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1. Introduction. Integers, circle, line. — Throughout this paper X
will be a locally compact abelian group, with character group Y. For
technical convenience we shall always assume both JT and Y metrisable,
although none of our results, with the single exception of Theorem 4.2,
depend essentially on metrisability. The principal object of "abstract"
harmonic analysis has always been to describe the translation-invariant
vector subspaces of the important Banach spaces on ^T, especially the
subspaces of-Z^^T) and Z2 (JT) and L^ (^T). We propose to consider here
the translation-invariant subalgebras of the most important pointwise Banach
algebra on JT, namely Co(^T), which consists of all continuous complex-
valued functions vanishing at infinity. As usual, the Fourier transform
will be an essential tool. We shall study a uniformly closed translation-
invariant (henceforth called simply closed invariant) subalgebra A of Co (^T)
by studying its spectrum o"(^4), a certain closed subsemigroup of the dual
group Y.
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Allow us to emphasize the fact that Co {X) consists of complex functions
and that A will not in general be closed under complex conjugation. Indeed
the classification of all closed invariant subalgebras of a real Co(^T), or all
selfadjoint ones of a complex Co(^T), is quite trivial. Each such subalgebra
can be identified with Co { X / H ) for some quotient group X / H .

It will be useful first to look at the classical Fourier series situation,
X the reals mod 27: (or the circle) and Y the integers. We can easily
prove A invariant not only under translation but also under convolution by,
say, all integrable functions. Now let e^ be the exponential defined by

en(^)=ein•v and suppose A contains the function / having V a^ as

F'ourier series. Then A also contains all the exponentials that actually
appear in this Fourier series. For a^=^^/e^4; and if a^ o,
then e^^A. Furthermore the series is Fejer summable uniformly to /.
Hence the algebra A is completely determined by the exponentials it
contains. And since these exponentials are obviously closed under point
wise multiplication, they constitute a semigroup that can be identified with
a subsemigroup cr (A) of the integers. Conversely, it is clear that each
subsemigroup S of Y gives rise to a closed invariant subalgebra of Co(^T).
(And, in fact, the subsemigroups of the integers can be neatly described.
They are either cyclic subgroups or differ from some { nm: n > o } by a
finite number of elements.)

The above argument (except for the last parenthesis) applies with mere
notational changes to an arbitrary compact abelian X. The classification
of closed invariant subalgebras A of Co(X) reduces to the classification
of subsemigroups of the (discrete) dual jT, and as Fourier analysts we can
consider the problem solved. (We pass hastily over the quite unsolved
algebraic problem of finding all the subsemigroups of an arbitrary abelian
group Y. Even for concrete and reasonable groups, like the lattice points
in /i-space, it isn't easy.)

Returning to Fourier series, suppose we reverse the roles of X and Y.
An element/of the invariant algebra^ is now a double-ended sequence { < 2 ^ } ,
with lim a^==o. Because j a^} is countable, A always contains the

7l==± oo

complex conjugate sequence ( a ^ j . (See e. g. [9], p. 4o). Hence by
Weierstrass-Stone, A can be identified with Co(Q) for some quotient
space Q of X'. But because A is translation-invariant, and because each
{ ( X n } ^ A vanishes at infinity, Q must be X itself and A can be no less than
all of Co(X) ==all double-ended null sequences. Substantially the same
argument applies for any discrete X. Closed subalgebras A are self-adjoint,
and hence trivially classifiable. The spectrum of A is always the open
subgroup of Y orthogonal to the finite subgroup of X consisting of the
periods of the f^A. Using a less obvious method we shall prove in para-
graph 5 that closed invariant subalgebras of Co{X) are self-adjoint for any
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totally disconnected X. Hence, with respect to the theory of invariant
algebras, totally disconnected groups are totally uninteresting.

The real line is not so trivial as the circle and the integers. On the
contrary, it displays all the complexities of an arbitrary locally compact
abelian group. It is natural to define the spectrum of an /€ Co as the
support of the Fourier transform f (in the sense of L. Schwartz's distribu-
tion theory) and the spectrum of an invariant subalgebra A as the union of
the o"(/) for f^A. The set (7(^4) is (i) perfect, (2) closed under addition,
and (3) locally a set of multiplicity (as defined in the uniqueness theory of
trigonometric series). Conversely any subset S of the real line having
these properties can appear as ff(A) for some invariant subalgebra A of Co.

But we do not know whether Ai-^-A^ implies v(Ai) ̂ a(A^). This is a
spectral synthesis problem, and it seems to be logically distinct from the
famous one solved by MALLIAVIN [6]. In effect, MALLIAVIN exhibits two
distinct weak* closed invariant subspaces of L^ {X) that have the same
spectrum. We have not been able to extract from his method two distinct
uniformly closed invariant subspaces of Co{X) that have the same spectrum
(although from such a pair of subspaces it would be trivial to construct a
corresponding counterexample with subalgebras). It is true that Malliavin's
basic function f actually belongs to Co- But to produce a closed invariant
subspace B such that (7(£)=a-(f) but/^:2?, one must be able to assert,
for instance, that o"(y) supports many "smooth" measures, i. e. measures
whose Fourier-Stieltjes transforms belong to Co- Such an assertion is true
for the more ancient L. SCHWARTZ counterexample [10] in vector groups of
dimension ̂  4? and hence we can show (Theorem ^.12) that o~(A) does not
determine A on these groups. It is natural to conjecture that such
subalgebra counterexamples exist for every group X that is neither compact
nor totally disconnected, since Malliavin's subspace counterexamples exist
for every X that is not compact.

In any event we cannot classify the totality of closed invariant algebras on
a general locally compact abelian X by classifying semigroups in the dual
group Y. We must instead look for some reasonable subclass of algebras,
and a corresponding subclass of semigroups, such that the correspondence
is one-one. In ^i-space, one interesting class of semigroups is the cones,
and another is Hille's angular semigroups. These classes are discussed
in paragraphs 6 and 8. Specialization to X = the real line yields a simple
characterization of the " Phragmen-Lindelof algebra" : all Co functions on
the real axis that extend continuously to be analytic and bounded in the
open upper half plane.

2. Notations. Definitions. Preliminaries.
X : Locally compact abelian group.
Y : Character group of X.
Both X and Y metrisable.



348 K. DE LEEUW AND H. MIRKIL.

Additive notation, zero element o. Same letter y for point of Y and
function it induces on X. Similarly with x. Hence y { x ) == ̂ (j). (But
note o € Y induces constant function i on X.)

Co(^) : Continuous functions vanishing at infinity.
C(^¥) : Continuous bounded functions.
L^{X) : Integrable functions (for Haar measure).

All functions take complex values.
3 : Fourier transform of trigonometric polynomial <?=aiji+...+a^j,,.

Denned as measure on Y concentrated at points ji, . . ., y^ with
values ai, . . ., a^.

f : Fourier transform of/€ Co (^T) or e C(^). (See § 3.)

g : Fourier transform Qig^L^X). g { y ) == ( yWgW dx.

o-(<?) : Spectrum of trigonometric polynomial. Finite point set
[y^ " " , y n \ -

o-(/) : Spectrum of/e Co(JT). {See § 3.)
o-(^) : Spectrum of ge.L^X). Support of g . Defined as closure

in r o f { j : ^ ( j ) ^ o j .
/: Complex conjugate. f{x) ==.f(^).
f : Reflection. f'{x) ==/(— x).
TV : Translate. (T^f) (^o) ==f(x + ̂ o).
^ : Pointwise multiplication, {fg) {x) =zf{x)g{x).

f - k g : Convolution. (f^g){x^= C f{x,—x) g{x) dx.

We collect below some formulas for g^L^ (^T).

^( j )==(j*^)(o) .
(^1*^2)"=^1^.2.(T^gr^xg.
{ygr= T^g.
^(^i*^)Ca(^)n<7(^)
^(T7^)^^^).
^(J^^JH-^^).
^(^)==^(^)=-^(^).

In proving a few of the preliminary lemmas in this section and in sec-
tions 3 and ^ we shall need to extend the above machinery by substituting
measures for g^.U{X}, or by substituting bounded measurable functions
for the/eC(^T). The modifications in definition are obvious, and the
formulas remain true. In any event, our excursion into greater generality
will be brief : in fact, the major purpose of Lemmas 4.5 and 4.6 will be to
show the adequacy of Z1 (^T) and C(A^) for all computations involving
invariant subspaces of Co(^T).
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LEMMA 2 . 1 . — Let B be a uniformly closed linear subspace of Co(v^).
Then in order that B be invariant under translation it is necessary and
sufficient that B be invariant under convolution by all g^L^^X).
(Notice that translation is convolution by point masses.)

PROOF. — Suppose B is translation-invariant, and suppose first that
g vanishes outside of some compact set Z'. Then for each f^ B^ convolu-
tion by g amounts to integrating the continuous 7?-valued function x -> T^f
over the compact set Z with respect to the measure g{— x) dx :

fi,g=.fT^fg{-x)dx.
^ z

By anyone's theory of vector-valued integration this puts f^g in B. For
the most general g ' ^ L 1 (^T), we can find a monotone sequence of compact Zn

such that j g'(^) ^x approaches zero. Then f T^fg{— x) dx con-
^x—z,, ^z,,

verges uniformly to / -^ g-
In proving the converse we need an approximate convolution unit. This

is a sequence gn^. L^(X) such that

( 1 ) ^n^ 0 ;( 2 ) y^=1 ;
(3) gn==o outside Vn-,

where } Vn} is a fundamental sequence of neighborhoods of o^.X. (See
also § 6.)

It is now an easy matter to finish Lemma 2.1 by proving for any /€ B
that (Tycgn) ^/converges uniformly to T^f.

LEMMA 2.2. — Let X° be the set of Fourier transforms of g^L^^X).
( 1 ) ^ is a uniformly dense sub algebra of Co (Y).
(2) X° is self-adjoint^ i. e. closed under complex conjugation.
(3) G is regular in the sense of Silov. That is^ for disjoint subsets Z^

compact and Zo closed^ there is some g -e ^ with §'=i on Zi and g= o
on ZQ.

(4) For /eCo(^),/^o, define 7V/.= {^eZ1 (^) :/* ̂ = o j. Then
the set SrCf= [g \g^.Nf \ is an ideal in X", and there is at least one point
y e Y at which all g e 9tf vanish.

(5) Suppose cpe^2^), cp real^ cp E=E a/ and cp == o outside some com-
pact K. Then c p ^ c p e ^ . In fact^ cp^cp==^- for some g^o,
and (J(g)CK + K.

Proofs, for instance, in LOOMIS [5]. Statement (4) is Wiener's Tauberian
theorem. We shall see in paragraph ^ that for/e Co(J^), X non-compact,
there are infinitely many y at which all g^9tf vanish.
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We list below three notions of convergence for functions in C(X)
orCo(^).

Define ||/[[z= sup |/(^) [, ̂ Z.
f^-> f uniformly means \\f^—f\\^-^o.
/v->/ narrowly means \\f^\\x—\\f\\x and ||/v-/|[^->o for each

compact ZCJT.

/v—/ weak* means j f^-> C f g for each ^eZ^^O-
^JC ^/ Y

^ fnr papL xrc /"!/1^6
^ ^X

Clearly uniform convergence implies narrow, and narrow convergence
implies weak*. Uniform convergence defines the only complete metrisable
topology compatible with multiplication and addition in C(JT). Weak*
convergence comes from the ordinary weak* topology on Z°°(^). Narrow
convergence also defines a topology, but it is one for which C{A) is not
even a topological group under addition (in fact, fn->f does not imply
/^+^-^/+^). Nonetheless, when Y is considered as a subset of C(JT),
the narrow topology induces on Y the given topology of Y.

The following lemma shows that we need not always specify the topology
on C{X).

LEMMA 2.3. — Let B be an invariant linear subspace of Co(^). Let B

be the uniform closure, B the narrow closure, and B the weak* closure,

all taken within Co(^T). Then B equals B equals B.

PROOF. — Clearly it is sufficient to assume B already uniformly closed

and to prove B equals B. Suppose B is a proper subspace of B. Since
both subspaces are uniformly closed, then by Hahn-Banach there exists
some integrable Radon measure ^ on X that is orthogonal to all of B but

not orthogonal to all of B. Suppose f f ( x ) d^{— x) ̂  o, for some f^.B.

Then the bounded (continuous) function f ̂  ^ is not identically zero.
Hence by duality there is some g^L^{X} such that

f(f-k^)Wg(-x)dx^<

This integral also can be written

: 0.

ffW(^-k^{-^dx^o.

Suppose now /a -> f weak*, f^B. Since ̂ ^eZ1^), then

//a(^^y-^/(^*^y^o.
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But

f /a(^^^y=f( /a*^)^=o because f^-kg^B.

Contradiction.

LEMMA 2.^. — Let fn->fi narrowly in C(^). Then/or each f^C{X\
fnf—fifnarrowly. And/or each /€ ^o(-^), /n/->/i/ uniformly.

Proof straightforward.

COROLLARY 2.5. — Let the points y^G, Y converge to the zero point of Y.
Then for each f^C{X), ynf->f narrowly. And for each /eCo(^T),
ynf->f uniformly.

3. Spectrum of a function. — This section summarizes certain well-known
facts about spectral synthesis and spectral analysis.

If we want to define the spectrum o-(/) for an f^Co(^) as the support
of /, first we must define the Fourier transform f. In this paper we shall
use the [transpose of the already defined ^Fourier transform on Z^JT).
Specifically, /^is denned as an element of the dual space of the algebra J? of
ordinary Fourier transforms by the rule

(3 .1 ) (/,^)=r/(-^(^)^.
Now we say that /" vanishes identically " on an open subset V of Y if
<^ /^ )>=o whenever o-(^)CF", and we define the spectrum a(f) for
j'^Co(^Y) as the complement of the largest -open subset of Y on which
/Vanishes identically. [Later, in order to make use of spectral analysis and
synthesis, we shall adopt the same definitions of f and o"(/) for bounded
continuous/.^ Notice that the spectrum of/as used in this paper has little to
do with the spectrum in the sense of Banach algebras. There is an ancient
historical connection between the two uses, but this connection is irrelevant
for us here.

We list below some easily verified formulas for the spectrum of/€ Co(^T),
or/€ (7(^T), like the formulas listed in paragraph 2 for g € L1 (^T).

^(/i/2) Cclosureof[^(/)+a(/ ,)] .
^(V^) C closure of [cr(/) +(T(^)].
^(/*^)c^(/)n^)•
(7(7V)=(7(/).

^(j/) ^.y+^C/')-
^(f) =a(/)=-^(/).
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Lemmas 3.2, 3.3, 3.^ below stale that our definition of the spectrum for
a bounded continuous function is not in conflict with previously defined
spectra for other kinds of functions. The proofs are straightforward.

LEMMA 3.2. - lff^C^X^g^U{X) andf^g^ then ̂ f)^^(g).

LEMMA 3.3. — ///€ C(Ar), e is a trigonometric polynomial, and f== e
thena(f)=a(e). p J ^ J ^

LEMMA 3.^. - If^eL^(Y), if^=, o outside a closed subset K of Y, and
if ̂  is the ' c inverse Fourier transform "

^W=f^(y)^(y)cty,

then ipe Co(A ) and o- ($)CA".

By using the right kind of ^ approximate unit " (see § 6) one can also
define cr(/) for an arbitrary /e C, (^) as lim^(/,) for well-behaved/,
converging to /, for instance /,€ Co(JT) n Z1 (JT). The limit is taken in the
natural uniform topology on the space formed from the closed subsets Z
of Y. (Z^ and Z^ are near to each other if Z,CZ^-{- V and Z^^i-t- V
for V a neighborhood of o in Y.) The sequence fn that converges'to / must
be specially chosen, however. It is not necessarily true that cr (/„) approaches
cr(/,) when /„ approaches /o, no matter w-hat degree of smoothness and small-
ness we require. Nonetheless, we can always assert that lim info-(//J = o-(^).

LEMMA 3.5. — Letfo^ C(JT) have compact spectrum ^o=<7(/o). Then the
mapping f-> a (/) ;.9 lower-semicontinuous at /o for the weak" topology on
C(JT) and the natural topology and partial order on closed subsets of Y.
Specifically, for each neighborhood W of o in Y, there exist

gi, ....^eZ1^)

such that if j^f'g,-^^^ <^ y^ ^/, ̂  ̂  ̂  S==^(f), then

s.cs-^- w.
PROOF. — Given a neighborhood Fofo in Y, there are g\, . . . . g^ e L1 (.Y)

such that if ^{f-f^gn <i then <7 (/) intersects ^.4- V. Suppose we

have already chosen s, + V, . . ., ̂ + V to cover So = v{f,). Let

^°'(/)n(^4- V), that is t ^ S j - ^ - V j .

Then s^-^ S 4- V. Hence
^•4- FC^-4- F4- F.

Hence
^oC^(^.+ ^)C^+ F+ F.
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We isolate below the only part of 3.5 that we shall use. (It is not strictly
speaking a corollary, but rather a step in the proof of 3.5.)

COROLLARY 3.6. — Let fn—>f^ C(yY) in the weak* sense. Suppose ^(/o)
intersects the open set V. Then eventually all ^(fn) intersect V.

Other equivalent definitions of the spectrum can be constructed from the
two lemmas below. For a complete discussion of these matters, see HERZ [3].

LEMMA 3.7. (Spectral analysis). — The J€o-(/) are exactly the charac-
ters that can be approximated by finite linear combinations of translates
off. This statement is true for any f^ C(^) with weak* approximation^
or for any f^. Co(^T) with narrow approximation.

LEMMA 3.8. ( " Loose " spectral synthesis.) — Given f^C(^) let W be
a neighborhood of o in Y. Then f is the narrow limit of trigonometric
polynomials e with ̂ {e)^d(f) 4- W. Conversely^ suppose K is a closed
subset of Y such that^ for any neighborhood W of o, / is the weak* limit of
trigonometric polynomials e with o"(e)CAr+ W. Then ̂ {f)^K.

h'. Spectrum of an invariant algebra. — The spectrum of a closed inva-
riant linear subspace B of Co(^Y) is defined to be the union of the a(f) for
Y€ B. We shall show in this section that if A is a closed invariant subalgebra
of Co(^T), ^(A) is a closed subsemigroup of Y^ and locally a set of multi-
plicity. Any such subsemigroup of Y appears as the o ' ( A ) of at least one
closed invariant A^ but perhaps more than one. The only case in which we
have been able to show uniqueness is the case where ordinary spectral syn-
thesis holds for o ' ( A ) .

LEMMA 4 . 1 . — Let B be a closed invariant linear subspace of Co(^T).
Then for any point y^a'(JB)^ and for any neighborhood V of y^ there
exists some non-zero /€ B with a (f) C V.

PROOF. — By definition, y€o-(/o) for some /o€^. Choose g^.L^^X}
with cr(^)C V and ^(7)^0. Then g ^/o==/e B, and/^o, and

^f)^^)^V.

THEOREM 4 •2. — The spectrum o'(B) for a closed invariant linear sub-
pace B of Co(^T), defined as the union of the o-(f)forfeB^ is a closed
subset of Y,

PROOF. — Let y be a point in the closure of a~(A) and choose y^ in o ' ( A )
with y^. -> y . Choose neighborhoods Vn of the y^ which are such that their
closures are pairwise disjoint and any neighborhood ofj eventually contains
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all the closures V n. By Lemma 4.1 there are functions fn^ o in A with

^fn)^Vn and ^||/.|k<oo.
n

The function /=V^ is in ^4 and we shall show that J€<7(/). Let FF be

any neighborhood ofj, and choose F^C F .̂ Since o-(/^)C p^, we can find
^•eZ^^r) with

a(^)CF, and ffng'^0'

And since ^ f^'=1 I fng'i the theorem is proved.

LEMMA 4.3. — If B is the closed invariant subspace of Co(JT) generated
by /o, thena(f,)=^(B).

PROOF. — Clearly ^(fo)^o-(£). For the converse, choose any / in /?.
Then there is a sequence /^ of linear combinations of the T^/o converging
uniformly to/. Also a{fn) Co- (/o) since a ( T^f) C o- (/o). Thus a(^)C(7(/)
since fn->§ uniformly and o'(/) is closed.

In Lemma 2.2 we denned TV/ to be the set of all ^^Z^^T) such that
g ̂  f== o. Clearly this is equivalent to demanding that g be orthogonal to
the closed linear subspace B of Co(^T) generated byV. Furthermore, N f is
a convolution ideal in Z^^T), and its Fourier transform fftf is a pointwise
ideal in J?. Wiener's Tauberian theorem, Lemma 2.2 (4), asserts that the
zeros of ffif [i. e. the set of y such that g ( y ) ==• o for all ^'€ «^/] is non-
empty. For an arbitrary closed invariant subspace B of C()(JT), whether or
not it is generated by one function, let us define NB to be

^eZ'W: ff'g==o fo ra l l / eZ? j

and Sts to be the pointwise ideal -X? consisting of Fourier transforms of the
^e^.

LEMMA 4.4. — Fo r any closed invariant linear subspace B of Co(^T),
the spectrum o~(jB) coincides with the zeros of 91 a'

PROOF. — We shall show first that any point not a common zero of the
functions in ffi^ cannot be in o"(^). Let y be such a point and^o a function
in NB with ^-0(^)^0. Choose g^ in Z^^T) with g^g^^i on a neigh-
borhood U ofj. Let g be any function in Z1 (^T) with <j{g) C U. Then

(^0 -)< ^1 * g)' == gQgig = g
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so ̂ o*^i* g=§^ and since TV^ is a convolution ideal, g is in 7V^. Thus
each / in B is orthogonal to each g in Z1 {A) with o- (^-) C U and so j is not
in ff(£).

We shall show next that any point not in o~(£) is not a common zero of
the functions in ffi^. Let y be a point not in o-(/?). Because of Lemma 4.2
there is a neighborhood F o f j disjoint from a ( B ) . Let g be a function in
Z^JT) with cr(^)C F and ^(7)^0. Then for each/in B, <7(/)ncr(^) is
empty so g is orthogonal to all of B and is thus in N£. Since ^(j^^o,
j is not a common zero of the functions in 91^' This completes the proof of
Lemma 4.4.

Since the full Banach dual of C^^A) is the space M{A) of integrable
Radon measures it is natural to ask what would happen if M\A) were
substituted for Ll(A') in developing the notion of the spectrum.

LEMMA 4.5. — Let B be a closed invariant subspace of Co (JT) and let B1-
be the subspace of M{A) orthogonal to B. Then £1 is determined by
the absolutely continuous measures it contains^ i. e. by NB. And v{B) is
exactly the common zeros of the Fourier transforms of the measures
in B^-.

PROOF. — Suppose 2?i and B^_ are closed invariant subspaces with B^cB^.
^

Then by Lemma 2.3 the weak* closures in Z30 {A) are similarly related,
B^cB^. But then the orthogonals in Z^JT) have the reverse relation

7-

A'(2?i) 37V(7?2). Hence the correspondance B->N(B) is a lattice anti-

isomorphism and the first assertion of the lemma is proved.

Suppose p. (y) ̂  o for some ^ e BL. Then convolution by any ge L1 (A)
for which g { y ) ̂ o yields g^g^ ^^.L^A) with^(j)^o. Hence the
lemma is completely proved.

Having justified the use of L^^A) rather than M(A)^ we should perhaps
justify our use of C(A) rather than Z°°(Jr), e. g. in Lemmas 3.7 and 3.8.

LEMMA 4.6. — Let B be a weak* closed invariant subspace of Z^J:^).
Then B is determined by the continuous functions it contains.

PROOF. — Convolution by an integrable approximate unit, as in the proof
of Lemma 2.1.

Note that B is not always determined by the Co functions it contains.
Consider, for instance, on a non-compact A the one-dimensional weak*
closed subspace consisting of constant functions.

THEOREM 4 . 7 . — Let A be a closed invariant subalgebra of Co (A). Then
a (A) is a sub semigroup of Y.
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PROOF. — Given y^(j(A) and j^Co-^) we want ji 4-72 eo-(^). We
shall exhibit /€ A with (7 (/) arbitrarily close to Ji 4- ̂ 2. Let U be any neigh-
borhood of o in Y. By Lemma 2.1 there exist fk € A (k = i, 2) with /^ o
and o-(/)Cj^+£/. Choose ^e^T to make /=/i (T^) ̂  o. Then
^(V)^ closure of (o-(/i) + cr(T^/,)) == closure of

Wi) + ̂ (/2))Cji+j,4- ^7+ U.

Andji+^2-4- ^-+- ^7 can be an arbitrarily small neighborhood ofji+y.,.
But not all closed subsemigroups S of Y can appear as < J ( A ) . For instance,

the subgroup consisting of o alone can never appear unless X is compact.
Let us introduce the following definitions. A subset Z of Y is called a set
of multiplicity if it contains the spectrum of some/^E o in Co(^T). And Z
is said to be locally a set of multiplicity if every open set that intersects Z
intersects it in a set of multiplicity. Because of Lemma 4.1, the spectrum
of a closed translation invariant subspace of C^X) is locally a set of mul-
tiplicity.

The following lemma states that on the circle our definition coincides with
the one used in the uniqueness theory of trigonometric series. (See, for
instance, ZYGMUND [13], p. 291, where a set of multiplicity is also called an
M-set.)

LEMMA 4.8. — Let Y be the reals mod^n and let Z be a closed subset
of Y. Then Y is a set of multiplicity if and only if there exists a non-zero
trigonometric series converging to zero at all points of the complement
of Z in [o, 27:].

PROOF. — BARI [2], p. 22.

LEMMA 4.9. — A subset Z of Y that is locally of multiplicity cannot
contain an isolated point unless Y is discrete.

PROOF. — We can assume without loss that the isolated point is o. But
then the only / with < 7 ( / ) = { o { is /==i. Hence X must be compact,
and Y discrete.

LEMMA 4.10. — Let S be a closed subset of Y that is locally aset of multi-
plicity. Let a(S) consist ofall /e Co(^T) thai have o-(/)C^. Then a(^)
is a closed invariant subspace of Co {X) and a (a (S) ) == S. Furthermore
if S is a subsemigroup of JT, then a(^) is a subalgebra of Co(JT).

PROOF. — It is clear that a(^) is a linear subspace. a(*S') is translation
invariant since cr( T^f) = o-(/). If S is a subsemigroup of Y, a ( S ) is a
subalgebra since

^(/i/2)$ closure Wi)+^(/0).
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Let / be in the closure of a ( S ) . Then there is a sequence fn in <x(S)
converging uniformly to/. Since for each n, o ' ( S n ) C S^ and S is closed,
o'(f) 5= S. Thus/is in a(*S) and Q t ( S ) must be closed.

Now only ( 7 ( o c ( S ) ) 3 S needs proving. Let ye S and consider any neigh-
borhood V of y . Since *S' is locally a set of multiplicity there is some
/€ Co(^T), ̂  o, with a(/) C V r\ xS. Hence j belongs to the closure of the
(closed) set cr(a(^)) and the lemma is proved.

Let us now assemble some of the above lemmas in a theorem.

THEOREM 4 . 1 1 . — If A is a closed invariant subalgebra of Co(^T), then
o-(A) is a closed subsemigroup of Y and locally a set of multiplicity.
Conversely^ each closed sub semigroup of Y that is locally a set of multi-
plicity is the v{A) of at least one such A.

The above theorem does not assert that the closed subsemigroups of Y
that are locally sets of multiplicity are in one-one correspondence with the
closed invariant subalgebras of Co(^T). For although a ( a ( S ) ) = S ^ it can
happen that a (o"(A))3^4.

THEOREM 4.12. — Let Xbe a ̂ -dimensional vector group. Then there exist
closed invariant subalgebras A-i ~^- A^ of Co(^T) such that a'(Ai) == a(A^).

PROOF. — Y is also a 4~dimensional vector group. Let S==Si\jS^^
where Si is the sphere {y'.(yi—4)2+,yj+./!+./! :== J } s^d S^ is the
half-space {j:.7i^6j. Clearly S is a semigroup, for ^i+^iC^,
^+ S^CS^ and Si-^-S^C S^. Let A be the closed subalgebra of Co(^T)
generated by a (S^) and by all/e C^(X} that are Fourier-Stieltjes transforms
of measures carried by Si. The uniform mass distribution is one such

_ j_
measure, its Fourier transform behaving like | x \ 2 at infinity. [The set of
/€ Co (^) that are Fourier-Stieltjes transforms of measures carried by Si can
also be described as the weak* closure in Co(-^T) of the trigonometric poly-
nomials that have sepctra in Si.] On the other hand, Laurent SCHWARTZ [10]
has exhibited an /oeCo(^T) with o"(/o)^^i but with fo not the limit,
even in the weak* topology relative to Z^^T), of Fourier transforms of
measures carried by S ^ . Hence /o^^4, although /o€a(o-(^4)) . This
completes the proof.

Spectral synthesis is said to hold for a closed subset Z of Y if every
ye C{^) with o'(f)^Z is a weak* limit of trigonometric polynomials having
spectrum in Z. Equivalently, if the unique w^eak* closed invariant subspace B
of C(X) having Z= \] a(f) is

/€2?

B={f:f^CW^(f)CS}.
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