BULLETIN DE LA S. M. F.

J. LUBIN J. TATE Formal moduli for one-parameter formal Lie groups

Bulletin de la S. M. F., tome 94 (1966), p. 49-59 http://www.numdam.org/item?id=BSMF_1966_94_49_0 >

© Bulletin de la S. M. F., 1966, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 94, 1966, p. 49 à 60.

FORMAL MODULI FOR ONE-PARAMETER FORMAL LIE GROUPS

BY

JONATHAN LUBIN (1) AND JOHN TATE.

In this paper we study formal Lie groups using methods introduced by LAZARD [2]. This material was exposed in a preliminary form in a seminar at the Woods Hole Institute on Algebraic Geometry in July 1964. All formal groups discussed here are commutative formal Lie groups on *one* parameter, which we will frequently refer to as "group laws". The reader is referred to [2] and [3] for all basic definitions.

Suppose that \mathfrak{o} is a complete noetherian local ring with maximal ideal \mathfrak{m} and residue field $k = \mathfrak{o}/\mathfrak{m}$ of characteristic $p > \mathfrak{o}$. If f is a power series with coefficients in \mathfrak{o} , let us call f^* the power series over k whose coefficients are those of f, reduced modulo \mathfrak{m} . Let us say that two group laws, i. e. one-parameter formal Lie groups, F and G, over \mathfrak{o} , are \bigstar -isomorphic if $F^* = G^*$ and there is an \mathfrak{o} -isomorphism φ between F and G such that $\varphi^*(x) = x$. We shall show that if Φ is a group law of height $h < \infty$ over k, the set $\mathfrak{G}_{\mathfrak{o}}(\Phi)$ of \bigstar -isomorphism classes of group laws F over \mathfrak{o} such that $F^* = \Phi$ can be put into one-to-one correspondence with the (set-theoretic) product of \mathfrak{m} with itself (h-1) times, in a way that is compatible with extension of the ring \mathfrak{o} .

1. Generic group laws of height h.

We give here a construction of a group law Γ which will turn out to be (theorem 3.1) a generic lifting of a given group law Φ of height *h*. We recall that if F(x, y) is an abelian (r - 1)-bud over a ring *R*, i. e. a

⁽¹⁾ This work was supported by a grant from the Research Corporation. Bull. Soc. MATH. — T. 94, FASC. 1.

polynomial that behaves modulo degree r like a group law over R (see [2], p. 255) then there is an abelian r-bud F' defined over R such that $F \equiv F' \mod \deg r$; and if F'' is another such r-bud, then $F' \equiv F'' + aC_r$ mod deg(r + 1) for some $a \in R$, where C_r is the modified binomial form, see [2], definition 2.5 or [3], definition 3.2.1. We point out that if Φ is a group law defined over a field k of characteristic $p \neq 0$ and if Φ is of height $h < \infty$, then there is Φ' isomorphic to Φ over k such that

$$\Phi'(x, y) \equiv x + y + aC_q(x, y) \mod \deg (q + 1)$$

where $q = p^{h}$ and a is a non-zero element of k. This can be proved directly from [2], lemma 6 or by applying [3], lemma 3.2.2 to any group law F defined over an appropriate discrete valuation ring \mathfrak{o} with residue field k, such that $F^{\star} = \Phi$.

PROPOSITION 1.1. — Let k be a field of characteristic $p \neq 0$, and let $\Phi(x, y) \in k[[x, y]]$ be a group law of height $h < \infty$, with $\Phi(x, y) \equiv x + y$ mod deg p^h . Let R be a ring with maximal ideal I, such that $R/I \cong k$, and let $R[[t]] = R[[t_1, \ldots, t_{h-1}]]$ be the ring of formal power series in h - 1 letters t_1, \ldots, t_{h-1} over R. Then there is a group law $\Gamma(t_1, \ldots, t_{h-1})(x, y)$ defined over $R[[t_1, \ldots, t_{h-1}]]$ such that :

- 1. Γ (o, ..., o)^{*}(x, y) = Φ (x, y),
- 2. For each $i(1 \leq i \leq h-1)$,

 $\Gamma(0, \ldots, 0, t_i, \ldots, t_{h-1})(x, y) \equiv x + y + t_i C_{p^i}(x, y) \mod \deg(p^i + 1).$

Proof. — We start with the abelian 1-bud x + y defined over R[[t]] and complete it to a group law with the desired properties. Suppose for r > 1 that we have an abelian (r - 1)-bud $\Gamma_{r-1}(t_1, \ldots, t_{l_{l-1}})$ such that :

- 1. Γ_{r-1} (o, ..., o)^{*} (x, y) = $\Phi(x, y) \mod \deg r$,
- 2. For each i,

$$\Gamma_{r-1}(0, \ldots, 0, t_i, \ldots, t_{h-1})(x, y) \ \equiv x + y + t_i C_{p^i}(x, y) \mod \deg(\min(r, p^i + 1)).$$

Now let Γ'_r be any abelian *r*-bud defined over R[[t]] such that $\Gamma'_r \equiv \Gamma_{r-1}$ mod deg *r*.

CASE 1 : $r > p^{h-1}$. — Then

$$\Gamma'_{r}(0, \ldots, 0)^{\star}(x, y) \equiv \Phi(x, y) + a^{\star}C_{r}(x, y) \mod \deg (r+1)$$

for some $a \in R$, by [2], proposition 2, and so we set $\Gamma_r = \Gamma'_r - aC_r$.

CASE 2: $p^{j-1} < r \leq p^{j}$ for some $j \leq h-1$. — Then our hypotheses on Γ_{r-1} imply that

 $\begin{aligned} \Gamma'_{r}(0, \ \dots, \ 0, \ t_{j}, \ \dots, \ t_{h-1})(x, \ y) \\ &\equiv x + y + b \, C_{r}(x, \ y) \, \text{mod deg}\,(r+1) \qquad \text{for} \quad b \in R[[t_{j}, \ \dots, \ t_{h-1}]] \end{aligned}$

and in this case we let $\Gamma_r = \Gamma'_r - b C_r$ if $r \neq p^j$ and $\Gamma_r = \Gamma'_r + (t_j - b) C_r$ if $r = p^j$.

In either case, Γ_r is an abelian *r*-bud congruent to Γ_{r-1} mod deg *r* such that :

1. $\Gamma_r(0, ..., 0)^*(x, y) \equiv \Phi(x, y) \mod \deg (r + 1)$,

- 2. For each i,
 - $\Gamma_r(0, \ldots, 0, t_i, \ldots, t_{h-1})(x, y)$
 - $\equiv x + y + t_i C_{pi}(x, y) \mod \deg (\min (r + 1, p^i + 1)).$

Then if we let $\Gamma = \lim \Gamma_r$, we see that Γ has the desired properties.

2. The 2-cohomology group of a formal group.

DEFINITION 2.1. — Let R be a ring and M an R-module. We denote by $M[[x_1, \ldots, x_n]]$ the module $M \bigotimes_R R[[x_1, \ldots, x_n]]$.

By this we mean the completion of $M \otimes_R R[[x_1, \ldots, x_n]]$ with respect to the family of submodules $M \otimes_R J^r$, where J is the ideal (x_1, \ldots, x_n) of $R[[x_1, \ldots, x_n]]$. An element of $M[[x_1, \ldots, x_n]]$ can be represented as $\sum \alpha_{\mu} \mu$, where μ runs through all the monomials in the x's, and each α_{μ} belongs to M.

It should be observed that $M[[x_1, \ldots, x_n]]$ is not only an $R[[x_1, \ldots, x_n]]$ module, but also has a substitution operation : if $f(x_1, \ldots, x_n) \in M[[x_1, \ldots, x_n]]$ and if $g_1, \ldots, g_n \in R[[y_1, \ldots, y_m]]$ are such that $g_i(0, 0, \ldots, 0) = 0$ for each *i*, then $f(g_1, \ldots, g_n) \in M[[y_1, \ldots, y_m]]$.

DEFINITION 2.2. — Let $F(x, y) \in R[[x, y]]$ be a group law and M be an R-module. If $f \in M[[x]]$, then $\delta_F f \in M[[x, y]]$ is defined by

$$(\delta_F f)(x, y) = f(y) - f(F(x, y)) + f(x).$$

If $f \in M[[x, y]]$, then $\delta_F f \in M[[x, y, z]]$ is defined by

$$(\delta_F f)(x, y, z) = f(y, z) - f(F(x, y), z) + f(x, F(y, z)) - f(x, y).$$

Also, $B^2_M(F)$ is the set of all $f \in M[[x, y]]$ such that $f = \delta g$ for some $g \in M[[x]]$ and $Z^2_M(F)$ is the set of all $f \in M[[x, y]]$ such that f(x, y) = f(y, x) and such that $\delta f = 0$. Since $B^2_M(F) \subset Z^2_M(F)$, we can define $H^2_M(F)$ as $Z^2_M(F)/B^2_M(F)$. Elements of B^2 and Z^2 are called coboundaries and cocyclesrespectively.

J. LUBIN AND J. TATE.

2.3. — In case F is defined over a field k and M is a finite-dimensional k-vector space, $M[[x_1, \ldots, x_n]]$ is canonically isomorphic to $M \bigotimes_k k[[x_1, \ldots, x_n]]$. Also, $Z^2_M(F) \cong M \bigotimes_k Z^2_k(F)$, and similarly for $B^2_M(F)$ and $H^2_M(F)$.

Suppose $f(x, y) \in Z_R^2(F)$ and $f(x, y) \equiv 0 \mod \deg r$. Then

$$o = (\delta f)(x, y, z) \equiv f(y, z) - f(x + y, z) + f(x, y + z) - f(x, y) \mod \deg (r + 1)$$

so that by [2], lemma 3, $f(x, y) \equiv aC_r(x, y) \mod \deg (r + 1)$ for some $a \in R$. Similarly, if M is a finite-dimensional vector space over a field k over which F is defined, for each nonzero $f(x, y) \in Z_M^2(F)$, there is an integer r and a nonzero element a of M such that

$$f(x, y) \equiv aC_r(x, y) \mod \deg (r + 1).$$

In the next proposition, we show how the second cohomology group H^2 measures the "infinitesimal deformations" of a formal group. If \mathfrak{o} is a local ring with maximal ideal \mathfrak{m} and residue field $k = \mathfrak{o}/\mathfrak{m}$, let us call ν_r the canonical homomorphism of \mathfrak{m}^r onto the k-vector space $M_r = \mathfrak{m}^r/\mathfrak{m}^{r+1}$, and we will use the same symbol, ν_r , for the corresponding homomorphism between the power-series modules in n variables, over \mathfrak{m}^r and M_r , respectively. We will be dealing with a group law $\Phi(x, y) \in k[[x, y]]$, and we will denote by Φ_1 and Φ_2 the first partial derivatives of Φ with respect to the left- and the right-hand arguments, respectively. Observe that Φ_1 has constant term 1, so that $\Phi_1(\mathfrak{o}, x)$ has a reciprocal in k[[x]].

PROPOSITION 2.4. — Let \mathfrak{o} , \mathfrak{m} , M_r , and Φ be as above. Let F and G be group laws over \mathfrak{o} such that $F^* = G^* = \Phi$. Suppose $\varphi(x) \in \mathfrak{o}[[x]]$ is a power series such that :

1. $\varphi^{\star}(x) = x$,

2. $\varphi(F(x, y)) \equiv G(\varphi x, \varphi y) \mod \mathfrak{m}^r$.

Let $\Delta(x, y) \in M_r[[x, y]]$ be defined by

 $\Delta(x, y) = [\Phi_1(o, \Phi(x, y))]^{-1} \cdot \nu_r[\varphi(F(x, y)) - G(\varphi x, \varphi y)].$

Then $\Delta(x, y) \in Z^{2}_{M_{r}}(\Phi)$. Furthermore, $\Delta(x, y) \in B^{2}_{M_{r}}(\Phi)$ if and only if there is $\varphi'(x) \in \mathfrak{o}[[x]]$ such that :

1. $\varphi'(x) \equiv \varphi(x) \mod \mathfrak{m}^r$,

2. $\varphi'(F(x, y)) \equiv G(\varphi'x, \varphi'y) \mod \mathfrak{m}^{r+1}$.

Finally, such a φ' is unique modulo \mathfrak{m}'^{+1} , if Φ is of finite height.

Proof. — We will use the simplifying notation $x \neq y$ for $\Phi(x, y)$ and make use of the facts that $\Phi_1(0, x) = \Phi_2(x, 0)$ and $\Phi_1(x, y) \cdot \Phi_1(0, x) = \Phi_1(0, x \neq y)$,

 $\mathbf{52}$

which are proved by differentiating the identities expressing the commutativity and associativity of Φ , and then setting one of the variables equal to zero.

By abuse of notation, we can say, modulo \mathfrak{m}^{r+1} ,

$$\varphi(F(x, y)) \equiv G(\varphi x, \varphi y) + \Delta(x, y) \Phi_1 (o, x \star y) \pmod{\mathfrak{m}^{r+1}}.$$

Hence, computing modulo \mathfrak{m}^{r+1} we have :

$$\begin{split} \varphi(F(F(x, y), z)) &\equiv G(G(\varphi x, \varphi y) + \Delta(x, y) \cdot \Phi_1(o, x \neq y), \varphi z) \\ &+ \Delta(x \neq y, z) \cdot \Phi_1(o, x \neq y \neq z) \\ &\equiv G(G(\varphi x, \varphi y), \varphi z) + \Phi_1(x \neq y, z) \\ &\times \Delta(x, y) \cdot \Phi_1(o, x \neq y) + \Delta(x \neq y, z) \cdot \Phi_1(o, x \neq y \neq z) \\ &\equiv G(G(\varphi x, \varphi y), \varphi z) + \Phi_1(o, x \neq y \neq z) \\ &\times [\Delta(x, y) + \Delta(x \neq y, z)]. \end{split}$$

Symmetrically,

$$\varphi(F(x,F(y,z)) \equiv G(\varphi x, G(\varphi y,\varphi z)) + \Phi_1(o, x \star y \star z) \cdot [\Delta(y,z) + \Delta(x, y \star z)].$$

Then, since both F and G are associative, we see immediately that $\Delta \in Z^2_{\mathcal{M}_r}(\Phi)$.

If we have $\varphi'(x) \in \mathfrak{o}[[x]]$ such that $\varphi'(x) \equiv \varphi(x) \mod \mathfrak{m}^r$, let us set $\psi(x) = \Phi_1(0, x)^{-1} \cdot \nu_r(\varphi x - \varphi' x)$. Then, again by abuse of notation, we have, modulo \mathfrak{m}^{r+1} ,

$$\varphi(x) \equiv \varphi'(x) - \Phi_1(o, x) \psi(x),$$

and

$$\begin{split} \Phi_1(\mathbf{o}, x \star y) . \Delta(x, y) &\equiv \varphi'(F(x, y)) - \Phi_1(\mathbf{o}, x \star y) \cdot \psi(x \star y) \\ &- G(\varphi' x - \Phi_1(\mathbf{o}, x) \cdot \psi(x), \varphi' y - \Phi_1(\mathbf{o}, y) \cdot \psi(y)) \\ &\equiv \varphi'(F(x, y)) - G(\varphi' x, \varphi' y) - \Phi_1(\mathbf{o}, x \star y) \psi(x \star y) \\ &+ \Phi_1(\mathbf{o}, x) \cdot \psi(x) \cdot \Phi_1(x, y) \\ &+ \Phi_1(y, \mathbf{o}) \cdot \psi(y) \cdot \Phi_1(x, y) \pmod{\mathfrak{m}^{r+1}}. \end{split}$$

Thus $\Delta(x, y) = \Phi_1(0, x \star y)^{-1} \cdot \nu_r[\varphi'(F(x, y)) - G(\varphi'x, \varphi'y)] + (\delta \psi)(x, y).$

This shows that $\Delta \in B^2_{M_r}(\Phi)$ is a necessary and sufficient condition for the existence of a series $\varphi'(x)$ satisfying conditions 1 and 2 of the proposition. It remains only to prove the unicity of such a φ' in case Φ is of finite height. If φ'' is another such series, then the difference of φ' and φ'' in $\operatorname{Hom}_{\mathfrak{o}/\mathfrak{m}^{r+1}}(F, G)$ is a homomorphism $\rho \equiv 0 \mod \mathfrak{m}^r$. Such a ρ satisfies

$$\rho(F(x, y)) \equiv G(\rho x, \rho y) \equiv \rho x + \rho y \qquad (\text{mod } \mathfrak{m}^{r+1}).$$

J. LUBIN AND J. TATE.

Hence the series $h(x) = v_r(\rho(x))$ satisfies

$$h(\Phi(x, y)) = h(x) + h(y).$$

By iteration, this implies h([p](x)) = ph(x) = 0, where

 $[p](x) = x \star x \dots \star x$

is the *p*-fold endomorphism for the group Φ . Since $[p](x) \neq 0$ for Φ of finite height, we can conclude h = 0, and consequently $\varphi' \equiv \varphi'' \mod \mathfrak{m}'^{r+1}$ in that case.

2.5 REMARK. — It should be noted that under the hypotheses of the preceding proposition, Δ is congruent modulo degree *n* to a coboundary if and only if there is $\varphi(x) \in \mathfrak{o}[[x]]$ such that :

1. $\varphi'(x) \equiv \varphi(x) \mod \mathfrak{m}^r$, and

2. $\varphi'(F(x, y)) \equiv G(\varphi'x, \varphi'y) \mod \mathfrak{m}^{r+1}$, mod deg n.

We are now in a position to compute $H_k^2(\Phi)$ for Φ a group law of finite height over a field k of characteristic $p \neq 0$:

PROPOSITION 2.6. — If Φ is a group law of height $h < \infty$, defined over a field k of characteristic $p \neq 0$, then $H_k^2(\Phi)$ is a k-vector space of dimension $h \rightarrow 1$. If $\Phi(x, y) \equiv x + y \mod \deg p^h$, and $\Gamma(t)(x, y)$ is any group law over $k[[t_1, \ldots, t_{h-1}]]$ satisfying the conditions of proposition 1.1 with R = k, then the functions

$$f_i(x, y) = (\Phi_1(0, x \star y))^{-1} \frac{\partial \Gamma}{\partial t_i}(0, \ldots, 0) (x, y) \qquad (1 \leq i \leq h-1),$$

are cocycles satisfying

$$f_i(x,y) \equiv C_{p^i}(x, y) \mod \deg p^i + 1$$
,

whose classes form a base for $H_k^2(\Phi)$.

Let $\Phi(x, y)$ and $\Gamma(t)(x, y)$ be as in proposition 1.1, with R = k. Apply proposition 2.4 with $\mathfrak{o} = k[\tau]/(\tau^2)$, with $r = \mathfrak{l}$, with $\varphi(x) = x$, with $G(x, y) = \Phi(x, y) = \Gamma(0, \ldots, 0)$ (x, y) and with $F(x, y) = \Gamma(0, \ldots, 0, \tau, 0, \ldots, 0)$ (x, y), where the τ is in the *i*-th place. Since then

$$F(x,y) = G(x,y) + \tau \frac{\partial \Gamma}{\partial t_i}(0, \ldots, 0) (x, y),$$

we conclude that $f_i(x, y)$ is a cocycle. The fact that

$$f_i(x, y) \equiv C_{p^i}(x, y) \mod \deg p^i + 1$$

is obvious from the definition of f_i , and using this we will now show that the classes of the f_i form a base for $H_k^2(\Phi)$.

FORMAL MODULI FOR ONE-PARAMETER FORMAL LIE GROUPS.

For each j, let $g_j(x) = x^j$. Then if j is not a power of p,

$$(\delta g_j)(x, y) \equiv B_j(x, y) \mod \deg (j + 1)$$

where $B_j = \lambda C_j$ for λ some nonzero element of k. And if $j = p^s$ for $s \ge 0$, then

$$(\delta g_j)(x, y) \equiv y^j - (\Phi(x, y))^j + x^j \equiv -\alpha^j (C_{\rho^h}(x, y))^j \mod \deg (jp^h + \mathbf{I}),$$

since $\Phi(x, y) \equiv x + y + \alpha C_{p^h}(x, y) \mod \deg(p^h + 1)$ for some $\alpha \neq 0$. But $(C_q(x, y))^{\rho} = C_{pq}(x, y)$ in characteristic p, so that $(\partial g_j)(x, y) \equiv \lambda C_{jp^h}(x, y)$ mod deg $(jp^h + 1)$, for $\lambda \neq 0$, if j is a power of p. With these facts, we can now show that if $\psi \in Z_k^{\geq}(\Phi)$, ψ is equal to a linear combination of the f_i , $(1 \leq i < h)$, plus a coboundary.

Indeed, suppose

$$\psi \equiv \sum \lambda_i f_i + \delta \gamma_{n-1} \mod \deg n,$$

for $\lambda_i \in k$ and $\gamma_{n-1} \in k[[x]]$. It then follows that

$$\psi \equiv \sum \lambda_i f_i + \delta \gamma_{n-1} + a C_n \mod \deg (n+1),$$

for $a \in k$, by 2.3.

CASE 1 : $n = p^{j}$ for j < h. — Then since

 $aC_n \equiv af_j \mod \deg(n+1)$,

 $\psi \equiv af_j + \sum \lambda_i f_i + \delta \gamma_{n-1}$ so that we can let $\gamma_n = \gamma_{n-1}$.

CASE 2: $n = p^{j}$ for $j \ge h$. — Let $m = n/p^{h} = p^{j-h}$. Then

 $aC_n \equiv b \delta g_m \mod \deg (n+1)$ for some $b \in k$, and so we let $\gamma_n = \gamma_{n-1} + b g_m$.

CASE 3:n is not a power of p. — Then

 $aC_n \equiv b \delta g_n \mod \deg (n + 1)$ for some $b \in k$

and so we let $\gamma_n = \gamma_{n-1} + bg_n$.

Since $\gamma = \lim \gamma_n$ exists in k[[x]], we see that ψ is equal to $\delta\gamma$ plus a linear combination of the f_i , which shows that $H_k^2(\Phi)$ is spanned by the classes ξ_1, \ldots, ξ_{h-1} of f_1, \ldots, f_{h-1} . But since $\sum \lambda_i f_i(x, y) = (\delta g)(x, y)$ is impossible unless each λ_i is zero, as one sees by considering the equation mod deg $(p^i + 1)$ successively for $i = 1, 2, \ldots, h - 1$, the ξ_i are linearly independent and so form a basis for $H_k^2(\Phi)$.

2.7. — In the above proposition, we showed that dim $(H_k^2(\Phi)) \ge h - 1$ by using $\Gamma(t)$ to find for each i < h a cocycle

$$f_i(x, y) \equiv C_{p^i}(x, y) \mod \deg (p^i + 1).$$

Such cocycles can be constructed by another method, which we outline here :

If f is a cocycle modulo degree r, then the r-degree form φ of ∂f is a polynomial 3-cocycle in the sense of [1], i. e.

$$\varphi(y, z, w) - \varphi(x + y, z, w) + \varphi(x, y + z, w)$$
$$-\varphi(x, y, z + w) + \varphi(x, y, z) = 0,$$

and furthermore, φ is " symmetric " in the sense that

$$\varphi(x, y, z) - \varphi(x, z, y) + \varphi(z, x, y) = 0.$$

By [1], page 272, any such 3-cocycle is the coboundary of a symmetric form $\psi(x, y)$:

$$\varphi(x, y, z) = (\partial \psi)(x, y, z) = \psi(y, z) - \psi(x + y, z) + \psi(x, y + z) - \psi(x, y),$$

so that $\delta(f - \psi) \equiv 0 \mod \deg (r + 1)$. Thus f can be completed to a cocycle in $Z_k^2(\Phi)$, and to construct our f_i , we start off with $C_{p^i}(x, y)$ which is a cocycle modulo degree $(p^i + 1)$.

3. The formal moduli.

THEOREM 3.1. — Let R, I, k, Φ , and Γ be as in proposition 1.1. Let \mathfrak{o} be a complete noetherian local R-algebra, with maximal ideal \mathfrak{m} containing $I\mathfrak{o}$ and residue field $K \supset k$. Let $F(\dot{x}, y) \in \mathfrak{o}[[x, y]]$ be a group law such that $F^* = \Phi$. Then there is a unique $(h - \mathfrak{1})$ -tuple $(\alpha_1, \ldots, \alpha_{h-1})$ of elements of \mathfrak{m} , such that F is \bigstar -isomorphic to $\Gamma(\alpha)$. Furthermore, there is only one \bigstar -isomorphism $\varphi: F \rightarrow \Gamma(\alpha)$.

Proof. — By induction on r we will show that the conclusion is true for the ring $\mathfrak{o}/\mathfrak{m}^r$: there is a unique vector $(\alpha^{(r)})$ of elements of $\mathfrak{m}/\mathfrak{m}^r$ such that F is \bigstar -isomorphic modulo \mathfrak{m}^r to $\Gamma(\alpha^{(r)})$, and there is only one \bigstar -isomorphism $\varphi^{(r)}: F \to \Gamma(\alpha^{(r)}), \quad \varphi^{(r)} \in (\mathfrak{o}/\mathfrak{m}^r)[[x]]$. Uniqueness then implies immediately that $(\alpha) = \lim (\alpha^{(r)})$ and $\varphi = \lim \varphi^{(r)}$ exist and are unique, so that the conclusion is true for the ring \mathfrak{o} .

For r = 1 there is nothing to be proved. Suppose now that we have $(\alpha) \in (\mathfrak{m})^{k-1}$ and $\varphi \in \mathfrak{o}[[x]]$ such that

$$\varphi^*(x) = x$$
 and $\varphi(F(x, y)) \equiv \Gamma(\alpha)(\varphi x, \varphi y) \mod \mathfrak{m}^r$,

and that such (α) and φ are unique modulo \mathfrak{m}^r . We will now construct φ' and (α') such that $\varphi'(x) \equiv \varphi(x) \mod \mathfrak{m}^r$, for each $i, \alpha'_i \equiv \alpha_i \mod \mathfrak{m}^r$, and

$$\varphi'(\mathbf{F}(x, y)) \equiv \Gamma(\alpha') (\varphi' x, \varphi' y) \mod \mathfrak{m}^{r+1}.$$

For each $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_{h-1}) \in (\mathfrak{m}^r)^{h-1}$, let Δ_{ε} be the cocycle

$$\Delta_{\varepsilon}(x, y) = (\Phi_1(0, x \star y))^{-1} \nu_r [\varphi(F(x, y)) - \Gamma(\alpha + \varepsilon) (\varphi x, \varphi y)],$$

as in proposition 2.4, where ν_r is the canonical projection of \mathfrak{m}^r onto $M_r = \mathfrak{m}^r/\mathfrak{m}^{r+1}$. Since

$$\Gamma(\alpha + \varepsilon) (\varphi x, \varphi y) - \Gamma(\alpha) (\varphi x, \varphi y) \equiv \sum_{i=1}^{n-1} \frac{\partial \Gamma}{\partial t_i} (\alpha) (\varphi x, \varphi y) \varepsilon_i \mod \mathfrak{m}^{r+1},$$

we have, on subtracting, and noting $\alpha^* = 0$, and $\varphi^* x = x$,

$$\Delta_{0}(x, y) - \Delta_{\varepsilon}(x, y) = (\Phi_{1}(0, x \star y))^{-1} \sum_{i=1}^{h-1} \frac{\partial \Gamma^{\star}}{\partial t_{i}} (\alpha^{\star}) (\varphi^{\star} x, \varphi^{\star} y) \nu_{r}(\varepsilon_{i})$$
$$= \sum_{i=1}^{h-1} f_{i}(x, y) \nu_{r}(\varepsilon_{i}),$$

where the $f_i(x, y)$ are cocycles by proposition 2.6 applied to Γ^* . The same proposition shows that there is a family $\varepsilon = (\varepsilon_i)$ such that $\Delta_{\varepsilon} = o$, and that such an ε is unique modulo $\mathfrak{m}^{r+1} = \operatorname{Ker} \nu_r$. Putting $\alpha' = \alpha + \varepsilon$ and applying proposition 2.4 we see then that there is a φ' such that $\varphi' \equiv \varphi \mod \mathfrak{m}^{r+1}$ and

$$\varphi'(F(x, y)) \equiv \Gamma(\alpha')(\varphi'x, \varphi'y) \mod \mathfrak{m}^{r+1}$$

and that such a φ' is unique mod \mathfrak{m}^{r+1} .

3.2. — Thus we see that if Φ is a one-parameter formal group over k, of height $h < \infty$, the set $\mathfrak{G}_{\mathfrak{o}}(\Phi)$ of all \bigstar -isomorphism classes of group laws F over \mathfrak{o} such that $F^* = \Phi$ is in one-to-one correspondence with the set-theoretic product of \mathfrak{m} with itself (h-1) times.

This correspondence is obviously functorial; the functor $\mathfrak{o} \mapsto \mathfrak{G}_{\mathfrak{o}}(\Phi)$ is isomorphic to the functor $\mathfrak{o} \mapsto (\mathfrak{m})^{h-1}$, for \mathfrak{o} running through the category of complete local noetherian *R*-algebras, *R* being a fixed local ring with residue field k = R/I.

PROPOSITION 3.3. — Under the hypotheses of theorem 3.1, if $u \in \operatorname{Aut}_k(\Phi)$, there is a unique (h - 1)-tuple (α) of elements of m and a unique isomorphism $\varphi \in \operatorname{Hom}_{\mathfrak{o}}(F, \Gamma(\alpha))$ such that $\varphi^*(x) = u(x)$.

J. LUBIN AND J. TATE.

Proof. — Let $g(x) \in \mathfrak{o}[[x]]$ be any power series such that $g^*(x) = u^{-1}(x)$. Let $G(x, y) = g^{-1}(F(gx, gy))$. Then since $G^* = \Phi$, we can use theorem 3.1 to get an (h - 1)-vector (α) of elements of \mathfrak{m} and a \bigstar -isomorphism ψ from G to $\Gamma(\alpha)$. Then $\psi \circ g^{-1} = \varphi$ is the isomorphism we want. Uniqueness is clear.

3.4. — If in particular R is a complete noetherian local ring and \mathfrak{o} is $R[[t_1, \ldots, t_{k-1}]]$, then for each $u \in \operatorname{Aut}_k(\Phi)$ there is a unique substitution

$$u^{\bullet}: t_i \rightarrow u_i^{\bullet}(t_1, \ldots, t_{h-1})$$

where each $u_i(t)$ is in the maximal ideal of R[[t]], and a unique isomorphism $\varphi_u \in \operatorname{Hom}_o(\Gamma(t), \Gamma(u^{\cdot}(t)))$ such that $\varphi_u^{\star} = u$. One sees readily, using uniqueness, that if u and v are k-automorphisms of Φ , then $u^{\cdot}(v^{\cdot}(t)) = (u \circ v)^{\cdot}(t)$ so that $\operatorname{Aut}_k(\Phi)$ has a representation by analytic transformations of the "analytic variety" $\mathfrak{G}_{\mathbb{R}}(\Phi)$. By our construction, $\Gamma(\alpha)$ has an automorphism reducing to u modulo the maximal ideal if and only if for each i, we have $u_i(\alpha) = \alpha_i$. Thus u^{\cdot} is the identity substitution if and only if $u \in \mathbb{Z}_p$, since by [3], 5.2.1 there are group laws of all heights with endomorphism ring \mathbb{Z}_p .

3.5. — We can use this operation of $\operatorname{Aut}_k(\Phi)$ on $\mathfrak{G}_{\mathbb{R}}(\Phi)$ to find an elliptic curve E without complex multiplications but whose associated formal group does have complex multiplications, i. e. endomorphisms not in \mathbf{Z}_p .

Take the case p = 2, R = the ring of integers of the quadratic unramified extension of \mathbf{Q}_2 , k = the field with four elements. Consider the elliptic curve E_t defined over R[[t]] which is given by $Y^2 + tXY + Y = X^3$, which has *j*-invariant equal to $t^3(t^3 - 24)^3/(t^3 - 27)$. The point (0, 0) is an inflection point of E_t , and we can take this as zero-point to make E_t an Abelian variety. If the function X is used as local uniformizing parameter at (0, 0), the group law associated with E_t turns out to be congruent modulo degree 5 to $x + y + txy + 2x^3y + 3x^2y^2 + 2xy^3$ and is therefore a $\Gamma(t)(x, y)$ as in paragraph 1, if we call Φ the height-two group law $\Gamma(0)^*(x, y) \in k[[x, y]]$.

Now consider E_0 which is an Abelian variety with endomorphism ring isomorphic to $\mathbf{Z}[\omega]$ where ω is a primitive cube root of \mathbf{I} . The endomorphism ring of the group law $\Gamma(o)$ contains a subring isomorphic to $\mathbf{Z}[\omega]$ and thus End $(\Gamma(o)) \cong R$; in other words $\Gamma(o)$ is full in the sense of [3].

Now for $u \in \operatorname{Aut}_k(\Phi)$, we have u'(o) = o if and only if there is $\varphi \in \operatorname{Aut}_R(\Gamma(o))$ such that $\varphi^* = u$. Thus under the action of $\operatorname{Aut}_k(\Phi)$ on the set $pR \cong \mathfrak{G}_R(\Phi)$, the orbit of o is in one-to-one correspondence with the set of left cosets of $(\operatorname{Aut}_R(\Gamma(o)))^*$ in $\operatorname{Aut}_k(\Phi)$. But $\operatorname{Aut}_k(\Phi)$ is isomorphic to the group U of invertible elements in the maximal order

of a central division algebra D of rank four over \mathbf{Q}_2 , and $(\operatorname{Aut}_{\alpha}(\Gamma(\mathbf{0})))^*$ corresponds to the intersection of U with a commutative subfield of D, so that the index is uncountable. Therefore, there are uncountably many distinct values of $u^{\cdot}(\mathbf{0})$, and so (in virtue of the *j*-invariant) uncountably many non-isomorphic elliptic curves $E_{u^{\cdot}(\mathbf{0})}$ whose formal groups $\Gamma(u^{\cdot}(\mathbf{0}))$ are full. But of course only countably many of these elliptic curves can have complex multiplications.

REFERENCES.

- HEATON (R.). Polynomial 3-cocycles over fields of characteristic p, Duke. math. J., t. 26, 1959, p. 269-275.
- [2] LAZARD (Michel). Sur les groupes de Lie formels à un paramètre, Bull. Soc. math. France, t. 83, 1955, p. 251-274.
- [3] LUBIN (Jonathan). One-parameter formal Lie groups over p-adic integer rings, Annals of Math., t. 80, 1964, p. 464-484.

(Manuscrit reçu le 28 juillet 1965.)

Jonathan LUBIN, Bowdoin College, Brunswick, Maine (États-Unis). John TATE, Harvard University, Cambridge, Mass. (États-Unis).