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ALGEBRAIC INTEGERS
WHOSE CONJUGATES LIE NEAR THE UNIT CIRCLE

BY

CAMERON L. STEWART
[I.H.E.S., Bures-sur-Yvette]

RESUME. — Soit a un entier algebrique non nul de degre D (> 1), et soient
a == di, ..., (XD, ses conjugues. Dans cet article, on donne une nouvelle demonstration
du resultat suivant de BLANKSBY et MONTGOMERY. II existe un nombre positif C, tel que si

Y[D=,msix{l,\^\}<l+(CD\ogD)•~l,

alors a est une racine de 1'unite.

ABSTRACT. — Let a be a non-zero algebraic integer of degree D (> 1), with conjugates
a == 0.1, ..., do. The purpose of this note is to give a new proof of the following result
due to BLANKSBY and MONTGOMERY. There exists a positive number C such that if

n?=imax{l, |a.|}<l+(CjDlogD)-1,

hen a is a root of unity.

1. Introduction

In 1933 D. H. LEHMER [5], in connexion with a method for discovering
large prime numbers, posed the following question. Let a be an algebraic
integer of degree D with conjugates a = o^, a^, . . . , a?, and put

MC^n^imax^JaJ}.

Is it true that for every positive number e there exists a non-zero algebraic
integer a, not a root of unity, for which M (a) < 1 +s? Plainly M (a) = 1
if a is a root of unity; while, by a result of KRONECKER [4], if M(a) = 1
and a is non-zero, then a is a root of unity. The smallest value of M (a)
larger than 1 which LEHMER found was associated with the roots of the
irreducible polynomial

x^+^-^-^-^-^-^+x+l.
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170 C. L. STEWART

In this case, M(oc) = OQ = 1.176,280,81...; here oco is the largest real
root of the above equation. We remark that oco is a Salem number, a
real algebraic integer larger than 1 having one conjugate on the unit circle
and all others (1) on or inside the unit circle. A computer search for small
Salem numbers made by BOYD [2] yielded none smaller than ao. In fact,
even in the general case it seems that no algebraic integer a has been found
with 1 < M(a) < (XQ.

While Lehmer's question remains open for the Salem numbers it has
been answered in the negative for the PV numbers, those real algebraic
integers, larger than 1, all of whose conjugates (1) lie strictly inside the
unit circle. If a is a PV number then M(oc) == a; and, in 1944, SALEM [7]
proved that there is a smallest PFnumber Po. In the same year, SIEGEL [8]
showed that (3o is the real root of the equation x3—x—l, hence
Po = 1.324,717,95... In 1971, C. J. SMYTH [9] extended the above results
considerably by proving, for a ^ 0,1, that M(a) > Po whenever the
minimal polynomial P (z) of a is not a reciprocal polynomial, in other
words whenever P (z) ^ z D P ( z ~ l ) where D is the degree of P (z).

The best result concerning Lehmer's question which applies without
restriction is due to BLANKSBY and MONTGOMERY [1]. They proved that
if a is a non-zero algebraic integer of degree D which is not a root of unity
then

(1) M(o) > 1+(52 Dlog6 D)~1.

Their proof depends upon the methods of Fourier analysis. The aim
of this paper is to prove (1), albeit with a less precise constant, by means
of an argument of the sort used in transcendence theory involving the
construction of an auxiliary function with a large number of zeros. We
prove in this way the following theorem.

THEOREM. — If a if a non-zero algebraic integer of degree D (> 1), and

(2) M(oi)<l+(l^DlogD)~\

then a is a root of unity.
It follows directly from (1) or (2) that there exists a positive number C

such that if a is a non-zero algebraic integer of degree D (> 1), and

(3) |o| <l+(CD2logD)~'l,

(1) Here the number itself is understood to be excepted.
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then a is a root of unity; here px") denotes the maximum of the absolute
values of the conjugates of a. Recently, DOBROWOLSKI [3] obtained a
very simple and elegant improvement of (3). He showed that, if a is
a non-zero algebraic integer of degree D(> 1), and

fo] <l+(logD)/6D2,

then a is a root of unity.
In conclusion, I should like to acknowledge the useful conversations

concerning this paper which I have had with M. MIGNOTTE and
M. WALDSCHMIDT, and to thank A. van der POORTEN for drawing my
attention to the problem considered herein.

2. A preliminary lemma

We record here a version of Siegel's lemma concerning solutions of
linear equations. Our proof is similar to one given by WALDSCHMIDT
in [10] (see also [6]).

LEMMA. — Let bij (1 ^ ; ̂  N, 1 < j ̂  M), be algebraic integers,
not all of which are zero, in a field K of degree D over the rational numbers,
and let (T^, a^, ..., <7p denote the embeddings of Kin the complex numbers.
If N ^ 2 MD, then the system of equations

S^i^-0 (l^^M),

has a solution in rational integers x^ x^ . . . ? x^, not all of which are zero,
whose absolute values are at most

72N(max^,^n^i (max ,̂̂  i ̂ (&y) I))170.

Proof. — Let <7i, . . . , a,, denote the embeddings of K into the real
numbers, and let a^+f, ^+s+h i = I? ..., .s, be the remaining s conjugate
pairs of embeddings. Put T, == <J, for i = 1, ..., r, and put

T^+; = Rea^+; and ^r+s+i = I^a^r+i ^ i = I? • • - » s^
here Rea^+;(x) is just the real part of (Tr+i^) while Im Oy +i(x) is the
imaginary part. We now set

Y= [^^(max.n î̂ ax,!^^,)!))1^].

For any pair of integers (k, j) with 1 < k ^ D and 1 ̂  j ^ M, the ( 7+1)^
different -A^-tuples (y^, ..., y^) with 0 ^ y^ ^ Y for i = 1, ..., N, give

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



172 C. L. STEWART

rise to (r+l)N numbers ^ (^ i^,) which all lie in an interval of
the real line of length at most max, | T^ (b,j) [ NY. Put L = Y(Y+1).
Note that L is non-zero since the Ay are algebraic integers which are not
all zero and hence Y is at least 1. Since N ^ 2 AtD and Z, < (V+l)2,
we have Z*" < (Y+lf. Therefore, by the pigeon-hole principle, two
of the ^-tuples, (^1), ...,^>) and (yW, ...,y^) say, satisfy

(4) 1 T,(£^ W^^i ̂ 2)) | < max, | T ,̂,) | ̂ r

JLj

for A: = 1, ..., D andy = 1, . . . , M. Put x, = y^ -yW for i = 1, ..., N.
Then max, | x, | < Y and the x, are not all zero. Therefore, to prove
the lemma it suffices to show that

£^i^.=0 for Kj^M.

From (4), we deduce, for j= 1, ...,M, that

\^(LN=lb„x^)\^maXi\o,(b,,)\NY for k=l,...,r,
Li

and that

I ̂  (Ef= l &y X,) CT,+, (̂  l b,, X,) |

< { max, (Re ̂  (fry))2 + max, (Im ̂  (&,,))2 } ( Nr)

< 2 max, | dt (&.,) CT^, (fc,,) | ( Nr\2,

for k = r+l, ..., r+s. Therefore

n?=i^(E^^)i <(Y(Y^}D= i
foi y = 1, . . . , M. The number on the left hand side of the above expres-
sion is the absolute value of the norm from K to Q of Y^ b^ x, which,
since it is less than 1, is 0. Thus ^=1 ̂ j -^ = 0, for 7 = 1, ..., M,
as required.

3. Proof of the theorem

We assume that D ^ 4 since, as is easily checked, the theorem holds
for D < 3. Further, we assume, without loss of generality, that | a | = H x l
the maximum of the absolute values of the conjugates of a. Put

(5) U = [70 D log D] and K=2U,

TOME 106 - 1978 - N° 2



ALGEBRAIC INTEGERS 173

and choose K positive integers r^ < r^ < . . . < r^ from the first 13 K
positive integers in such a way that

maxi^^{ | ImOoga^-ImCloga^) |} ̂  27T/13;

throughout this paper Im (x) denotes the imaginary part of x, and log x
denotes the principal value of the logarithm of x taken so that
— 7 c < I m ( l o g ^ ) ^ 7 i . Such a choice is possible by the pigeon-hole
principle. Put

9i = mini ̂ j^Im (log a )̂ and 6 = 9i+71/13.

We then have

(6) maxi^^lln^loga^-iel < Tt/13.

We now construct a function f(z) of the form

/(z) = expC-fOz^^^^i^.^expaoga^z,

where the a^ ̂  are rational integers to be chosen so that f(u) = 0 for
u= 1, . . . , U. This is equivalent to solving the equations

/(^exp(z9^==S^lS?=l^4ad+rkw=0

for u = 1, ..., U. Since KD, the number of unknowns, is 2 D times U,
the number of equations, by the preliminary lemma there exists a solution
in rational integers ̂ , not all zero, so that

max,,Ja^| <72^DM13Kl7+JD.
where

M = (rLesmax{ 1, | aoc | ̂  = (MCa)) ;̂

here 5' denotes the set of embeddings of Q (a) in the complex numbers.
Let /(z) be defined by means of these ^^.

We now prove by induction that f(u) = 0 for all positive integers u.
Accordingly we assume that f(u) == 0 for u ^ J where J ^ U, and we
prove that /(./+1) = 0. Since f(z) is an entire function,

F(z)=f(z)l(^(z-u))

is also entire. By the maximum modulus principle

F(J+l)^max^r |̂ )|,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



174 C. L. STEWART

where F = { | z [ = 2 J+1 }. Thus

(7) i/^+Dl^f^y'max^J/Cz)!.

It is readily verified that

(8) max^l/OOl ^ ̂ /2(KD)2 M13^^ ^ D exp (A (2 J +1)),

where

A = maxi^^ | (log o^)-f 9 [.

Further it follows from (6) that A ^ [ 13 ^log | a | +in/13 [. Since
| a | == pq, we may use the fact that 1 ̂  | a [ ^ M(a), (2) and the
inequality

(9) log(l+x)^x for x^O,

to show that 0 < log | a | ̂  (104 D log D)~1. Recalling (5), we see that
0 < 13 K log | a | < 7T/13 and thus A (2 J+1) < (log 2) J. Therefore
from (7) and (8), we have

\f(J+l)\^(2^~12iJ ^(KDfM13^ ^D,

/2J\and employing (5) and the estimate ( j ^ 4•7/2 J, we see that
\ 7 /

(10) \f(J+l)\^J2~JK4M26KU.

We now estimate [ f(J+1) | from below. Put P = /(J+1) exp Q'9 (J+1)).
Since P is an algebraic integer in Q (oc) it is either 0, in which case
/(J+l) = 0, or the norm from @(a) to Q of P is at least 1 in absolute
value. In the latter case

(ii) i / (^+i) i -iPixrLed^p)!)"1-
where 5"' is the set of embeddings 5' minus the identity embedding. We
have, for all a e S /,

(12) |a(P)|^y2(KD)2M13^+Dmax{l,|a(a)|13K(J+l)+D}.

Since | a [ = [ a L

rLe5'max{l, |a(a)|}<(rLe5max{l, ^(oOJ})^-1^ = M0-1,
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and from (11) and (12), we conclude that

I/^+^IX^M2^^^^-^1.

Comparing this estimate for \f(J-\-1) | with the one given by (10), we find
that

2J^JiC4DM26x(•7+l)D.

Taking logarithms and estimating (J+ 1)/J from above by 27/26 yields

log2^ l?^ ^^^XDlogM.
J J

Thus, recall that M(a) = M0, ^ = 2 £/ and J ^ £/,

(13) log2 ̂  w + 4Dlog^ +54 (71ogM(a).

Since £/ = [70 Z> log 2)] and D ^ 4, we find, after some calculation,
that

logL/ 4_Dlog2J7
U U < ' '

And using (2), (9) and (13), we deduce that

(log2- .31) 104 Dlog D < 5417.

This contradicts our choice of U', therefore P, hence also/(/+!), is zero.
This completes the induction.

We conclude, on putting A^ = ̂ ^ i ̂  d 0^9 that

(14) / (u) exp (i 9 u) == ̂ = i A, o^ = 0

for all positive integers u. Since a has degree D, Aj, = 0 if, and only if,
^jk.i = • • • = ^fc.D = ^- ^y construction the fl^/s are not all zero
and thus the Aj^s are not all zero. Now, as D. BERTRAND observed, it
follows from (14) that the polynomial ^=1 A^ z^ vanishes at all points a"
with u a positive integer. Since the polynomial is not identically zero
two of these points are the same. Therefore a is a root of unity as required.
Alternatively, it is easily seen that (14) cannot hold for all positive integers u
unless | a | ̂  1. By assumption, however, [ a | == "a" and so by
Kronecker's theorem a is a root of unity. This completes the proof.
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Added in Proof. — E. Dobrowolski has recently proved, again by means of an
argument common to transcendence theory, that if a is a non-zero algebraic integer
of degree D(> 1) which is not a root of unity, then M(a) > l+c((loglogZ))/logZ))3,
where C is a positive constant.
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