ZBIGNIEW PIOTROWSKI

Continuity points in \(\{x\} \times Y \)

<http://www.numdam.org/item?id=BSMF_1980__108__113_0>
CONTINUITY POINTS IN \(\{ x \} \times Y \)

BY

ZBIGNIEW PIOTROWSKI (*)

RESUME. — Le resultat principal de cet article est un peu plus fort que le theorème suivant : soit \(X \) un espace à base dénombrable en tout point soit \(Y \) un espace de Baire et soit \(Z \) un espace métrique. Si une fonction \(f : X \times Y \to Z \) est séparément continue, l'ensemble des points de continuité de \(f \) est un dense \(G_\delta \) dans \(\{ x \} \times Y \), pour chaque \(x \in X \).

ABSTRACT. — The main result of this paper is somewhat stronger than the following: let \(X \) be a first countable space, let \(Y \) be a Baire one and let \(Z \) be a metric space. If a function \(f : X \times Y \to Z \) is separately continuous, then the set of points of continuity of \(f \) is a dense \(G_\delta \) subset in \(\{ x \} \times Y \), for all \(x \in X \).

There are many papers which deal with the classical problem of determination of points of continuity of a separately continuous function, for some references, see [1].

The general problem is: find conditions on topological spaces \(X, Y \) and \(Z \) so that each separately continuous function \(f : X \times Y \to Z \) (i.e., function continuous in each variable while the other is fixed) is jointly continuous at points of a “substantial” (in some topological sense) subset of \(X \times Y \), cf. [1], p. 515.

We will answer this problem showing how the set of points of continuity looks like in the sets of form \(\{ x \} \times Y \), for each \(x \), while \(X \) is assumed to be first countable, \(Y \) is Baire, \(Z \) is metric and \(f \) is somewhat weaker than separately continuous. As a useful tool we make use of quasi-continuous functions. Namely:

A function \(f : X \to Y \) is called quasi-continuous if for every point \(x \in X \) and every neighborhoods \(U \) of \(x \) and \(V \) of \(f(x) \), there exists an open, non-empty set \(G, G \subset U \), such that \(f(G) \subset V \).

(*) Texte reçu le 12 février 1979, révisé le 22 octobre 1979.
Z. PIOTROWSKI, Institute of Mathematics, University, pl. Grunwaldzki 2/4, 50-384, Wrocław, Poland.

BULLETIN DE LA SOCIETE MATHÉMATIQUE DE FRANCE - 0037-9484/1980/113/$ 5.00 © Gauthier-Villars
Recall that S. Marcus proved that there exists a quasi-continuous function which is not Lebesgue measurable. Of course, every continuous function is quasi-continuous.

A function \(f : X \times Y \to Z \) (\(X, Y, Z \), arbitrary topological spaces) is said to be **quasi-continuous with respect to the variable** \(x \), if for every point \((p, q)\) of \(X \times Y \) and for every neighborhood \(N \) of \(f(p, q) \) and for every neighborhood \(U \times V \) of \((p, q)\) there exists a neighborhood \(U' \) of \(p \), with \(U' \subseteq U \) and a non-empty open set \(V' \subseteq V \) such that for all \((x, y) \in U' \times V'\) we have \(f(x, y) \in N \). Analogously, one may define functions which are quasi-continuous with respect the variable \(y \). If \(f \) is quasi-continuous with respect to the variable \(x \) and quasi-continuous with respect to the variable \(y \), then we say that \(f \) is **symmetrically quasi-continuous**.

One can easily construct symmetrically quasi-continuous functions which are not separately continuous. From [2], Theorem 1 it follows:

Lemma. — Let \(X \) be first countable, \(Y \) be Baire and \(Z \) be metric. If \(f : X \times Y \to Z \) is a function such that all its \(x \)-sections \(f_x \) are quasi-continuous and all its \(y \)-sections \(f_y \) are continuous, then \(f \) is quasi-continuous with respect to \(x \).

Now, under the same assumptions as in Lemma, let us fix an arbitrary element \(x \) from \(X \). Consider the function \(y \mapsto \omega(x, y) \). Observe, that the open set \(\{ y \mid \omega(x, y) < 1/n \} \) is dense in \(Y \). Hence, standard arguments let us state the following:

Theorem. — Let \(X \) be first countable, \(Y \) be Baire and \(Z \) be metric. If a function \(f : X \times Y \to Z \) has all its \(x \)-sections \(f_x \) quasi-continuous and all its \(y \)-sections \(f_y \) continuous, then for all \(x \in X \), the set of points of continuity of \(f \) is a dense, \(G_\delta \) subset in \(\{ x \} \times Y \).

Corollary. — Let \(X \) and \(Y \) be first countable, Baire spaces and \(Z \) be metric. If a function \(f : X \times Y \to Z \) is separately continuous, then the set of points of continuity of \(f \) is dense, \(G_\delta \) in the sets of form \(X \times \{ y \} \) and \(\{ x \} \times Y \), for all \(x \in X \) and all \(y \in Y \).

The following Question remains open:

Question. — For which “nice” topological (neither metric nor satisfying any sort of countability conditions, see [1], p. 515) spaces \(X \) and \(Y \), our Lemma holds?

Good answers to this Question will let to extend our Theorem.
REFERENCES
