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FORMAL MODULI
FOR ONE-PARAMETER FORMAL LIE GROUPS

JONATHAN LUBIN (1) A N D JOHN TATE.

In this paper we study formal Lie groups using methods introduced
by LAZARD [2]. This material was exposed in a preliminary form in
a seminar at the Woods Hole Institute on Algebraic Geometry in
July 1964. All formal groups discussed here are commutative formal
Lie groups on one parameter, which we will frequently refer to as
<( group laws ". The reader is referred to [2] and [3] for all basic defi-
nitions.

Suppose that o is a complete noetherian local ring with maximal
ideal m and residue field k = o/m of characteristic p > o. If f is a
power series with coefficients in o, let us call /** the power series over k
whose coefficients are those of f, reduced modulo m. Let us say that
two group laws, i. e. one-parameter formal Lie groups, F and G, over o,
are ^ -isomorphic if F^ = G* and there is an o-isomorphism cp between F

'and G such that ^(x) == x. We shall show that if 0 is a group law
of height h < oo over k, the set (Sy^) of * -isomorphism classes of group
laws F over o such that F* = <t> can be put into one-to-one correspon-
dence with the (set-theoretic) product of m with itself (h—i) times, in a
way that is compatible with extension of the ring o.

1. Generic group laws of height h.

We give here a construction of a group law r which will turn out to
be (theorem 3.1) a generic lifting of a given group law <D of height h.
We recall that if F(x, y) is an abelian (r—i)-bud over a ring R, i. e. a
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polynomial that behaves modulo degree r like a group law over R
(see [2], p. 255) then there is an abelian r-bud F ' defined over R such
that F == F ' mod deg r; and if F ' is another such r-bud, then F ' == F ' + a C,
mod deg (r +1) for some a^R, where Cr is the modified binomial form,
see [2], definition 2.5 or [3], definition 3.2.1. We point out that if <1>
is a group law defined over a field k of characteristic p 7^ o and if ^
is of height h < oo, then there is ^/ isomorphic to €> over A: such that

^(x, y) == x + y + aCy(.r, y) mod deg (^ + i)

where q = p^ and a is a non-zero element of A". This can be proved
directly from [2], lemma 6 or by applying [3], lemma 3.2.2 to any group
law F defined over an appropriate discrete valuation ring o with residue
field k, such that F* == <t>.

PROPOSITION 1.1. — Let k be a field of characteristic p 7^ o, and let
^(x, y)ek[[x, y]] be a group law of height h <oo, with ^ (x, y) == x + y
mod deg p7'. Let R be a ring with maximal ideal J, such that R I I ^ k ,
and let R [[t]] = R [[ti, . . . , ^-i]] be the ring of formal power series in h — i
letters ti, . . . , /A_i over R. Then there is a group law T(ti, . . . , tj^) (x, y)
defined over R[[ti, . . . , ^A-i]] such that :

1. r(o, . . . , oY(x,y)=^(x,y),
2. For each i(i^i^h-i),

r(o, .. ., o, /„ .. ., ^-i) (x, y) FEE x + y + tiC,i(x, y) mod deg(p^ + i).

Proof. — We start with the abelian i-bud x + y defined over R[[t]]
and complete it to a group law with the desired properties. Suppose
for r > i that we have an abelian (r—i)-bud r,._i(/i, . . . , ^_ i ) such
that :

1. r/._i (o, . . . , o)* (x, y) ̂  ^(x, y) mod deg r,
2. For each i,

r/_i(o, . . . , o, /„ . . . , th-i)(x, y)
— x + y + tiC^(x, y) mod deg(min(r, ?'+ i)).

Now let r'/. be any abelian r-bud defined over R [[t]] such that r',. ̂ = r/_i
mod deg r.

CASE 1 : r > p^-1. — Then

r;. (o, . . . , o)* (x, y) ̂  C> (x, y) + a'C^x, y) mod deg (r +1)

for some aefi, by [2], proposition 2, and so we set IV = T',.—aCr.
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CASE 2 : p^-1 < r ̂  pi for some j ̂  h — i. — Then our hypotheses
on IV_i imply that

IV (o, .. ., o, tj, . . . , ^_i)(rr, y)
== x + y + b Cr(x, y) mod deg (r + i) for b e R[[ ij,..., ^-i]]

and in this case we let r/. = IV— 6 C/ if r ̂  pi and r/. = r7,. + (tj— b) Cr
if r = pf.

In either case, r,- is an abelian r-bud congruent to r,_i mod deg r such
that:

1. IV (o, . . . , o)*(.r, y ) =. ̂ (x, y) mod deg (r +1),
2. For each i,

IV (o, . . . , o, ti, . . . , t/^)(x, y)
=x +y + tiC^(x, y) mod deg (min (r +1, p1! +1)).

Then if we let r = lim r,-, we see that T has the desired properties.

2. The 2-cohomology group of a formal group.

DEFINITION 2.1. — Let R be a ring and M an R-module. We denote
by M [[x,, . . . , Xn\] the module M^pR [[rci, . . . , .r,,]].

By this we mean the completion of M(^)nR[[Xi, . . . , Xn]] with respect
to the family of submodules M(^)nJ'\ where J is the ideal (xi, . . . , Xn)
of -R[[.Ti, . . . , rr/,]]. An element of M[[.Ti, .. ., Xn]] can be represented
as V a^|ji, where ̂  runs through all the monomials in the x ' s , and each a a
belongs to M.

It should be observed that M [[Xi, . . . , Xn]] is not only anJ?[[:Ki, . . . , Xn]}-
module, but also has a substitution operation: if f(xi,..., Xn) e M[[:Ki,..., Xn]]
and if r/i, . . . , gn^R [[yi, ..., ym\\ are such that ^(o, o, . . . , o) == o for
each i, then f(g,, . . . , ^)eM|[i/i, . . . , y,n}}.

DEFINITION 2.2. — Let F(x, y)^R[[x, y]] be a group law and M be
an R-module. If f^M[[x}], then Qpf^M[[x, y]] is defined by

W)(x, y) = f(y)-f(F(x, y))+f(x).

IffeM[[x, y]], then 8pfeM[[x, y, z}} is defined by

(^f) (x, y , z) = f(y, z) -f(F(x, y), z) + f(x, F ( y , 2)) - f(x, y).

Also, BM (F) is the set of all f e M [[x, y]] such that f = Qg for some g e M \[x]]
and Z^(F) is the set of all f^M [[x, y]] such that f(x, y) = f(y, x) and
such that Sf=o. Since ^(F)cZj^(F), we can define HM^F) as
ZM(F)!BM(F). Elements of B2 andZ1 are called coboundaries and cocycles^
respectively.
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2.3. — In case F is defined over a field k and M is a finite-dimen-
sional /c-vector space, M [[x^, . . . , Xn]] is canonically isomorphic to
M^)kk[[x,, .. .,:r/,]]. Also.Zi(F) ̂ M(g)^(F), and similarly for 5 UF)
and JJ],(F).

Suppose f(x, y) eZj?(F) and /'(rr, y) =: o mod degr. Then

o = W) (̂ , y, z) == f(y, z) — f(x + y, z)
+ f(x, y + z) —f(x, y) mod deg (r +1)

so that by [2], lemma 3, f(x, y) =E a Cr(x, y) mod deg (r + i) for some a e R.
Similarly, if M is a finite-dimensional vector space over a field k over
which F is defined, for each nonzero f(x, z/)eZiy(F), there is an integer r
and a nonzero element a of M such that

f(x, y) == aCr(x, y) mod deg (r +1).

In the next proposition, we show how the second cohomology group H2

measures the ( < infinitesimal deformations " of a formal group. If o is
a local ring with maximal ideal m and residue field k == o/m, let us call Vr
the canonical homomorphism of m7 onto the A-vector space Mr = rrr/m7 +1,
and we will use the same symbol, Vr, for the corresponding homomorphism
between the power-series modules in n variables, over m7 and Mr, respec-
tively. We will be dealing with a group law ^(x, y)ek[[x, y]], and we
will denote by ^, and 0>2 the first partial derivatives of 0> with respect
to the left- and the right-hand arguments, respectively. Observe that C>i
has constant term i, so that ^1(0, x) has a reciprocal in k[[x]].

PROPOSITION 2.4. — Let o, m, Mr, and €» be as above. Let F and G
be group laws over o such that F*== G*=^. Suppose 9(^)0 o[[.r]] is
a power series such that :

1. ^(x)=x,
2. ^(F(x, y))== G(^x, cp^modm7 .

Let ^(x, y)eMr[[x, y]] be defined by

A(.r, y) = [<^(o, ^(x, y))]-1 ̂ r[^(F(x, y))— G^x, cpy)].

Then ^(x, y^eZ^W.. Furthermore, A (re, y)eB^(0>) if and only if
there is ^'(x)^Q[[x]\ such that :

1. ^ (x) FEE cp (x) mod m7,
2. q/(F(:r, y)) ̂  G^'x, ^ ' y ) mod m7'^.

Finally, such a cp' 15 unique modulo m7'^1, z/' <D ^ of finite height.

Proof. — We will use the simplifying notation x * y for €> (a-, y) and make
use of the facts that 0> 1(0, x) == ^,(x, o)and ^i(x, y ) ' ^ i ( o , x ) = <I>i(o,rr*z/),
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which are proved by differentiating the identities expressing the commu-
tativity and associativity of C>, and then setting one of the variables
equal to zero.

By abuse of notation, we can say, modulo m^S

^(F(x, y)) == G^x, cpy) + A(:r, y) €>i (o, x * y) (mod m^).

Hence, computing modulo m7^1 we have :

9(F(F(rr, z/), z))-G(G^x, cpy) +A(:c, i/).€»i(o, x ^y), cpz)
+ A (re * y , z) • ^1(0, x * y * ̂ )

— G(G(cp.r, cpy), 92) +^i(^*y, z)
x ^(x, y).<I>i(o, rr*y) +^(x-ky, z)-€»i(o, o;*y*2)

^ G(G(cp.r, cpy), cpz) +^i(o, x - k y - k z )
x[A(^,i/)-|-A(a;*z/,z)].

Symmetrically,

cp(F(:r,FO/,z))EEEG(cprr, G(c?y, cpz))+^(o,.r*y*z).[A(y,2)+A(a;, y*2)].

Then, since both F and G are associative, we see immediately
that A€Z^(^).

If we have Q ' ( x ) e o [[x]] such that q/ (re) === cp (re) mod m7^, let us
set ^(:r) == <l>i(o, rc^^^r^^—T^)- Then, again by abuse of notation,
we have, modulo m7^1,

9 (a;) = cp^ (x) — €>i (o, .r) ̂  (̂ ),
and

€>i (o, x * y). A (x, y) E= ̂  (F(̂ , y)) — 0>i (o, .r * y) - + (̂  * y)
— G(^—0i(o, ̂ )4(^), cp^—a^o, y)4(y))

^cp^F^, y))— G(cp^, ^—^(o, a:*y)^(^*y)
+<I>i(o, :c).^(.x;).e>i(a-, y)
+ €>i (y, o). ̂  (y). e>i (.r, y) (mod nr4-1).

Thus A(a;, y) = <^,(o, .r * y)-1. ̂ rW(F(x, y))— G^x, cp'y)] +(^)(^, y).
This shows that AeB|^(<I>) is a necessary and sufficient condition for

the existence of a series ^ ( x ) satisfying conditions 1 and 2 of the propo-
sition. It remains only to prove the unicity of such a ^ ' in case <^ is
of finite height. If ^ " is another such series, then the difference of 9'
and 9^ in Honip/^,.+i(F, G) is a homomorphism p == o mod nr. Such a p
satisfies

p(F(;r, y)) == G(^x, py) == p.r + py (mod m^').
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Hence the series h(x) == ^(p(^)) satisfies

h(^(x,y))==h(x)+h(y).

By iteration, this implies h([p](x)) = ph(x) = o, where

[ p ] ( x ) = x ^ x . . . - k x

is the p-fold endomorphism for the group €». Since [p](x) ̂  o for 0 of
finite height, we can conclude h = o, and consequently ^ ' == ^ ' mod m7^'
in that case.

2.5 REMARK. — It should be noted that under the hypotheses of
the preceding proposition, A is congruent modulo degree n to a coboun-
dary if and only if there is cp^eo [[x]] such that :

1. ^ ' { x ) FEE cp(.r) mod rrr, and
2. cp'GF^, y)) FEE G(^x, ^ ' y ) mod m+1, mod deg n.

We are now in a position to compute J:Z|(<t>) for <I» a group law of
finite height over a field A: of characteristic p ̂  o :

PROPOSITION 2.6. — If €» is a group law of height h < oo, defined over
a field k of characteristic p -^ o, then Hi (€>) is a k-uector space of dimen-
sion h—i. If ^(x,y)==x+y mod deg p\ and T ( t ) ( x , y ) is any
group law over k[[t,, . . . . t/^]] satisfying the conditions of proposition 1.1
with R=k, then the functions

f,(x, y) = (0», (o, x^y))-^ ̂  (o, . . . , o) (x, y) (i^ i ̂  h - i),

are cocycles satisfying

fi(x,y) == C^(x, y) mod deg p1^ + i,

whose classes form a base for Hi (<!»).
Let ^(x,y) and T(t) (x, y) be as in proposition 1.1, with R = k.

Apply proposition 2.4 with o = k[r]l(^), with r == i, with ^(x) = x,
with G(x, y) = ̂ (x, y) = r(o, . . . , o) (x, y) and with F(x, y) =
r(o, . . . , o, T, o, . . ., o) (x, y), where the T is in the i-th place. Since then

F(x, y) = G(x,y) + T ̂  (o, . . . , o) (x, y),

we conclude that f,(x, y) is a cocycle. The fact that

fi(^ y) == C^(x, y) mod degp1 +1

is obvious from the definition of f,, and using this we will now show
that the classes of the f, form a base for HI (0>).
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For eachj, let g j ( x ) = x / . Then i f j is not a power of p,

(3^) (x, y) == Bj(x, y) mod deg (j +1)

where B] = ^ Cj for 7. some nonzero element of k. And ifj = p5 for s ̂  o,
then

(^y)(;r, y) =yf—^(x, y)y+x/=-^(C,h(x, y)V mod degQp^ + i),

since <^ (a;, y) == re + y + a C/^(:r, y) mod deg (p^ + i) for some a ̂  o. But
(C/(.r, y))^ == Cp^(x, y) in characteristic p, so that ((^y) (re, y)^=^ C^h(x, y)
mod deg (jp^+i), for ^ 7^ o, if j is a power of p. With these facts,
we can now show that if ^ e Z| (^), ^ is equal to a linear combination
of the /\, (i^ i <A), plus a coboundary.

Indeed, suppose

^ =V ̂ fi + 3y/,-i mod deg n,

for ^e/c and y^_ieA:[[.r]]. It then follows that

^ =^^^ + ̂ -i + ac^ mod d^ (n + I)'

for «€A-, by 2.3.

CASE 1 : n=--pf for j < 7i. — Then since

aCn== afj mod deg (n + i),

^ = ^/'/+y1^^^+ ^n-i so that we can let y^= y,,_i.

CASE 2 : n = pf for j ̂  A. — Let m == n/p^ = p^-7'. Then

aCn= b^g,n mod deg (n +i) for some bek,
and so we let y^ = y^-i + ^^/^•

CASE 3 : n is not a power of p. — Then

aCn== b^gn mod deg (n + i) for some bek

and so we let y^ = y/z-i + ^/z-
Since y = lim y^ exists in k[[x]], we see that ^ is equal to 6y plus a

linear combination of the f,, which shows that HI (<D) is spanned by the

classes ^i, . . . . SA-I of fi, . . . , -̂1. But since]^V,(:r, y) = (og) (x, y)

is impossible unless each ^ is zero, as one sees by considering the equation
mod deg (p1 +1) successively for i = i, 2, . . ., h —i, the ^ are linearly
independent and so form a basis for Hi (^).
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2.7. — In the above proposition, we showed that dim (AT| (<!>)) ̂  h — i
by using T(f) to find for each i < h a cocycle

/•.(a;-, y) = C^(:c, y) mod deg (p1'+1).

Such cocycles can be constructed by another method, which we
outline here :

If f is a cocycle modulo degree r, then the r-degree form 9 of ^f is a
polynomial 3-cocycle in the sense of [I], i. e.

cp(z/, 2, w) — cp(;r + y, 2, w) + ̂ (x, y + 2, w)
—^(x,y,z+w)+ (p(rr, y, 2) = o,

and furthermore, CP is " symmetric " in the sense that

cp(;r, y , z) — ^(x, z, y) + ?(^ x, y) = o.

By [I], page 272, any such 3-cocycle is the coboundary of a symmetric
form ^(x, y) :

cp (x, y , z) == (^) (x, y , z) == ^ (y, z) — ̂  (x + y , z) + ^(x, y + z) — ̂ (x, y),

so that S(f— +) == o mod deg (r +0- Thus f can be completed to
a cocycle in Zi(e>), and to construct our /*;, we start off with C p ' ( x , y)
which is a cocycle modulo degree (p1 +1).

3. The formal moduli.

THEOREM 3.1. — Let R, I , k, ̂ , and T be as in proposition 1.1. Let o
be a complete noetherian local R-algebra, with maximal ideal m containing Jo
and residue field K^k. Let F(x, y)eo [[x, y]] be a group law such
that F*= <I>. Then there is a unique (h—i)-tuple (ai, . . . , a / , _ i ) of
elements of m, such that F isi^-isomorphic to r(oc). Furthermore, there
is only one ̂ -isomorphism cp : F—^T(a).

Proof. — By induction on r we will show that the conclusion is true for
the ring o/rrr : there is a unique vector (a^)) of elements of m/m7 such
that F is^-isomorphic modulo m7' to I^a^)), and there is only one
^-isomorphism 9^ : F -> r(a^), c p 7 ) € (o/m 7 ) [[x]]. Uniqueness then
implies immediately that (a) == lim (a^) and cp == lim 9^ exist and are
unique, so that the conclusion is true for the ring o.

For r = i there is nothing to be proved. Suppose now that we have
(a^On)7'"1 and 9€o[[2-]] such that

^(x) == x and 9 (F (x, y)) == r(a) (cp.r, cpy) mod m'\



FORMAL MODULI FOR ONE-PARAMETER FORMAL LIE GROUPS. 37

and that such (a) and cp are unique modulo m'. We will now construct cp'
and (a') such that cp' ' (x) = (^(x) mod m7, for each i, a;^ a; mod m7', and

^(F(x, y)) == T ^ ' ) (^x, ̂ y) mod m7^1.

For each c = (si, . . . , s/^eOn^)7^, let As be the cocycle

^(x, y) = (<^(o, :r*i/))-^,[cp(F(rr, y)) — r(a + s) ((prc, cpy)],

as in proposition 2.4, where v/. is the canonical projection of W onto
Mr= rn'Vrrt7^1. Since

A-l

r(a +£)(?^, cpy)—r(a)(cp:c, cpy) ̂ ^ ̂  (a) (cp.r, cpy)£, modm7^',
^=1

we have, on subtracting, and noting a* = o, and ^x == x,
/i — i^ ^r*

Ao(a-, y) — ^(x, y) = (0»i(o, x^y))-^ -^ (a') (^x, ̂ y) Vr(^)^
i=l

h—l

^f,(x,y)^),=^f^y)^r(^),

where the fi (x, y) are cocycles by proposition 2.6 applied to P. The same
proposition shows that there is a family £ = (s;) such that A^= o, and
that such an c is unique modulo m7^1 == Kerv,-. Putting as.' = a + 2
and applying proposition 2.4 we see then that there is a q/ such that
c(/ = cp mod m7^ and

cp'(F(:r, y)) == r (a^ (9^, cp^) mod m7^1

and that such a cp' is unique mod m7^1.

3.2. — Thus we see that if <D is a one-parameter formal group over k,
of height h <oo, the set ©o(^) of all -^-isomorphism classes of group
laws F over o such that F* === <I> is in one-to-one correspondence with
the set-theoretic product of m with itself (h —i) times.

This correspondence is obviously functorial; the functor o 1-̂  ©o^)
is isomorphic to the functor o \-> (m)^"1, for o running through the cate-
gory of complete local noetherian J?-algebras, R being a fixed local ring
with residue field k = J?/J.

PROPOSITION 3.3. — Under the hypotheses of^ theorem 3.1, ifu^A\itk (^),
there is a unique (h —i)-tuple (a) of elements ofm and a unique isomorphism
cpeHom,,(F, r(a)) such that ^(x) = u(x).
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Proof. — Let g(x) e o [[^]] be any power series such that g*(x) == u-1 (re).
Let G(^, y) = g-^F (gx, gy)). Then since G*= <^, we can use theo-
rem 3.1 to get an (A—i)-vector (a) of elements of m and a^-isomor-
phism ^ from G to r(a). Then ^"^-1 == cp is the isomorphism we want.
Uniqueness is clear.

3.4. — If in particular J? is a complete noetherian local ring and o
is R[[tt, . . ., ^-i]], then for each ueAut^(^) there is a unique substi-
tution

u ' : ti\->ii'i(t,, . . . , t/,-i)

where each u}(t) is in the maximal ideal of -R[[^]], and a unique iso-
morphism cp^€Hom^(r(0, r(u'(Q)) such that 9;== u. One sees readily,
using uniqueness, that if u and v are A-automorphisms of €>, then
u'(u'(t)) == (u o ;;)•(() so that Aut/:(€>) has a representation by analytic trans-
formations of the (< analytic variety " (Sn^). By our construction, T(a)
has an automorphism reducing to u modulo the maximal ideal if and
only if for each f, we have u;(a) = a;. Thus u' is the identity substi-
tution if and only if u^Zp, since by [3], 5.2.1 there are group laws of
all heights with endomorphism ring Z/^.

3.5. — We can use this operation of Aut^(^) on (S^W to ^d an
elliptic curve E without complex multiplications but whose associated
formal group does have complex multiplications, i. e. endomorphisms
not in Zp.

Take the case p = 2, R === the ring of integers of the quadratic unra-
mified extension of Qa, k == the field with four elements. Consider the
elliptic curve E{ defined over R[[t]] which is given by Y2 + tXY +Y= X'\
which has j-invariant equal to ^(^—24) :</(^—27). The point (o, o)
is an inflection point of £"/, and we can take this as zero-point to make Et
an Abelian variety. If the function X is used as local uniformizing
parameter at (o, o), the group law associated with Et turns out to be
congruent modulo degree 5 to x + y + txy + ix^y + S^y2 + 2;n/3 and
is therefore a T(t) (x, y) as in paragraph 1, if we call e> the height-two
group law T(oY(x, y ) e k [ [ x , y ] ] .

Now consider Eo which is an Abelian variety with endomorphism
ring isomorphic to Z[c»)] where w is a primitive cube root of i. The endo-
morphism ring of the group law r(o) contains a subring isomorphic
to Z[oj] and thus End (r(o)) ̂  R; in other words r(o) is full in the
sense of [3].

Now for ueAut/: (<!»), we have u*(o) === o if and only if there is
cpeAutR(r(o)) such that cp*== u. Thus under the action of Auty;:(e>)
on the set pR ̂  ©p^), the orbit of o is in one-to-one correspondence
with the set of left cosets of (AutR(r(o)))* in Aut^(O)). But Aut^O)) is
isomorphic to the group U of invertible elements in the maximal order



of a central division algebra D of rank four over Q^, and (Aut, (T (o)))*
corresponds to the intersection of U with a commutative sub field of D,
so that the index is uncountable. Therefore, there are uncountably
many distinct values of u*(o), and so (in virtue of the j-invariant)
uncountably many non-isomorphic elliptic curves Ea'(o) whose formal
groups r(u'(o)) are full. But of course only countably many of these
elliptic curves can have complex multiplications.
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