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TRINOMIAL EQUATIONS IN FUNCTION FIELDS 

ENRICO BOMBIERI AND JULIA MUELLER* 

I. INTRODUCTION. Siegel [Si] conjectured in 1929 that when a curve defined 
by the diophantine equation f(x,y) = 0 with rational integral coefficients is 
irreducible and of positive genus, then the number of rational integral points 
in the curve can be bounded in terms of the number of monomials appearing 
in the polynomial f(x,y). This conjecture is not true as it stands. In fact, 
one finds in Fermat the formulation and solution of the problem of finding two 
rational cubes expressible as the sum of two other rational cubes in infinitely 
many ways. Fermat used the method of the tangent, which goes back to 
Diophantus, on the cubic elliptic curve x3 + y3 = h. By clearing denominators 
one then obtains values of h for which the equation x3 + y3 — h = 0 has an 
arbitrarily large number of integral solutions. 

On the other hand, SiegePs conjecture has been verified in some cases. In 
particular, the binomial Thue equation axr + byr = 1 has for r ^ 5 at most 
2 solutions in rational integers (up to sign, if r is even) [Do], and the Thue 
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equation F(x,y) = 1, where F is a binary form of degree r ^ 3 , has at most 

cr solutions in rational integers, for a computable absolute constant c [B-S]. 

In fact, c ̂  430 if r is sufficiently large. 

A natural question to ask is whether Siegel's conjecture has some validity 

in function fields. The case of a binomial equation was studied by Mueller 

[M1], [M2]. Let K/k be a function field of one variable with constant field 

fc, of characteristic 0 and genus g. Then Mueller proved that the equation 

ax + by = 1 where a, 6 6 K* and either a £ k* or b £ has at most 

two solutions (x,y) G (K*)r x (K*)s up to equivalence, provided that either 

r = s > 30 + 20g (see [Ml]) or r ^ s and min(r, s) > 120 + 40# (see [M2]). 

The main result of this paper is the following theorem on trinomial Thue 

equations. Let K = k(t) be the field of rational functions in one variable 

£, with constant field k algebraically closed of characteristic 0, let O — k[t] 

be the ring of polynomials in t with coefficients in k. By a trinomial Thue 

equation we mean the equation 

(1.1) axr + bx syr~s + cyr = h 

with coefficients in O and abch ^ 0, with 0 < s < r. 

We say that a polynomial solution (x,y) of (1.1) is primitive if xy ^ 0 and 

the polynomials y have no common non-constant factors, and we say that 

two solutions (a:,y) and (xf,y') are proportional if both x/x' and y/yf are 

constants in k. 

THEOREM 1. The trinomial Thue equation (1.1) has at most 3 primitive, 

non-proportional polynomial solutions provided min(s, r - 5, \r - 2s\) > 6072. 

The constant 3 in our theorem is clearly optimal. In fact, we may prescribe 

in advance three solutions ( ^ ¿ , 2 / ^ ) , i = 1,2,3 and solve the linear system 

ax\ + bxfyl~s + cy\ — h = 0, i = 1,2,3 in the unknowns a, 6, , c , h. The same 

argument also shows that in case r = 2s, a = c the number of inequivalent 

solutions may increase to 4 because of the automorphism (x, y) i -> (y, x) of 

the associated trinomial. We conjecture that Theorem 1 continues to hold 

provided only that r is sufficiently large and r ^ 2s. 
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The proof of Theorem 1 relies on the well-known afec-inequality in function 
fields, which was used for similar purposes in the two binomial cases [Ml], 
[M2]. It has also been employed by the present authors [B-M] and [M3] to 
obtain an explicit upper bound on the number of families of solutions of the 
so-called generalized Fermat equation in function fields, with a bound which 
depends only on the number of monomials of the equation provided the degree 
is large enough. 

Our approach to treating trinomial equations may be applied to other sit
uations. Consider for example the trinomial equation 

(1.2) axr + bys + cz* = 0 

with coefficients in O and abc ^ 0. A polynomial solution (x, y, z) is primi
tive if x, y, z are coprime in pairs and not 0, and two solutions (x,y,z) and 
(xl ,y' ,z') are proportional if x/xf, y/y1z/z' are all constants in fc. 

THEOREM 2. The trinomial equation (1.2) has at most 2 primitive, non-
proportional solutions provided min(r, s,t) > 60. 

We have stated our results only for the function field K = k(t), rather than 
for a general function field of genus p, but there is no doubt that they admit 
such an extension. 

In the present state, our method is too clumsy to use for treating much 
more general situations, since for each equation one is obliged to analyze 
separately various "degenerate" cases of application of the a&c-inequality, and 
the number of such cases increases very rapidly with the number of monomials. 
Thus it would be of definite interest to find a more conceptual approach, 
perhaps involving combinatorial ideas and algebraic geometry, to the study 
of "fewnomial" diophantine equations in function fields and number fields. 

II. APPLICATION OF THE abc-INEQUALITY. Suppose that the trinomial 
equation (1.1) has four solutions ( x ^ 2 / t ) > i = 1,2,3,4. We follow an idea of 
Chowla [C]. From the system of equations 

axri+bxsiyri-s + cyri-h = 0, t = l , . . . , 4 
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we obtain the relation 

(2.1) det 

*ï * î i , r ' Vi 1 
x2 X2V2 2/2 1 

x3 X3V3 V3 1 

x\ x%y\~s vl 1 

= 0. 

In a similar way, suppose that equation (1.2) has three solutions ( # ¿ , 2 / * ) , 
i = 1,2,3. Then we obtain 

(2.2) det 
'x\ y{ z{ 

x2 2/2 z2 

, x3 2 / | z3 

= 0. 

We expand the determinants by Laplace's rule and write the corresponding 

equations in the form 

(2.3) 
<T£S 

S aTTlr = 0 

where a runs over the set <S(4) or <S(3), or briefly <S, of permutations of 

{1 ,2 ,3 ,4} or { 1 , 2 , 3 } , where ea is the parity of the permutation and where 

mG denotes the corresponding monomial in the Laplace expansion. By a block 

B we mean a non-empty subset of S for which 

(2.4) 
<T£S 

s^rria = 0. 

A block B is irreducible if it does not contain a proper subblock. 

We shall use the aftc-inequality of Mason, Voloch, Brownawell and Masser 

in the precise form obtained in [B-M], Theorem B. Let k and K be as in 

section I. For every absolute value v of K we denote by v(x) the order of x 

at v. Suppose B is an irreducible block, let maQ be a monomial originating 

from this block and let S be the set of places where some rational function 

m ^ / m ^ , for some a G B, is not an unit. We divide (2.4) by mao and deduce 

from the a6c-inequality that 

(2.5) H(B) < \(\B\-1)(\B\-2)\S\ 
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where H is the projective height 

H(B) = -
V 

mmv(ma), 
<T£B V ' 

where S is the set of places where some mcr/mao is not an unit, and where 
\E\ denotes the cardinality of the finite set E. 

By the sum formula in K, we can rewrite this as 

(2.6) H(B) = 
V 

Mrriv) — mmv(ma)) 
<T£B 

for every a G B. 

For the purpose of transforming (2.5) into a more workable version we define 
for every v the closed interval 

IV(B) = [min<y(m0.),maxi;(m(7)] 
<r£B CTGB 

and 
|/y(Z?)| = maxv(mff) — min^ra^). 

a£B a€B 

We certainly have 

\Iv{B)\£ 
<r£B 

(v{ma) - mint^ra^)), 

therefore, summing over v and using (2.5) and (2.6), we obtain 

(2.7) 
V 

\IV(B)\^^\B\(\B\-1) (\B\-2)\S(B)\ 

where 

S(B) = {veMK\ \lv(B)\ > 0 } . 

Now we decompose S into disjoint irreducible blocks B{, hence 

(2.8) S = 

i 
Bi. 
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In the sequel, all blocks B will originate from this decomposition, thus B = 
iei Bi with I Ç { ! , . . . , n } . 

We apply (2 .7) to each irreducible block Bi, sum over the blocks noting that 

i 
\Bi\(\Bi\-l)(\Bi\-2) < \S\(\S\-l)(\S\-2), 

and obtain a fortiori 

(2.9) 
V i 

\Iv(Bi)\< hs\(\S\-l)(\S\-2)N, 

where N is the number of absolute values v such that )i \Iv(Bi)\>0. 

DEFINITION. With respect to v, an irreducible block B is: 

good,if\Iv(B)\ >±\S\(\S\-l)(\S\-2); 

neutral, if \IV(B)\ = 0; 

bad, otherwise. 

An absolute value v is: 

good, if there is at least one good irreducible block; 

neutral, if every irreducible block is neutral; 

bad, otherwise. 

The corresponding sets of w's are denoted by V9, VJ,, Vn. 

First of all, it is clear that in (2.9) we have N = \V9 \ + |V >̂|. We abbreviate 
K = \S\(\S\ - 1)(|5| - 2 ) / 2 and deduce from (2.9) that 

(2.10) (K + l)\V9\^K(\V9\ + \Vb\). 

LEMMA 1. If there are no bad absolute values then all monomials in an 
irreducible block B are proportional 

PROOF. From (2 .10) we see that if Vb = 0 then V9 = 0 too. Hence every 

v is neutral, thus = 0 f°r every irreducible block. This means that 
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v{m(7/mat) = 0 for every v and any two cr, a' G B. Hence mGlma' is a 
constant in fc, as asserted. 

LEMMA 2. In the case of equation (1.2), if all monomials in each irre
ducible block are proportional then at least two solutions (xi,yi,Zi) are also 
proportional 

PROOF. Let us abbreviate X{ — x\, Y{ — y\, Z{ = z\ and [ijk] = XiYjZk-
Suppose first that there is an irreducible block with two elements correspond
ing to permutations of different parity, for example [123] — [132] = 0. Then we 
get Y2Z3 = Y3Z2 and since Y{ and Zi are coprime we find I 3 = A>2> Z% = A Z 2 

with A G fc, and now the equation aX{ + bY{ + cZ{ = 0 shows that X2 = A X 3 , 
yielding proportionality. Thus Lemma 2 is true in this case, so we may assume 
that every block of two elements consists of monomials with the same parity. 

By factoring out the greatest common divisor we may assume that the first 
coordinates are coprime, and so are the second and third coordinates, while by 
hypothesis (xtjlft?^) are coprime in pairs. By permuting the variables and 
the solutions, we remain with the following possible types for v(xi), v(yi), 
v(zi), numbered I, II, III, IV, V: 

TABLE OF TYPES 

e 0 0 
0 / 0 
0 0 </ 

e 0 0̂  
0 / 0 
0 0 0 

e 0 0 
/ 0 0 
0 g 0 

e 0 0 
e 0 0 
0 0 0 

e 0 0 
0 0 0 
0 0 0 

with matrix rows v(xi), v(yi), v(zi), i = 1,2,3 and where e > 0, / > 0, g > 0. 

For types I and II, examination of v(ma) = max gives the unique element 
[123], a contradiction. For types III and IV, we see that the block with 
v{ma) = min is necessarily [3 * * ] , which was excluded at the beginning of the 
proof. For type V, examination of the monomials with v(ma) = max gives 
the block [1 * * ] , which again was excluded at the beginning of the proof. This 
completes the proof of Lemma 2. 

LEMMA 3. In the case of equation (1.1), if r ^ 2s and ail monomials in 
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each irreducible block are proportional then at least two solutions ( x i , y i ) are 
also proportional 

PROOF. We write [ijkl] = x^Xjy^~8yl and denote proportionality by ~ . 

We exploit the hypothesis of Lemma 3 as follows. This hypothesis implies 
that all monomials in an irreducible block have the same order at every v. On 
the other hand, the order of the elements j/i, i = 1,2,3,4 is restricted by the 
coprimality condition, so that either v(xi) or v(yi) is 0, for every i. Moreover, 
if we had v(xi) > 0 for every i then we could factor out the greatest common 
divisor of the x<'s, obtaining a new trinomial equation with four solutions but 
with at least one of the v(x{) equal to 0. The same remark of course applies 
to the y^s. This leaves us, up to permutations and exchange of x with y and 
s with r — 5, with the following seven types of v(a?j)'s and i;(yi)'s, numbered 
I, II, III, IV, V, VI, VII: 

TABLE OF TYPES 

a 0 
b 0 
c 0 
0 e 

a 0 
b 0 
c 0 
0 0 

a 0 
b 0 
0 e 
0 / 

a 0' 
b 0 
0 e 
0 0, 

a 0' 
b 0 
0 0 
0 0, 

a 0 
0 e 
0 0 
0 0 

a 0' 
0 0 
0 0 
0 0, 

with matrix rows v(xi), v(yi), i = 1,2,3,4 and where a ^ b ̂  c > 0 and e ̂  / > 
0. 

Now for each type we create the basic table which groups together mono
mials with a same absolute value, and note that the hypothesis of Lemma 3 
implies that monomials with a same absolute value, taken with the appro
priate sign, form a block. The strategy is the following: starting with the 
largest and smallest absolute values, we form two blocks, which are then re
moved from the basic table. Usually these two blocks are small, and we can 
deduce some non-trivial information about the solutions. This information 
is fed back into the basic table, often producing new small blocks, which are 
then removed. Then the process starts again with the smaller new basic table, 
until at the end we reach either proportionality of solutions or a contradiction. 
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Let us consider type VII . The basic table is 
BASIC TABLE, TYPE V I I 

U\ [1 * **] ra 
IA2 [*1 * *] sa 
U3 [* * 1*] [* * *1] 0 

where Ui are the corresponding groupings and where at the right we have 
v{m(T), In what follows, we say that Ui + Uj + . . . is a block if the monomials 
from Ui [jUj (J. . . , taken with the appropriate parity sign, form a block. 

The block U2 yields 

xlyl sdet 
x2 y 2 1 

x3 2/3 1 

x \ 04 1 

= 0. 

The condition det = 0 is precisely the condition which arises from a binomial 
Thue equation, which we know has at most two solutions except in degenerate 
cases, and the conclusion is that we must have either xT2 = #3 = x\ or y\ = 
d = yrA or have two proportional solutions (xi,yi) and which would 
be the conclusion of Lemma 3. If we apply the same argument to the block 
U\ we obtain the relation 

x\ det 
XS2yr2-S Vi 1 
xs3yr3-s v5 1 

x%y\-s yl 1 

= 0, 

which combined with the first shows that we may suppose y \ = y3 — y \ . Since 
x\, 1, i = 1,2,3,4 satisfy a linear relation with non-zero coefficients, 
we see that 1, i = 2,3,4 lie in a hyperplane in K3. Therefore we 
have 

det 
x2 X2V2 8 1 

x3 X3V3 1 
x\ x%y\-s 1 

= 0. 

If we set up the basic table for this determinant, we have only two cases 
to consider besides X2 — X3 — x ^ i and they all lead to proportionality of 
solutions. This proves Lemma 3 if type VII occurs. 

Type VI is also easy. The basic table is 
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BASIC TABLE, TYPE VI 

U1 [1 * 2*] ra + re 

u2 [12 * *] ra + (r — s)e 
u3 [* 12 *] sa + re 

u4 [1 * *2] ra 
U*> [* * 21] re 
U6 [21 * *] [*1 * 2] sa 
U7 [* 21 *] [*2 * 1] (r — s)e 

U8 [2 * *1] [* * 12] [2 * 1*] 0 

By inspection, we see that U\ and Us are blocks. Now the block [1 * 2*] 
implies that x^y^~s = x%yrA~s. 

If U2 were a block we would derive 2/3 = 2/4, which combined with the 
preceding relation gives (#3,2/3) ~ (#4,2/4) . Thus we suppose that U2 is not a 
block and we see that U2 +U3 must be a block and moreover (r — s)a — se = 0. 
Since e is determined it is now easy to compare the various values of v(ma). 
We remove the blocks we have found and look at terms with v(ma) — min. 
They can arise only from Uq and U 7 . We cannot have sa = (r — s)e because 
we assume r 7 ^ 2s, hence one of them is a block and by symmetry we may 
suppose that U7 is a block. This leaves us with ZY4, U$ and Uq. We have a ^ e, 
again because r ^ 5, and we conclude that U4 is a block. This implies that 
*32/3~S2/4 = xtyl~sy3 a n d 0*3,2/3) ~ ( # 4 , 2 / 4 ) . 

For type IV it suffices to look at the monomials with v(ma) = max. We see 
that [* * 34] must be a block, and ( # 1 , 2 / 1 ) ~ (#2 ,2 /2) follows easily from this. 

Type V is a little more complicated. The basic table is 

BASIC TABLE. TYPE V 

U1 [12 * *] ra + sb 

u2 [21 * *] rb + sa 

U3 [1 * 2*] [1 * *2] ra 

U4 [2 * 1*] [2 * *1] rb 

U5 [*12*] [*1*2] sa 

U6 [* 21 *] [*2 * 1] sb 
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U7 [* * 12] [* * 21] 0 

The terms with v(ma) = min show that U7 is a block, giving 

(xs3yr3-sxr4-xtyr4-sxr3)(yl-yr2) = 0. 

The vanishing of the first factor yields (#3,2/3) ~ (#4,2 /4) , hence we may 
suppose y\ = 2 / £ . 

A similar argument with v(ma) = max shows that 2/3 = 2/4 and that U\, U2 
are blocks. 

Next, we see that Ue or U$ + UQ are blocks, according as a > b or a = 6. If 
Ue is a block then using the relations y{ = yr2 and 2/3 = y\ we find 

(xr3-xr4)xs2yr2-s(yr4-yr2) = 0, 

while if Us + UQ is a block we find 

(xr3 - x\){xs2f2-s - x{y\-s){y\ - yl) = 0. 

The alternatives x\y[ s = x^y^ s and #3 — #4 lead to proportionality, so we 
are left with 2/J = 2/2 = 2/5 = 2/4- ^ follows that x\, xfyl~s, 1 are linearly 
dependent over K and we get 

det 
x2 X2V2 S 1 
x3 X3V3 1 

x\ x%y\~s 1 
= 0. 

This case has been considered already in the analysis for type VII, thus dis
posing of type V. 

For type II we distinguish the subcases a>b>c, a = b>c, a>b = c, 
a — b — c. 

Subcase a > b > c. The blocks with v(ma) = max or min are [12 * *] and 
[43 * * ] , which imply 2/3 = 2/4 and 2/1 = 2/2- This in turn implies that [21 * *] 
and [34 * *] are also blocks. After removing these four blocks the terms with 
v(ma) = min show that [42 * *] is a block. This yields y[ = 2/3 and finally 
V\ — V2 — V3 — yl- The analysis ends as for type V. 
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Subcase a — b > c. The basic table is 

BASIC TABLE. TYPE II, a = b > c 

ux [12 * *] [21 * *] (r + s)a 

u2 [13 * *] [23 * *] ra + sc 

u3 [31 * *] [32 * *] rc + sa 

u4 [14 * *] [24 * *] ra 

Us [34 * *] rc 
U6 [41**] [42**] sa 

u7 [43 * *] sc 

Inspection of the basic table shows that [43 * *] is a block, hence y \ = yr2 
and [34 * *] is also a block. After removing these two blocks we see that UQ is 
a block. The corresponding sum of monomials is 

х1{х\у{-ву1 - xlvl syr2 + xs2yr2 sy\-xs2yr2 syr3) = 0 

which is transformed into 

xr4(x\y[-s - x°2yr2-s)(f3 - yl) = 0 

because of the relation y\ = y^- Ifx{y[~s = X2y2~s we get (#i?yi) ~ (x2,y2), 

again because of the relation y \ = y2> Thus we remain with y2 = y3- This 
implies that [314 * *] and [24 * *] are blocks and after removing them we see 
that U3 is the block with the remaining monomials with smallest v(ma). The 
analysis of this block is identical to that for Z4, the only difference being the 
exchange of 3 and 4. The conclusion is that y% = y \ and y \ = yr2 — y3 = y \ . 
The analysis ends as for type V. 

Subcase a > b = c. The basic table is 

BASIC TABLE, TYPE II, a > b = c 

U1 [12 * *] [13 * *] ra + sb 

u2 [21 * *] [31 * *] rb + sa 
u3 [23 * *] [32 * *] (r + s)b 
u4 [14 * *] ra 

Us [24 * *] [34 * *] rb 
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KG [41 * *] sa 
U7 [42 * *] [43 * *] sb 

Inspection of the basic table shows that Ui and U2 are blocks, yielding 

xs2yr2-S(yr3 ~ Vi) ~ *lyrs{yr2 ~ yl) = 0 
#2(2/3 - yl) - ^3(2/2 - yl) = 0. 

This is a homogeneous linear system for 2/3—2/4 and 2/2—2/4, with determinant 
# 3 # 2 2 / 2 ~ 6 ~~ x2x3y3~S- If ^he determinant vanishes we get (^2? 2/2) ~ ( # 3 , 2 / 3 ) -

Thus we remain with 2 / 2 — 2 / 3 = 2 / 4 , and the rest of the analysis proceeds very 
much in the same way as in the subcase a = b > c. 

Subcase a = b = c. The monomials with v(ma) = min form a block [4***] of 
six elements. After removing this block we see that the remaining monomials 
with v(ma) = min form a block [*4 * *] with six elements. This means that 

det 
xiyl- yl 1 
xS2yr2'S yr2 1 
xiyl- yl 1 

= 0 

and 

det 
x\ yl 1 
x2 yl 1 
x3 yl 1 

= 0, 

and we fall back into the analysis of type VII. 

Type I is easy to study. If a > b > c then [1243] is the only monomial with 
v(xa) = max, which is impossible. 

If instead a = b > c the terms with v(mff) = max yield the block [* * 43], 

hence # i # 2 2 / 2 ~ 5 = # 2 x i 2 / i ~ 5 , which implies proportionality (#1 ,2/1) ~ (#2 ,2/2)-

If a > b = c the same argument shows that [1*4*] is a block, therefore [4*1*] 

is another block. After removing this block and looking at the terms with 

v(ma) = min we see that [4**1] is a block. This implies #22/s>~S2/3 = #32/3~s2/2 

and (#2 ,2 /2) ~ ( # 3 , 2 / 3 ) . 

Thus we remain with the subcase a = b = c. The terms with v{ma) = max 
form the block [* * 4*], and those with v(ma) = min form the block [4 * * * ] . 
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This yields 

det 
x\y\-s Vi 1 

XS2yr2~S yr2 1 

Х'ЗУГ* УЗ 1 

= 0 

and 

det xl xlylZ 1 
x2 X2V2 •'• 

X3 X3V3 1 

= 0 

which is analyzed exactly as for type VII. 

Type III is the hardest to analyze, and it is here that the condition r ^ 2s 
appears again. First of all, the symmetry of the associated matrix shows that 
we may interchange #, j / , s with y, x, r — s, thus we may assume 2s < r because 
r ^ 2s by hypothesis. As for type II, we distinguish subcases. 

Subcase a > 6, e > / , 2s < r. The monomials with v(ma) = max must 
form the block [1 * 3*]. It follows that ^ |2 /2~S = x%v\~S and also [3 * 1*] is a 
block. Note that we have also obtained the equation 

(2.11) sb-(r-s)f = 0. 

The block with v(m^) = min therefore is [3*1*] [3421] [4213]. After removing 
this block we verify using (2.11) that the two largest values of v ( m a ) occur 
for [1342] and [2134], all other values being smaller. Hence [1342] and [2134] 
form a block, and we get 

(2.12) (r - s)a - rb - se + rf = 0. 

If we write down the corresponding relation and use the equation #22/2 S = 

xly1~s, we find the further relation x\y\ — #32/2-

We remove these three blocks, use the fact that 2s < r, (2.11) and (2.12) 
imply 

sa < (r — s)e, sb + rf < rb + (r — s ) / , 

and see that the terms with i ; ( m a ) = min form a subblock of [*12*] [3241]. If 
[*12*] were a block then X3 — x4i therefore from x\y\ — x\yr2 we would get 
y \ = 2 / 2 - Hence [43 * *] would be a block too. After removing these blocks 
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and looking at the terms with v(ma) = min the only possibility is the block 

[3241] [2413], which implies sb + rf = rb + (r-s)f and (r - s)b = sf. On the 

other hand, we have sb = (r — s)f which together with the preceding equation 

gives r = 2s, which was excluded. Thus we conclude that [*12*] [3241] is an 

irreducible block, and in particular 

(2.13) sa- sb-rf = 0. 

At this stage, using equations (2.11), (2.12) and (2.13), the basic table 

simplifies to 

SIMPLIFIED BASIC TABLE, TYPE III , a > b, e > f 

Wi [1324] [2431] A(t3 +t-l) 

U2 [4132] A{t3 -t2 + 3t-l) 

U3 [2341] [4231] A(t3 -t2 + 2t-l) 

U4 [2314] A(t3 -t2+t-l) 

U5 [43 * *] A(t3 - 2t2 + 2t-l) 

U6 [1243] A(2t2 + t-l) 

U7 [1423] A(2t2 -1) 

U8 [2143] A(t2 + 2t -1) 

U9 [2413] A(t2 -1) 

ZYio [3142] A(St - 1) 

where we have abbreviated t = r/s and A = sa/(2t — 1). Note that our 

hypotheses imply t > 2. Finally we see that if t > 2 the term [4132] cannot 

form a block with any other term, a contradiction. 

Subcase a = 6, e > / , 2s ^ r. The basic table is 

BASIC TABLE, TYPE III , a = 6, e> f 

U\ [* * 34] (r + s)a + re 

U2 [* 43 *] ra + (r — s)f + re 

Us [* 34 *] ra + (r — s)e + r / 

¿/4 [4 * 3*] sa + re 

¿/5 [*3 * 4] ra + (r — s)e 

ZY6 [43 * *] (r - s)e 
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