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COMPLEX FOLIATIONS W I T H ALGEBRAIC LIMIT SETS 

by 

César C a m a c h o & B r u n o A z e v e d o Scârdua 

Dedicated to Adrien Douady on the occasion of his 6 0 ^ birthday. 

Abstract. — We regard the problem of classification for complex projective foliations 
with algebraic limit sets and prove the following: 

Let T be a holomorphic foliation by curves in the complex projective plane CP(2) 
having as limit set some singularities and an algebraic curve A C CP(2). / / the 
singularities sing A are generic then either T is given by a closed rational 1-form 
or it is a rational pull-back of a Riccati foliation 71 : p(x)dy — (a(x)y2 + b(x)y)dx = 0, 
where A corresponds to (y = 0) U (p(x) = 0), on C x C. 

The proof is based on the solvability of the generalized holonomy groups associated 
to a reduction process of the singularities sing f n A and the construction of an affine 
transverse structure for T outside an algebraic curve containing A. 

1. Introduction 

Let J7 be a holomorphic codimension one foliation on the complex projective 2-

space C P ( 2 ) . Given any leaf L of T the limit set of L is defined as l im(L) = f]^ L\KU 

where Kv C Ku+1 is an exhaustion of L by compact subsets Kv C L. The limit set 

of the foliation T is defined as lim.F = \JL l im(L) . We are interested in classifying 

those foliations whose limit set is a union of singularities of T and an algebraic curve 

A C C P ( 2 ) . There are two reasons for this, first because these foliations exhibit the 

simplest dynamic behavior we can imagine and also because they must support an 

important class of first integrals. The parallel with the actions of Kleinian groups 

on the Riemann sphere comes naturally to mind. These foliations will correspond 

to actions with a finite set of limit points (one or two) while the first integrals of 

these foliations will correspond to the automorphic functions of such Kleinian group 
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58 C. CAMACHO & B. AZEVEDO SCÀRDUA 

actions. Here we will show that this similarity is not only apparent. Indeed the 
Kleinian groups will appear naturally as the holonomy groups of the Riccati foliation 
that, it will be shown here, is the ultimate model for these foliations. 

The problem of classifying such foliations T was considered in [1] and [17]. In 
both cases it is proved that, under generic assumptions, there are a rational map 
F: CP(2) -> CP(2) and a linear foliation C : \xxdy - X2ydx = 0 on CP(2) such that 
F = F*(C). In particular, it follows that no saddle-nodes appear in the resolution 
of sing.Fn A, and in fact all the singularities as well as all the holonomy groups 
appearing in this resolution are abelian and linearizable. Using [9] we can construct 
examples where T is a Riccati foliation with algebraic limit set on CP(2) , containing 
the invariant line (y = 0): 

T : p(x)dy — (y2a(x) + yb(x))dx = 0 

where a(x), b(x),p(x) are polynomials, and (x,y) G C2 C CP(2) is an affine chart (see 
Example 1.3 below) and A n C2 = (p(x) = 0) U (y = 0). 

In the Riccati case, the holonomy groups are solvable and we have an additional 
compatibility condition as in [2]. However we may have saddle-nodes in the resolution 
of sing.?7 fl A. The aim of this paper is to solve the problem above in the case the 
foliation may have certain saddle-node singularities in its resolution along A. 

Let therefore T be a foliation on CP(2) and let A C CP(2) be an algebraic invariant 
curve (perhaps reducible). We will say that sing T D A has the pseudoconvexity 
property (psdc) if the invariant (by T) part T of the resolution divisor D of sing JFPIA 
is connected and its complement is a Stein manifold (alternatively, T is a very ample 
divisor on the ambient (algebraic) manifold of the resolution of sing T n A denoted 
by CP(2 ) ) , so that we can apply Levi's extension theorem [21] which allows us to 
extend analytically to all CP(2) , any analytic object defined on a neighborhood of 
r . This property is verified if T has no dicritical singularities over A [1]. There is 
another remarkable case where property (psdc) is verified, as we can find in [17]. A 
singularity qQ G sing T Pi D is a corner if qG = D^C) Dj, where Di ^ Dj are invariant 
components of D. 

Also, we say that a saddle-node singularity qQ G D is in good position relatively 
to D, if its strong separatrix is contained in some component of T. A saddle-node 
xk+1dy — y(l + Axk)dx + h. o. t. = 0 is analytically normalizable if we may choose local 
coordinates (x,y) as above for which we have h. o. t. = 0. In this case it will be called 
normally hyperbolic if we have A 0 Q. In this case we call (x = 0) the strong separatrix 
and (y = 0) the central manifold of the saddle-node. We recall that according to [12] 
a saddle-node singularity is analytically classified by the local holonomy of this strong 
separatrix. In particular, the saddle-node is analytically normalizable if, and only if, 
its strong separatrix holonomy is an analytically normalizable flat diffeomorphism. 

Finally, we introduce the following technical condition (see Example 1.4): 
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(Ci) The saddle-nodes in the resolution o / s i n g j F n A are analytically normalizable, 
and the ones in the corners are normally hyperbolic. 

Our main result is the following: 

Theorem 1.1. — Let J7 be a codimension one holomorphic foliation on CP(2) having 
as limit set some singularities and an algebraic curve A C CP(2). Assume that 
sing f f l A satisfies property (psdc) and condition C\. Then, either T is given by a 
closed rational 1-form or it is a rational pull-back of a Riccati foliation 1Z : p(x)dy — 
(a(x)y2 4- b(x)y)dx = 0, where A corresponds to (y = 0) U (p(x) = 0) , on C x C . 

The proof of this theorem relies on the study of the singular and virtual holonomy 
groups [2], [5], [19] and [1] respectively, of the irreducible components of the divisor 
given by the resolution of sing .FDA. The limit set of the leaves L of T induces discrete 
pseudo-orbits in each of these groups, so that they are solvable [14]. The solvability 
of these groups, allows (under our restrictions on s i n g . F n A) the construction of 
a "transversely formal" meromorphic 1-form 77, defined over the invariant part T of 
the resolution divisor of sing J7 n A. This 1-form is closed and satisfies the relation 
duj = rjAuj, where ZD is a meromorphic 1-form with isolated singularities which defines 
the foliation JF, obtained from the resolution of s ingjFn A. Moreover, 77 has (simple) 
poles over T which coincides with the limit set of T. Using a result of Hironaka-
Matsumara (see [5], [8]), we conclude that (since C P ( 2 ) \ r is a Stein manifold) the 
1-form rj is in fact rational on CP(2). This corresponds to the existence of a Liouvillian 
first integral for T on CP(2), and also to the existence of an affine transverse structure 
for T in C P ( 2 ) \ C , where C C CP{2) is an algebraic invariant curve containing A, 
where A is the strict transform of A, [18]. This affine transverse structure can be 

extended as a projective transverse structure to ( C P ( 2 ) \ C ) U A. In particular, all the 
singular holonomy groups associated to the components of T are solvable analytically 
normalizable. This implies by (a careful reading of the last part of) [2] that either T 
is given by a closed rational 1-form or by a rational pull-back of a Riccati foliation. 

Example 1.2. — Let J7 be a rational pull-back of a hyperbolic linear foliation C : 
xdy — Xydx = 0, A G C \ R , on CP(2). Clearly T has an algebraic limit set consisting 
of some singularities and an algebraic curve A as in Theorem 1.1. 

Example 1.3. — Let us take any finitely generated group of Moebius transformations 
G C SL(2, C ) . Assume that the limit set of G is a single point, which can be assumed 
to be the origin 0 G C. The limit point 0 is a fixed point of G. According to [9] we 
can find a Riccati foliation J7 : p(x)dy — (a(x)y2 4- b(x)y + c(x))dx = 0 on C x C, 
whose holonomy group of the line (y = 0) is conjugated to the group G. Moreover 
we can assume that the singularities of T over this horizontal line are reduced and 
non degenerate. The line (y = 0) is invariant by T so that c(x) = 0, and also it is 
contained in the limit set of T and satisfies condition C\ in the statement above. This 
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60 C. CAMACHO & B. AZEVEDO SCÀRDUA 

example can also be seen in CP(2) using a birational transformation. This will create 
a dicritical singularity. This example will satisfy the (psdc) property for a proper 
choice of A. 

Example 1.4. — This is a counterexample to a more general statement. Let T be 
given by u = dy — (a(x)y + b(x))dx = 0 over C2 C CP(2). If we consider the vector 
field X(x,y) = (l,a(x)y + b(x)), then X is complete and tangent to T over C2. 
Moreover the orbits of X are diffeomorphic to C. It is not difficult to see, using the 
flow of X , that the leaves of T accumulate the line at infinity = CP(2)\C2, so 
that lim.77 = L^. However, generically, the resolution of sing J7 n exhibits some 
non analytically normalizable saddle-node. Indeed, this resolution is quite simple and 
shows that there are saddle-nodes with non convergent central manifolds [5]. On the 
other hand, in general, T is not a rational pull-back of a Riccati foliation of the form 
stated in Theorem 1.1. 

Acknowledgements. — Part of this work was conceived during a post-doctorade stage 
of the second author, at the Université de Rennes I. He wants to thank the IRMAR 
and specially D. Cerveau for the kind hospitality and for valuable conversations. 

2. Formal normal forms and resolution of singularities 

Let T and A C lim T be as in Theorem 1.1. Let n : (CP(2), T, D) -^_(CP(2), T, A) 
be the resolution morphism of Seidenberg, for sing T Pi A [20]. Thus CP(2) is a com­
pact complex surface which is obtained from CP(2) by a finite sequence of blowing-
up's, denoted TT. The proper morphism 7r induces therefore a foliation by curves 
F — 7r*jF on CP(2). The divisor D — 7r~1(A) of the resolution is a finite union 
D = Uj=o^?> °f Projective lines Dj = CP(1), j ^ 0, and of the strict transform of 
A, D0 = 7r-1(A\ sing T). The foliation T has singularities of the following two types 
(called irreducible singularities): 

(i) xdy — Xydx 4- h. o. t. = 0 (non degenerate) 
(ii) ypJrldx - [x(l + \yp) + h. o. t.]dy = 0 (saddle-node). 

We consider the foliation T — and denote by Y the invariant (by T) part of D, 
which consists of the invariant projective lines and of the strict transform of A. Let u 
be a rational 1-form which defines T on CP(2) and denote by UJ the strict transform 
of TT*UJ. Therefore the 1-form ¿¡5 has isolated singularities and we can assume that its 
polar set intersects the divisor D transversely and at regular points of T. Clearly we 
have l im(^) C T. 

Lemma2.1. — We have limp7) = T. In particular all the saddle-nodes in singTflT 
are in good position with respect to T. 

ASTÉRISQUE 261 



COMPLEX FOLIATIONS WITH ALGEBRAIC LIMIT SETS 61 

Proof. — Recall that by hypothesis V is connected. Let us fix a saddle-node qQ G Dj, 
which is not a corner. Assume by contradiction that the strong separatrix S of qQ 
is not contained in Dj. We consider the local of S around qQ at a small transverse 
disk E = E>, with £ n S = q\ £ sing.?7. This holonomy map hQ : (£,<2i) -> (£,<7i) is 
a flat local diffeomorphism, that is, a local diffeomorphism tangent to the identity. 
Thus, the orbits of hQ accumulate the origin q1, so that the local leaves of T around 
qQ and crossing £ , must accumulate the strong separatrix 5, and therefore we obtain 
S C limJ7 (notice that S is transverse to Z>, so that it corresponds to a separatrix of 
T not contained in A), which contradicts the hypothesis that Xvo&T — A. Now, we 
fix a saddle-node on a corner qQ — Did Dj. First we prove that if lim T contains the 
central manifold of qQ, say Di then it contains the strong manifold, in this case Dj. 
In fact, by the hypothesis we may write T as 

2/(1 + \xk)dx - xk+1dy = 0, Di = (y = 0), Dj = (x = 0). 

Now, in a sector (x,y) G U x C near 0 G C2, where U = {x G C*; Re(xp) > 0} the 
leaves of T have a saddle-like behavior in the sense that there are sections £$ = (x = 1) 
and Ytj — (y = 1), such that any leaf L of ^\UxC, n°t contained in (y = 0), is at a 
positive distance from 0 G C2 and, if we denote ru = fi L, we have: if —» (0,1) 
then rj -> (1,0). 

Now we prove the converse: If limT contains the central manifold of qQ, Di, then 
it contains the strong manifold, Dj. In fact, using the normal form above we may 
conclude that the local holonomy of the central manifold around qQl is linearizable of 
the form h: (£¿,(1,0)) -> (EÌ5 (1, 0)), h(y) = exp(2?riA) • y. If A G M\Q, then it is a 
non rational rotation so that the accumulations of the leaves in the section do not 
correspond to algebraic limit sets. Thus À G C\IR, and therefore, either h or h~x is 
an attractor, so that any leaf which intersects £« accumulates the origin (0,1) G 

We also remark that lim T contains all the strong séparatrices of the saddle-nodes 
in T. In fact, from the analytic normal form above we have a multivalued first integral 
f(x,y) = (y/xx) exp(l/kxk). This first integral shows that the leaves accumulate on 
the strong manifold (x = 0). Also from the same arguments of [1], [17] we have 
(in the non degenerated corners) the passage of the limit set lim(L) from one to the 
other adjacent component of D: It is in fact, only necessary to use the fact that if 
qQ is a non degenerate corner say of the form, xdy — Xydx + h. o.t. = 0 such that 
A G 1R+\Q+, then by Poincaré Linearization Theorem this singularity is linearizable, 
and therefore it is not difficult to see that the local leaves around qQ are not proper. 
On the other hand, in the case A G M_, any leaf which accumulates qQ and which is 
not a separatrix, accumulates both séparatrices. Finally, we remark that since by the 
hypothesis the limit set of T is algebraic, it follows that all the strong manifolds in 
singJ^nr are contained in T, that is, the saddle-nodes are in good position relatively 
to T. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



62 C. CAMACHO & B. AZEVEDO SCÀRDUA 

Now we fix local transverse sections Sj, Sj fl Dj = pj £ sing.77, (Sj,pj) = (C, 0). 
Let us write for the holonomy group Ro^J7, Dj,Sj) of Dj C T (see [2]). The 
following definition is found in [1]: 

Definition 2.2. — The virtual holonomy group of T relative to the component Dj at 
the section Sj is defined as 

H o r ^ , ^ , ^ - ) = { / e DiS(Sj,pj) I Lz = Lf(z), Vz € (Sj,Pj)} 

Clearly this group contains the holonomy group of T relative to Dj at the section 
Sj, denoted by Hol(J^, Dj, Sj) (see [2] for the definition of the holonomy group). Let 
us write GVj for the virtual holonomy group HoF (T', Dj ,Sj). 

We will write projective holonomy group to denote the holonomy group of any 
component Dj of D. 

We denote by Diff (C, 0) respectively Diff (C, 0) the group of germs of biholomor-
phisms respectively the group of formal biholomorphisms of (C, 0). We also denote 
by A^C, 0), respectively A^C, 0) the Lie algebra of the germs of singular holomorphic 
vector fields at 0 G C, respectively the Lie algebra of singular formal vector fields in 
one complex variable. 

According to Lemma 2.1 the limit set of any non algebraic leaf L induces discrete 
pseudo-orbits in each projective virtual holonomy group. These groups are solvable 
as a consequence of the following result due to L Nakai: 

Proposition 2.3 ([14]). — Let G C Diff(C, 0) be a subgroup which has some discrete 
pseudo-orbit. Then G is solvable. 

Corollary 2.4. — Let T be as in Theorem 1.1. Then each projective or virtual holon­
omy group of sing T n A is solvable. 

We also have the following result concerning subgroups with discrete pseudo-orbits: 

Theorem 2.5 ([10]). — Let G C Diff(C, 0) be a nonabelian subgroup with discrete 
pseudo-orbits outside the origin. Then G is either formally conjugate to some group 

Gl := (z ^az,z^ z/(l + zv)x<v) 

where av has order 2; or it is analytically conjugate to some group 

G2V>T := (z ^az,z^ z/(l + zv)x'v\ z h-> z/{\ + rzvflv) 

where au has order 2 and r G C \ M; or finally it is analytically conjugate to some 
group 

Gl := (z ^az,z^ z/(l + zv)x/v) 

where av has order n G { 3 , 4 , 6 } . 
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We shall consider the subgroups 

= {ip G Diff(C,0) \<p(z)k 
h a^Z 

ßcp G C* , dip G C 
1 -h a^Z k ' 

where k G N*. According to [4] any solvable non abelian subgroup of Diff(C, 0) is 
formally conjugated to a subgroup of some Hfo, this conjugacy is analytic except for 
some special case. We also use the following result: 

Lemma 2.6 ([15]). — Let G C Diff(C, 0) be a subgroup. Then: 
(i) G is abelian if, and only if, there exists a formal vector field £ G A*(C, 0) such 

that g*€ = £,Vg€G. In the case G is not linearizable the vector field £ is unique. 
(ii) G is solvable non abelian ify and only if, there exists a formal vector field 

£ G X(C, 0) such that g * £ = cg • £, cg G C*, V # G G, where cg ^ 1 for some g G G. 
The vector field £ is unique up to multiplicative constants. 

As it is well-known [11], given a formal vector field £ = a(z)d/dz, with £(0) = 0, 
there exists a formal diffeomorphism 0 G Diff (C, 0), such that 

where k G N and A G C are formal invariants associated to £. It is clear that if 
(p G Diff(C, 0) satisfies <^*£o,fc(̂ ) = £o,k(z), then <y2(z) G Ek. On the other hand it is 
not difficult to see that if G C Diff (C, 0) is solvable and non abelian, then the vector 
field f given by Lemma 2.6 above must exhibit A = 0 [15]. Therefore we have the 
following definition: 

Definition 2.7. — Let G C Diff(C, 0) be a solvable subgroup. A formal normalizing 
coordinate w G (C, 0) for G is anyone for which the vector field £ of Lemma 2.6 above 
writes as £(w) = £\,k(w)-

Clearly, if G is solvable and non abelian, then the formal normalizing coordinate 
is unique up to composition with elements <p G Ek, where k is given by G as above. 

If G is abelian then given two normalizing coordinates u and w with u' (0) = w' (0), 
we have u = <p(w), where ip(z) = exp (¿0 for some t G C. 

The group G is called analytically normalizable if the associated vector field £ is 
convergent, otherwise we will say that G is non analytically normalizable. In other 
words, a solvable (perhaps abelian) subgroup G C Diff(C, 0) is analytically normaliz­
able if it is analytically conjugated to its formal model. 

Proposition 2.8. — Let T, A be as in Theorem 1.1. Denote by D the resolution divisor 
of sing^7 n A. Let Dj be a component of D. Assume that the holonomy of the 
component Dj is solvable non abelian Gj C by a formal conjugation. Then, given a 
singularity qQ G singFC\Dj there exists a formal diffeomorphism $ G Diff(CP(2), qQ), 
such that $*(.7r) has one of the following normal forms where <&*(Dj) — (y = 0) : 

h a^Zh a^Zh a^Zh a^Z 
zk+i 

1 + Xzk 
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(a) u\ = xdy — Xydx, A E C\Q (qQ is formally linearizable non resonant); 
(b) ^n/m — rtxdy + mydx, n,m E N, (n,m) — 1 (i/D /ias a formal first integral); 

(c) c*;^ = fcrccfa/ + ^2/(1 + ^^^x£yk)dx (qQ is resonant non formally linearizable); 
(d) ĉ fc = yk+1dx — xdy (qQ is a saddle-node with strong manifold tangent to Dj); 
(e) cup,x = xp+1dy — 2/(1 + Xxp)dx (qQ is a saddle-node with strong manifold trans­

verse to Dj). 

Moreover, we may assume that converges except for case (c), and that Gj is 
analytically normalizable except for cases (b) and (c). 

Proof. — First we assume that qQ is non degenerate, say 

UJ(U, v) — udv — Xvdu + h. o. t., A E C* 

for some local holomorphic coordinates (u,v) centered at qQ. If A ^ Q then it follows 
that ¿¡5 is formally linearizable at q0, that is, we have (a). Assume now that A = 
—n/m E Q - with n, m E N, (n,m) = 1. Then we consider the local holonomy tp(v) 
of Dj at qQ. According to the hypothesis on the holonomy group of Dj, there exists 
a formal change of coordinates E Diff (C, 0) such that 

^2/(1 + ^^^x£yk)dx ^2/( cw 
(1 + awk)1/k 

where the linear part is c = exp(2fc7r^~ln). On the other hand it is well-known that 
an homography which is not tangent to the identity is linearizable by another homog-
raphy. If kn/m £ N, then c ^ 1 and therefore the singularity is therefore formally 
linearizable as in (b). Assume that q0 is not formally linearizable and (therefore) that 
k/n = £/m for some £ E N. Then according to [11] there exists a formal conjugacy 
at q0 which takes ¿¡3 into the form (c). 

Assume now that qQ is a saddle-node singularity. If the strong manifold of qQ is 
tangent to Dj then c = 1 in the expression of ip o cp o jp~1(w) above and therefore this 
local holonomy is formally conjugated to the local holonomy of the strong manifold 
(v = 0) of the saddle-node vkJrldu — udv = 0. Therefore ¿¡5 must be of the form (d) 
above. If the strong manifold of q0 is transverse to Dj then its has a formal normal 
form as in (e) as a consequence of [12]. 

Now we remark that in case (a) Gj must be analytically normalizable because 
it contains an element with nonperiodic linear part. In case (d) Gj is analytically 
normalizable because it contains the holonomy of the strong manifold of a;/fe, which 
is assumed to be analytically normalizable. We remark that in case (e) Gj is again 
analytically normalizable because, as it follows from Lemma 2.1, q0 is a corner. Indeed, 
in this case Gj contains the holonomy of the central manifold of cup,x, which is a 
nonrational linearizable rotation, and therefore has nonperiodic linear part. Finally 
we remark that according to [13] a singularity qQ has a formal first integral if, and 
only if, qQ has a holomorphic first integral, so that we can assume that $ is convergent 
in case (a). This finishes the proof of the proposition. • 
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Remark 2.9. — According to [11], [12], [13] any reduced singularity admits a formal 
integrating factor. 

3. Virtual holonomy and Singular holonomy 

In this section we follow [5], [19] and [2]. Let us consider the following situation: 
T is a foliation on a compact complex surface M, D C M is a compact (codimension 
one) invariant divisor with normal crossings, D — {jjDj where the Dj are irreducible 
smooth components. As in §2 we fix local transverse sections Sj, Sj D Dj — pj ^ 
sing.77, (Sj,pj) = (C, 0), and write Gj for the holonomy group B.ol(Jr, Dj, Sj) of Dj 
(see [2]). Given any other transverse section £ j to T such that T>jDDj = qj, there is a 
conjugacy between Hol(:F, Dj, S?) and H o l ^ , Dj,Sj) induced by lifting to the leaves 
of T a simple path joining pj to qj, in the leaf Dj\ singjF. Thus, up to conjugacy, we 
can identify these groups and in particular H o l ^ , Dj, T,j) is solvable if, and only if, 
Gj is. 

Now we fix a corner qQ = D{ D Dj. We assume that all the virtual the holonomy 
groups Gvu are solvable (perhaps abelian) for v G In the non abelian case we 
denote by kv the ramification order of Gvv, so that Gv C Gvv C Mku by a formal 
conjugacy. 

The following lemma holds in general, i.e., also for non normally hyperbolic saddle-
nodes: 

Lemma 3.1. — Assume that the holonomy group Gj is analytically normalizable, and 
that if qQ is a saddle-node then its strong manifold is contained in Dj. Then T is 
analytically normalizable at the singular point qQ. 

Proof. — First we assume that Gj is non abelian, so that there exists a local holo-
morphic coordinate z G SJ5 z{qj) — 0, where Hj is a local transverse section with 
Ej n Dj = qj close to qQ, such that the local holonomy of T due to qQ and relative to 
Dj writes 

^2/(1 + Xz 

(l-hazk)1/k' 

Now, if A ^ 1 then we can linearize this local holonomy and therefore the singularity 
q0, which is not a saddle-node (recall that the holonomy of the strong manifold of a 
saddle-node is never linearizable). Assume now that we have \k = 1. In this case we 
have <p(z)k = z/(l + azk). If qG is not a saddle-node then as in the proof of Proposi­
tion 2.8 it follows from [11] that qQ must be analytically conjugated to a singularity 
of the form tJk,£ as in Proposition 2.8, because the holonomies are analytically conju­
gated. If qQ is a saddle-node then by the hypothesis the strong manifold is contained 
in Dj. Therefore, by [12], the analytic normalization of the holonomy of the strong 
manifold implies the analytic normalization of the singularity qQ. Now we consider 
the case Gj is abelian and analytically normalizable. According to the techniques of 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 


