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SLOPE FILTRATIONS FOR R E L A T I V E FROBENIUS 

by 

Kiran S. Kedlaya 

Abstract. — The slope filtration theorem gives a partial analogue of the eigenspace 
decomposition of a linear transformation, for a Frobenius-semilinear endomorphism of 
a finite free module over the Robba ring (the ring of germs of rigid analytic functions 
on an unspecified open annulus of outer radius 1) over a discretely valued field. In 
this paper, we give a third-generation proof of this theorem, which both introduces 
some new simplifications (particularly the use of faithfully flat descent, to recover 
the theorem from a classification theorem of Dieudonné-Manin type) and extends the 
result to allow an arbitrary action on coefficients (previously the action on coefficients 
had to itself be a lift of an absolute Probenius). This extension is relevant to a study 
of (0, r)-modules associated to families of p-adic Galois representations, as initiated 
by Berger and Colmez. 

Résumé (Filtrations de pentes pour le Frobenius relatif). — Le théorème de filtration par 
les pentes donne un analogue partiel de la décomposition en espaces propres d'une 
transformation linéaire, pour un endomorphisme semilinéaire (pour Frobenius) d'un 
module libre de type fini sur l'anneau de Robba (l'anneau des germes de fonctions 
analytiques rigides sur une couronne ouverte non précisée de rayon externe 1) sur un 
corps à valuation discrète. Dans cet article, nous donnons une preuve de troisième 
génération de ce théorème, qui introduit quelques simplifications nouvelles (en par­
ticulier, l'emploi de la descente fidèlement plate, pour obtenir le théorème à partir 
d'un théorème de classification de type Dieudonné-Manin). Nous étendons aussi le 
résultat pour permettre une action arbitraire sur les coefficients (auparavant, cette 
action devait être un relèvement d'un Frobenius absolu). Cette extension est utile 
pour l'étude des (<f>, r)-modules associés à des familles de représentations galoisiennes 
p-adiques; Berger et Colmez ont commencé cette étude. 
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260 KIRAN S. KEDLAYA 

Introduction 

This paper describes a third-generation proof of the slope filtration theorem for 
Frobenius modules over the Robba ring (Theorem 1.7.1 herein). This proof is more 
expedient than what one finds in our original paper [21] or its sequel [22]. In addition, 
we generalize the slope filtration theorem by allowing for ring endomorphisms which 
do not act as Frobenius lifts on scalars, only on the series variable. This is intended 
as a prelude to a theory of Frobenius modules in families; we will not develop such 
a theory here, but see the next section for reasons one might want to do so, from 
the realm of p-adic Hodge theory. (Note that [22] itself generalizes [21] in a different 
direction, replacing the power series rings by somewhat more general objects; we do 
not treat that generalization here.) 

For an alternate perspective on this theorem and some related results in p-adic 
differential equations and p-adic Hodge theory, we also recommend Colmez's Bourbaki 
notes [11]. 

0.1. Context. — The slope filtration theorem [21, Theorem 6.10] (also exposed 
in [22]) gives a partial classification of Frobenius-semilinear transformations on finite 
free modules over the Robba ring (a certain ring of univariate formal Laurent series 
with p-adic coefficients). It is loosely analogous to the eigenspace decomposition of a 
linear transformation in ordinary linear algebra; it is also closely related to Manin's 
classification of rational Dieudonne modules. 

The slope filtration theorem was originally introduced in the context of Berthelot's 
rigid cohomology, a p-adic Weil cohomology for varieties in characteristic p. There, 
one obtains a analogue of the ^-adic local monodromy theorem, originally conjectured 
by Crew [14]; this analogue can be used to establish various structural results such 
as finiteness of cohomology [23] and purity in the sense of Deligne [24]. 

The effect of the slope filtration theorem on p-adic Hodge theory has perhaps been 
even more acute: it enables one to study p-adic Galois representations via their as­
sociated (</>, r)-modules over the Robba ring. This point of view has been put forth 
chiefly by Berger with striking consequences: he has proved Fontaine's conjecture that 
de Rham representations are potentially semistable [4], and given an alternate proof 
of the Colmez-Fontaine theorem on admissibility of filtered (0, iV)-modules [5]. (A 
useful variant of the latter argument has been given by Kisin [27].) More recently 
Colmez [13] used this viewpoint to define a class of trianguline representations of a 
p-adic Galois group; these play an important role in the p-adic local Langlands cor­
respondence for GL,2(QP) [12]. The trianguline representations are also important in 
the theory of p-adic modular forms, as most local Galois representations attached to 
overconvergent p-adic modular forms (namely, those of noncritical slope) are triangu­
line. The p-adic local Langlands correspondence in turn has touched off a flurry of 

ASTERISQUE 319 



SLOPE FILTRATIONS FOR RELATIVE FROBENIUS 261 

activity, which this introduction is not the right place to summarize; we merely note 
the resolution of Serre's conjecture by Khare-Wintenberger [25, 26], and progress on 
the Fontaine-Mazur conjecture by Kisin [28] and Emerton (in preparation). 

In both rigid cohomology and p-adic Hodge theory, one is led to study Frobenius 
modules in families, i.e., over the Robba ring with coefficients not in a p-adic field but 
in, say, an affinoid algebra. In either situation, the first step to studying Frobenius 
modules in families is to pass from a family to a generic point, which on rings amounts 
to replacing an integral affinoid algebra with a complete field containing it. In the 
rigid cohomology version of this argument, the resulting field is itself acted on by 
Frobenius, so the slope filtration theorem as presented in [21, 22] is immediately 
applicable; indeed, the key technique in [23] is to extend the application of the local 
monodromy theorem on the generic point to a large enough subspace of the base space. 
However, in the p-adic Hodge theory version, one might like to allow "Frobenius" to 
act in some fashion on the base of the family other than simply a lift of the p-power 
map; in fact, one natural situation is where the base is not moved at all. 

One goal of this paper, and in fact the principal reason for its existence, is to gen­
eralize the slope filtration theorem to modules over the Robba ring with an action of 
a "relative Frobenius", which may do whatever one wishes to coefficients as long as 
it acts like a Frobenius lift on the series parameter. We hope this will lead to some 
study of p-adic Hodge theory in families; some of the corresponding analysis in equal 
characteristics has been initiated by Hartl [17], using an equal-characteristic analogue 
of the slope filtration theorem based on the work of Hartl and Pink [18]. In mixed 
characteristics, Hartl [16] has set up part of a corresponding theory, which addresses a 
conjecture of Rapoport and Zink [40] from their work on period spaces for p-divisible 
groups; results are presently quite fragmentary, but a good theory of ((/>, r)-modules 
in families may help. Another potential application would be to analysis of the lo­
cal geometry of the Coleman-Mazur eigencurve [10], which parametrizes the Galois 
representations attached to certain p-adic modular forms, or of higher-dimensional 
"eigenvarieties" associated to automorphic representations on groups besides GL2. 
An initial step in this direction has already been taken by Bellai'che-Chenevier [3], 
who study deformations of trianguline representations; however, this involves only 
a zero-dimensional base, so they can already apply the usual slope filtration the­
ory after a restriction of scalars. For other questions, e.g., properness, one would 
want to consider positive-dimensional bases like a punctured disc. In this direction, 
Berger and Colmez have introduced a theory of etale ((/>, T)-modules associated to 
p-adic Galois representations in families [6], which relativizes some of the results of 
Cherbonnier-Colmez [9] and Berger [5] for a single p-adic Galois representation. 
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262 KIRAN S. KEDLAYA 

0.2. About the results. — For the sake of introduction, we give here a very brief 
description of what the original slope filtration theorem says, how the main result of 
this paper extends it, and what novelties in the argument are introduced in this paper. 
Start with a complete discretely valued field K of mixed characteristics (0,p). Let St 
be the ring of formal Laurent series Y^nezcnuTl convergent on some annulus with outer 
radius 1 (but whose inner radius may depend on which series is being considered). 
Let (j>K • K —* K be an endomorphism lifting the absolute g-power Probenius on the 
residue field of for some power q of p, and define a map <\>: St —> S by the formula 
(/>(52cnun) = ]C ^K"(c™)0(M)n» where (j)(u) — uq has all coefficients of norm less than 
1. Let M be a finite free ^-module equipped with a 0-semilinear map F : M —> M 
which takes any basis of M to another basis of M (it is enough to check for a single 
basis). Then [21, Theorem 6.10] asserts that M admits an exhaustive filtration whose 
successive quotients are each pure of some slope (i.e., some power of F times some 
scalar acts on some basis via an invertible matrix over the subring of St of series with 
integral coefficients), and the slopes increase as you go up the filtration; moreover, 
those requirements uniquely characterize the filtration. 

As noted earlier, the slope filtration should be thought of as analogous to what one 
might get from a linear transformation over K by grouping eigenspaces, interpreting 
the slope of an eigenspace as the valuation of its eigenvalue. One can in fact deduce 
an analogous such result for semilinear transformations over K, which also follows 
from the Dieudonne-Manin classification theorem. One might then expect that the 
slope filtration can be generalized so as to allow any isometric action on K, not just 
a Probenius lift; that is what is established in this paper (Theorem 1.7.1). 

As promised earlier in this introduction, one happy side effect of this generalization 
is the introduction of some technical simplifications. We give a development of the 
theory of slopes which does not depend on already having established the Dieudonne-
Manin-style classification; this follows up on a suggestion made in [22]. We give a 
much simplified version of the descent argument that deduces the filtration theorem 
from the DM classification, based on the idea of replacing the Galois descent used pre­
viously with faithfully flat descent; this avoids the use of comparison between generic 
and special Newton polygons, and of some intricate approximation arguments. (In 
particular, there is no longer any need to deal with finite extensions of the Robba ring, 
which allows for some notational and expository simplifications.) That substitution 
creates some flexibility in what we may take as the "extended Robba ring" for the DM 
classification; here we use a ring made from generalized power series, some of whose 
properties are a bit more transparent than for the corresponding "big rings" in [21] 
and [22]. 

ASTÉRISQUE 319 



SLOPE FILTRATIONS FOR RELATIVE FROBENIUS 263 

0.3. Structure of the paper. — The structure of this paper is a bit unusual, as we 
have attempted to make the paper more friendly to the novice reader by fronting some 
of the key assertions and pushing back more technical aspects. (This assertion applies 
both to the paper as a whole, and to Sections 2 and 3 individually.) The consequence 
is that the logical structure is a bit loopy: results are stated, and sometimes used, 
before having been proved. However, we hope that it is not too hard to see that there 
are indeed no vicious circles in the reasoning. 

In Section 1, we introduce the Robba ring, the category of 0-modules, the notions 
of degree and slope, the subcategories of pure ^-modules of various slopes, and the 
statement of the filtration theorem. 

In Section 2, we introduce an extended Robba ring (whose elements are modeled 
on Hahn-Mal'cev-Neumann generalized power series rather than ordinary power se­
ries), state a classification theorem for 0-modules over the extended Robba ring, then 
perform the calculations required to prove this theorem. 

In Section 3, we deduce the slope filtration theorem from the classification theorem 
over the extended Robba ring. The key tool here is an invocation of faithfully flat 
descent for modules. 

Acknowledgments. — Thanks to Laurent Berger for the original suggestion to con­
sider relative Frobenius and for subsequent discussions, to Lucia di Vizio for providing 
the reference to Praagman's work, and to Peter Schneider for additional comments. 

1. Statement of the filtration theorem 

1.1. The Robba ring 

Definition 1.1.1. — Let K be a field complete for a discrete valuation, with residue 
field k; let OK denote the valuation subring of K and let denote the maximal ideal 
of Ox. (We need not make any restriction on the characteristics of K, k.) Write | • | for 
some fixed norm corresponding to the valuation (the normalization does not matter). 
For r > 0, let &r be the ring of rigid analytic functions on the annulus e~r < \t\ < 1 
(these are just Laurent series in the variable t convergent on this region), and let & 
be the union of the &r. The ring S% is called the Robba ring over K. It follows from 
the work of Lazard [29] that & is a Bezout domain, that is, an integral domain in 
which every finitely generated ideal is principal. 

Remark 1.1.2. — Any Bezout domain R enjoys a number of nice properties gener­
alizing properties of principal ideal domains, including the following. Some of these 
are actually properties of Prüfer domains, in which every finitely generated ideal is 
projective; these generalize Dedekind domains to the non-noetherian setting. 
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- Any finite locally free i2-module is free [21, Proposition 2.5]. 

- Any torsion-free .R-module is flat; this holds for any Prufer domain [8, VII 

Proposition 4.2]. 

— Any finitely presented projective -R-module is free [14, Proposition 4.8]. 

— If M is a finite free i2-module and N is a submodule of M which is saturated, i.e., 

N = Mn(N<S>RFraci?), then N and M/N are both free [14, Proposition 4.8], 

[21, Lemma 2.4]. 

Definition 1.1.3. — Let ^int be the subring of & consisting of series with coefficients 

in OK; this ring is a discrete valuation ring with residue field &((£)), which is not 

complete but is henselian [21, Lemma 3.9]. Let &hd be the subring of g% consisting 

of series with bounded coefficients; it is the fraction field of ^mt . 

Remark 1.1.4. — Note that for i G ^ , one has x € ^int if and only if there exists an 

integer n such that the function tnx is bounded by 1 on some annulus e~r < \t\ < 1. 

Remark 1.1.5. — Lazard's work [29] includes a theory of Newton polygons for ele­

ments of using which one can read off numerous structural properties. One key 

example is that the units in & are precisely the nonzero elements of ^bd [21, Corol­

lary 3.23]. 

Remark 1.1.6. — One can also define the Robba ring even if the valuation on K is 

not discrete, but its properties are very different. For instance, ^bd is no longer the 

fraction field of ^mt . This makes even the formulation of a slope theory over such K, 

let alone any proofs, somewhat more delicate than the approach we take here. 

1.2. Frobenius lifts on the Robba ring 

Definition 1.2.1. — Fix an integer q > 1. (To see why we forbid q = 1, see Re­

mark 1.7.9.) A relative (q-power) Frobenius lift on the Robba ring is a homomor-

phism <j> : —> 3? of the form J2i cit1 i-* Y^i ^K^^U1, where (J>K is an isometric field 

endomorphism of K and u G ̂ int is such that u — tq is in the maximal ideal of Mint. 

If k has characteristic p > 0 and q is a power of p, we define an absolute (q-power) 

Frobenius lift as a relative Frobenius lift in which (f>K is itself a g-power Frobenius lift. 

Remark 1.2.2. — The treatments in [21, 22] only allow absolute Frobenius lifts, and 

the approaches do not carry over easily to the general case because of the use of Galois 

descent at some key moments. See the introduction for discussion of why one needs 

the relative case. 
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Definition 1.2.3. — For r > 0, let | • |r denote the supremum norm on the circle 

\t\ = e-r, as applied to elements of £%r\ one easily verifies that 

We extend the definition to vectors by taking the maximum over entries. 

Remark 1.2.4. — Note that for / analytic on the entire open unit disc (i.e., repre­

sented by an ordinary power series rather than a Laurent series), we have | / | r < | / |s 

whenever 0 < s < r; in other words, the supremum of / over the entire disc |£| < e~s 

occurs on the circle \t\ = e~s. In fancier language, the circle \t\ = e~s is the Shilov 

boundary of the disc \t\ < e~s, as in [7, Corollary 2.4.5]. 

Remark 1.2.5. — Let 0 be a relative Frobenius lift; then for some 7*0 > 0, we have 

\</>(t)/t? - l\ro/q < 1. It follows that for r G (0,r0) and / G </>(/) £ &r/q and 

| / | r = |0(/) |r/g- In geometric terms, 0 induces a surjective map from the annulus 

e~r/q < \t\ < 1 to the annulus e~r < \t\ < 1. (Compare [21, Lemma 3.7].) 

The following is both a typical example of how to make calculations on Robba 

rings and a crucial ingredient in what follows. 

Proposition 1.2.6. — Let <\> be a relative Frobenius lift, and let A be an n x n matrix 

over &mt. Then the map v \-+ v — A(j)(v) on column vectors induces a bisection on 

Proof. — The problem is unaffected if we replace v ,A by £mv, (£m/(/>(tm))j4, so by 

Remark 1.1.4, we may reduce to the case where the entries of A are bounded by 1 on 

some annulus with outer radius 1. Choose ro as in Remark 1.2.5. To check injectivity, 

we must argue that if w = v — A(j)(v) is bounded, then so is v. Choose r 6 (0, ro) such 

that A, w , 0 ( v ) have entries which are defined on the annulus e~r < \t\ < 1, and the 

entries of A are bounded by 1 there. Choose c > 0 such that |w|s < c for 0 < 5 < r, 
and such that |<^(v)|s < c for r/q<s<r. (The latter is possible because every 

analytic function on a closed annulus is bounded.) Then |v|s = |w + A<j)(v)\s < c for 

r/q < s < r, so \(j)(v)\s < c for r/q2 < s <r/q. Repeating the argument, we see that 

|v|s < c for 0 < s < r, proving the claim. (Compare [22, Lemma 3.3.3].) 

To check surjectivity, take w G £%n. Choose r G (0, r0) such that A, w have entries 

which are defined on the annulus e~r < \t\ < 1, and the entries of A are bounded 

by 1 there. Define the sequence {w /}g0 as follows. Start with w0 = w. Given 

w/, write = J2iezwi,itli Put w/+ = J2i>oWM** and wz~ = w/ ~ wz+> and Put 
wj+i = A(t>(wf). Since the entries of £_1w/~ are analytic on the entire open unit disc, 

^2citl =sup{|ci 
iez r 1 

\e~ri}. 
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by Remark 1.2.4 we have 

|w+|P < e-r+r'*\w+\r/q < c - ^ l w , ! ^ , ; 

consequently, |wj+i|r/g < e~r+r/9|w/|r/q. Thus the sequence wz+ converges to zero 

under | • |r/g, and hence also under | • \s for s > r/q by Remark 1.2.4. On the other 

hand, for 0 < 5 < r/q, applying Remark 1.2.4 after substituting t i - ^ r 1 gives 

|w"|s < |wf |r/g < \wt\r/q. 

Now set v = X^owz+5 then v nas entries analytic on the closed disc of radius 

e~rlq, and w - v + A/>(v) = X)z=o wz~ is bounded on e~rlq < \t\ < 1. Since ^(v) is 

analytic on the closed disc of radius e~rlq , we can write v = w + A(f)(v) — X)/°̂ 0 wz~ 

and thus extend v across the annulus e~r/q < \t\ < e~rlq ; by induction, v extends 

to the entire open unit disc. This proves the desired surjectivity. • 

One can also prove the following, as in [22, Lemma 5.4.1]. 

Proposition 1.2.7. — Let £ denote the xriK-adic completion of &hd. Let <j> be a relative 

Frobenius lift on and let A be an n x n matrix over &int. IfveS"n is a column 

vector such that Av = 0 (v ) , then v G (Shd)n. 

Proof — This will follow later from Proposition 2.5.8; we will not use it in the interim. 

• 

Remark 1.2.8. — In the case where A is invertible, Proposition 1.2.7 was proved inde­
pendently by Cherbonnier (unpublished, but see [9, Theoreme III. 1.1]) and Tsuzuki 
[41, Proposition 4.1.1]. Tsuzuki's underlying argument can be used even when A is 
not invertible; see [41, Proposition 2.2.2]. 

Remark 1.2.9. — It should be possible to carry everything in this paper over to the 

case where one only assumes = ^ cit1 such that cq G o*K and G for i < q. 

(For instance, in the theory of (0, r)-modules, the composition of the usual 4> with any 

nontrivial 7 G T would have this property.) The proof of Proposition 1.2.6 extends 

to this setting, but the embedding of 2% into the extended Robba ring g% of Section 2 

must be modified, as accordingly must the projection construction of Section 3. 

1.3. ^-modules 

Definition 1.3.1. — Define a </>-(ring/field) to be a ring/field R equipped with an en-

domorphism 0; we say R is inversive if (j) is bijective. Define a (strict) (p-module over 

a </>-ring R to be a finite free i?-module M equipped with an isomorphism 0*M —• M, 

which we also think of as a semilinear 0-action on M; the semilinearity means that 

for r G R and m G M, (j)(rm) = 0(r)0(m). Note that the category of 0-modules 

admits tensor products, symmetric and exterior powers, and duals. 
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Remark 1.3.2. — The definition of ^-module used here is somewhat more restrictive 
than one sees in other contexts, hence the optional modifier "strict". For instance, 
in some cases one allows modules which are projective but not free, or worse. In 
other cases, one allows the 0-action to take kernel and cokernel in some ^-stable Serre 
category of i^-modules; we will do this ourselves shortly. 

Remark 1.3.3. — It will be convenient for us to describe 0-modules in terms of bases 
and matrices. If M is a 0-module and e i , . . . , en is a basis of M, we can completely 
describe the ^-action on M by specifying the invertible nxn matrix A which satisfies 
4>(ej) = ^2iAije{. Note that the semilinearity skews conjugation: if e i , . . . , e ^ is 
another basis and the change of basis matrix U is defined by = ]T\ t/^-ei, then the 
^-action on the new basis is via the matrix U~x A(/>(U). 

It is also useful to think of ^-modules as modules for a twisted polynomial ring. 

Definition 1.3.4. — For R a </>-ring, define the twisted polynomial ring R{T} to be the 
set of finite formal sums ai^% w^n ai ^ ^ equipped with the noncommutative 
ring structure in which Ta = <f)(a)T for a G R. If R is a field, then all left ideals of 
R{T} are principal, by the division algorithm [36, Theorem 6]. If R is inversive, one 
may similarly define a twisted Laurent polynomial ring R{T±}. 

Remark 1.3.5. — In general, a 0-module over R can be interpreted as a left R{T}-
module which is finite free over R, but one must remember the condition that (j) carries 
some basis to another basis. On the other hand, if R is inversive, then the data of a 
0-module over R is equivalent to the data of a left R{T± }-module which is finite free 
over R. If R is an inversive 0-field, then irreducible ^-modules over R all have the 
form i?{T±}/jR{T±}P for some irreducible twisted polynomial P. 

When talking about pure slopes, it will be helpful to switch from working with (j) 
to working with a power of $\ the following definition facilitates this switch. 

Definition 1.3.6. — View 0-modules as left modules for the twisted polynomial ring 
R{T}. For a a positive integer, define the a-pushforward functor [a]* from ^-modules 
to </>a-modules to be the restriction along the inclusion R{Ta} —• R{T}. Define the 
a-pullback functor [a]* from (/>a-modules to (^-modules to be the extension of scalars 
functor 

M ^ R{T} ®R{Ta} M. 

The following are easily verified (as in [22, §3.2]): 

— The functors [a]* and [a]* form an adjoint pair. 
— The functors [a]* and [a]* are exact and commute with duals; consequently, [a]* 

and [a]* also form an adjoint pair (i.e., in the other order). 
— The functor [a]* commutes with tensor products over R (but [a]* does not). 
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- If M is a 0-module and AT is a 0a-module, then M ® [a)*N = [a]*([a]*M <g) N). 

- If M is a 0-module, then rank([a]*M) = rank(M). 

- If N is a 0a-module, then rank([a]*AT) = arank(TV). 
- If N is a 0°-module, then [a]*[a]*AT = TV 0 0*(AT) 0 • • • 0 (0a_1)*(AT). 

Definition 1.3.7. — For M a </>-module, put 

jff°(M) = ker(</> — 1 : M —> M), if X(M) = coker(0 - 1 : M —> M). 

One easily checks that in the category of ^-modules over R, 

Hom(M, AT) 9* °(MV ® TV), Ext(M, N) =" if1(Mv ® iV). 

Moreover, for AT a </>a-module, there are natural bijections 

H\N)^ Wda^N) (¿ = 0,1). 

Remark 1.3.8. — Beware that although the pullback/pushforward terminology was 

inspired by a related construction in [18], the two do not agree in that context. 

1.4. Degrees, slopes, and stability. — For the rest of this section, we will put 
ourselves in the following situation. Note that Hypothesis 1.4.1 has a weak form and 
a strong form; we will assume only the weak form unless otherwise specified. (Thanks 
to Peter Schneider for suggesting this dichotomy.) 

Hypothesis 1.4.1. — Let Rint C Rbd C R be inclusions of Bezout domains such that 
R* C Rhd. Let (j) be an endomorphism of R acting also on Rbd and Rint. Let 
w : Rhd - > Z U {+00} be a 0-equivariant valuation such that w(R*) = Z and Rint = 
{r G Rhd : w(r) > 0}. Suppose in addition that for any nx n matrix A over Rmt, the 
map V H V - A(j)(v) on column vectors induces an injection (weak form) or bijection 
(strong form) on (R/Rhd)n. Note that the analogous hypothesis for (j)a also holds, 
since one can identify the kernel and cokernel of v i-> v — A(j)a(v) on (R/Rhd)n with 
the kernel and cokernel of 

( v 0 , v i , . . . , v a _ i ) *-* (v0 - j40(va_ i ) ,v i - 0 ( v o ) , . . . , v a _ i - 0 ( v a _ 2 ) ) 

on (R/Rhd)na. (Compare the last remark in Definition 1.3.7.) 

Example 1.4.2. — For our purposes, the principal example of strong Hypothesis 1.4.1 

is as follows. We take R, i?bd, Rint = M,3ghd,Mint to be the Robba ring and variants 

over K\ note that ^bd = ^ * U {0}. We take 0 to be a relative Frobenius lift, and 

w to be the valuation on S%hd for which < înt is the valuation subring. The last 

condition in strong Hypothesis 1.4.1 holds by virtue of Proposition 1.2.6. We will 

construct a variation of this example, the extended Robba ring in Section 2; using 

the axiomatic approach avoids some repetition. 
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