" of the 
motivic cohomology, that is, must fit into a diagram of type 

Hétit : Vax/F, Mot/F, é t a U ' - ^ " ' " ^ {graded Q^p^s} 

A concrete proposal (developed in [29], [22]) for a construction of Mot/F^ proceeds 
in three steps: 
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Step 1: For V, W € V a r / F „ put 

H(V, W) = Cd(V xW), d = dim W, 

where Cd(V x W) is the space of d-codimensional cycles on V x W with coeffi
cients in K modulo an adequate equivalence relation (numerical, algebraic, etc.) 
which we want to imply cohomological equivalence in our theories, e.g. numerical 
equivalence can be taken whenever we are interested only in Lefschetz formulas 
calculating intersection indices of algebraic cycles. 

Introduce the multiplication of correspondences 

C\V xW)x C'{U x V) —>UUX<C'(U x W) 

in a classical way. This allows us to consider C'(V x W) as morphisms in a new 
category Corr/F^, that of correspondences with coefficients in K. If h(V) is the 
object V in Corr/Fg, put 

h(V) ® h(W) = h(TRV x W). 

Step 2: Add formally to Corr/F^, kernels and images of all projectors. In this 
way we get the category of effective motives Mot+/Fg. 

Step 3: In any Corr/Fg, we can prove that P1 = I © L F , where I = /i(SpecFg) 
and L F , = ^ ( P 1 ) in the sense that in any realization L F , may have only weight 
two non-zero cohomology coinciding with that of P 1 . 

L F , = L is called Tate's motive. Its version L * can be defined over any ground 
field k. The functor • H+ • ® h$q is the endomorphism of Mot+/Fg which is 
an autoequivalence. This allows us to adjoin formally negative powers of L and 
their tensor products by other effective motives. In this way, Mot+/Fg becomes 
enlarged to Mot/Fg, the category of pure motives. 

One usually writes M(n) = M ® L® (~n). For motives over F9, one has two 
parallel decompositions: 

h(Pn) = I © L © . . . © L n ; 

#P"(Fg) = l + s + <Z2 + . + 
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so that one can naively imagine L1 as an avatar of an z-dimensional cell. For a 
curve V/Fq, we have h(V) = I © h}(V) © L. 

The construction we have sketched can be performed over any base field k 
instead of Fq. However, in order to prove all desirable properties of the category 
Mot/k one needs "standard conjectures" about algebraic cycles which remain 
unproved. 

It became customary, therefore, to use the word "motive" loosely, referring to 
an object that has sufficiently many realizations in the cohomology theories: see 
[8], §0.12. 

In the next section, we will speak about motives over Q in this vaguely de
fined sense, referring to [8] for more detailed statements. The point is that in 
the absence of a cohomology theory Hi postulated by Deninger (cf. (1.5)), zeta 
functions remain our only observables, and all motives of [8] have well defined 
zetas. 

D . Relat ion to zetas . 

Let M be a motive, for simplicity, of pure weight w. This means that it admits 
a system of £-adic realizations, t\q. Assume that det((zd — Fr • q~3) | Hft ^(M)) 
is a polynomial of q~s with integral coefficients independent of £. This is, by 
definition, Z (M, s). 

The basic formulas relating motives to zetas are 

Z(M ®N,s) = Z(M, s)Z(N, a), 
Z(M ® AT, s) = Z(M, s) ® Z(N, s) 

where the r.h.s. tensor product of zeta functions means that Frobenius eigenvalues 
of the product are all pairwise products of Frobenius eigenvalues of factors (cf. 
§1.4) below. It follows that roots of Z(M ® iV, s) constitute a subfamily of the 
family of pairwise sums of roots of Z (M, s) and Z(TV, s). 

1.3 Zetas and mot ives over number fields. 

A'. T h e definition and conjectural weight decompos i t ion of zeta . 

Let now V denote a smooth projective variety over a number field k. Serre [34], 
and more generally Deligne [8], suggested the definition of the weight w factor of 
the zeta function of V: 

(1.13) 
XC<<NXLL,,xcvwqssxxw ,,;jh l*<w*:;;Na =L8 !:;* lmexwv 

V 
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Here v runs over finite places of A;. The i/-Euler factor L v is defined by 

(1.14) Ly(hw(V)i8) = det\ id-Fru'N{u)Fru'N{u)-3)-3) 
h(p,qd™(V 

m< 

where Frv is a (geometric) Probenius element lying in the decomposition subgroup 
Du C Gal(Ar/Ar), and J„ C Dv is the inertia subgroup. Equation (1.14) is only well 
defined if the determinant has rational coefficients independent of ^, and this is 
true for almost all v which are places of good reduction of an integral model of V. 

The infinite Euler factor is determined by the Hodge realization of V, 
corresponding to infinite places e : k <—> C. It is again the product of factors 
corresponding to all places. To describe such a factor, we can assume that V is 
defined over R or C. Put 

(1.15) 
h(p,q) = dimH™(Vfd<<x n14 

,2> 
Tc(s) = ( 2 7 r ) - T ( 5 ) ; 

h(p,q) =rrr dimH™(V); 

h(p,e) = r r r d i m { x £ H £ p ( r r V ) F^x) = r ( r r - l ) p + ( x}, e = ± 1 

where Hq9 is the Hodge cohomology, and is induced by the complex conju
gation (FVobenius at infinity). 

Then for a complex (resp. real) place a of k we put 

La,c(h™(V),s) = 
P<9 

p+q=w 

r c ( * - p ) A ( M ) -
2p=w 

r E ( s -
w 
2 )

f e ^+).r K (3- w 
2 +1) HP,-) 

(for w odd, omit the last two factors), 

La*(h"{V)ff<wccx,s) = 
p+q=w 

TC(s-min(p,ff<<w::q))h(p>q). 

The analytic behavior of (1.13) is described by three basic conjectures: 

A ' l . A(hw(V),s) admits a meromorphic continuation to the whole comples 
plane, and satisfies the usual functional equation of the type 5 H « ) + 1 - s . (For 
a more precise form of this equation see [8] and [34]). 
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A ' 2 . A(hw(V),s) may have poles only at s = ± \ for even w. The order 
of noles is (Tate's conìecture Ì 

c(V,w) =rank of the subgroup ofHw(V) 

generated by k-rational algebraic cycles. 

A , 3 . The generalized Riemann conjecture: 

roots of A(hw(V),s) lie on Re(s) = 
w 4-1 

2 

Motivated by these conjectures and analogies with the finite characteristic case, 
we put: 

uj = w + 1 := absolute weight, 

replace hw(V) by H u , + 1 (V r ) , (piece of V of absolute weight w + 1), and define 
its zeta function by 

(Lie) 

Z(Ew+1(V),dds) d<<= 
A(h™(V),s) 

wxh(p,q)i 

47T2 

dim(V > c(V,w) 

\(h™(V),s) 
xxxcnl<::;k 

IT 

c(V,w-l)+c(V,w+l) 

w ff= 0(2); 

w ff= 1(2) 

Conjecturally it is an entire function of order 1. 
Deligne [8] defined A(M, s) for more general motives over A:. One can easily 

extend the definition of Z(M, s) to them. There is one essential difference between 
zeta functions over Fq and A;: in the global case, no analogue of the Dirichlet series 
representation for the alternating product of A's (as in (1.1)) is known. One 
might expect that such a representation should be connected with an Arakelov 
(arithmetically compactified) model V of V (this is why we put V in (1.16)) . 
Such models possess a good deal of geometric properties, in particular, a group 
of 0-cycles and the degree map. Could it be that they lead to different type 
zetas? Already for Spec Z and Riemannian zeta this question is meaningful and 
unresolved. 

B \ Various cohomology theories? We expect that (1.16) has a Deninger 
type representation (possibly up to an exponential factor) 

(1.17) Z(W(V),s) = 

p 

s - p 

2TT 
= DET 

's - id — $ 

2TT 

scnnb<<w: 
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