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ON THE BOREL CLASS
OF THE DERIVED SET OPERATOR, II

BY

DOUGLAS CENZER and R. DANIEL MAULDIN (*)

RESUME. — Soit X un espace non-enumerable topologique metrisable compact, 2^ Fespace
topologique des compacts de X avec la topologie de Hausdorff et soit D la derivation de
Cantor. KURATOWSKI a demontre que D est borelienne et precisement de la deuxieme classe,
et a pose Ie probleme de trouver la classe precise des derives successifs £>". Nous demontrons
que si n est fini, alors D" est precisement de la classe 2n et si ^ est un ordinal de seconde
espece et n fini, alors D^" est precisement d la classe ^.+2n+1.

ABSTRACT. — KURATOWSKI showed that the derived set operator D, acting on the space
of closed subsets of the Cantor space 2 ,̂ is a Borel map of class exactly two and posed the
problem of determining the precise classes of the higher order derivatives D". In part I of
our work [Bull. Soc. Math. France, 110, 4, 1982, p. 357-380], we obtained upper and lower
bounds for the Borel class of Z>" and in particular showed that for limit ordinals ,̂ D^ is
exactly of class X+l. The first author recently showed, using different methods {cf. [1])
that for finite n, D" is exactly of Borel class 2 n. We now complete the solution of
KURATOWSKTS problem by showing that for any limit ordinal \ and any finite n, the operator
D^" is of Borel class exactly ^.+2n+1.

In this paper, we determine the exact Borel classes of the iterated derived
set operators £>", acting on the space Jf of closed subsets of the Cantor
space 2^ with the usual Vietoris topology. This completes the solution
of the problem of KURATOWSKI [3] which was begun in part I of our
work [2].
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368 D. CENZER AND R. D. MAULDIN

The results in the present paper depend strongly on those of its
predecessor. We begin with some basic definitions and results from [2].

The derived set operator D maps ^f into Jf and is defined by :

D(F)=F^{x:xeC\(F^{x})}.

The a'th iterate D9 of the derived set operator map be defined for all
ordinals a by letting D°(F)=F, D^^F) =D(DS(F)) for alia and
D^(F) = ̂ }{Dvt(F) : OL<\] for limit ordinals .̂ The set F is said to be
scattered if D9'^1 ( F ) =0 for some a; the derived set order o(F) of F is
the least such ordinal a.

The countable subset S of 2^ is defined to be { x : (3m) (Vn>w) ,
x(n)=0}. If y is identified with the family ^ ( N ) of subsets ofN,
then S corresponds to the family of finite sets. Let 0==(0,0,0, . . .). The
stitching operator <1> mapping ̂ v into Jf is defined as follows:

<D(Fo,F,,F,. . . .)

= { 0 } U { ( 0 , 0 , . . . , 0 , l , x (0 ) , x ( l ) . . . . ) : j ceF ,} .

Note that <S> preserves both finite intersections and unions, that is:

<I>(FoUGo,FiUGi, ...)=<D(FO,FI, ...)U<I>(Go,Gi, ...)

and similarly for intersections. This also implies that 0 is monotone, that
is, whenever F,c=H, for all i, then <l>(Fi,Fi, . . .)c:<D(^fo,H^ . . .). The
two fundamental results on the stitching operator. Lemmas 3.7 and 3.8
of [2] concern the derived set order of the stitched set and the continuity
of the stitching map. We actually need an extension of the former lemma
to infinite ordinals; the proof goes through without difficulty.

LEMMA 1. - For any sequence (Fo.Fi, . . .) of sets from Jfn^(S)
and any ordinal a:

^(^(Fo,^,...^
^(^(Fo).^^), . . . ) .

if (V P<a) { n : D^ (F,) ^0} is infinite,
^(^(Fo),^^), . . . ) - { 0 } , otherwise. D

LEMMA 2. — Let {HQ, H^ . . .) be a sequence of continuous functions
mapping a topological space X into the space ^f of closed subsets of 2^
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such that each H,(x)<=S. Then the function H, defined by
H (x) = 9 (Ho (x), Hi (x),. . .) is also continuous. D

Calculation of the exact Borel classes of the iterated derived set operators
begins with Theorem 1.3 of [2].

THEOREM 3. — For any finite n and any limit ordinal \:
(a) D11 is of Borel class 2 n;
(b) D^isof Borel class ^+2 n 4-1. D
Proofs that the Borel classes cited in Theorem 3 are exact proceed as

follows. First we note that {([)} is both a closed and an open subset
of Jf. Thus if D" were of class 2n-l, then T,,=(D") ̂ t^}) would
have to be a Borel subset of Jf of both additive and multiplicative class
In-1; similarly, if D^" were of class ^+2n, then T^=(D^11) ~1 ({0})
would be of both additive and multiplicative class X,+2n. To show that
T, is not of multiplicative class 2n-l, we prove that T, is actually
universal for Borel sets of additive class 2n-l; a similar result is given
for T^+,. Both results will be proved by induction on n. We need two
more propositions from [2]; the first is Proposition 4.1:

THEOREM 4. - For any F, subset B of N^, there is a continuous
function H mapping N^ into Jf 0 ̂  ( S) 0 T^ such that, for all x, x e B if
andonlyifH(x)eTi. D

We actually need the following improvement of Theorem 6.2 of [2].

THEOREM 5. — For any countable limit ordinal X, and any Borel
subset B of N^ of additive class ,̂ there is a continuous function H
mapping N^ into ̂  U^(S) 0 T^i such that, for all x, xeB if and only
ifH(x)eT,.

Proof. - Let B be a Borel subset of N^ of additive class \. By
Theorem 6.2 of [2], there is a continuous function G from N^ into
jrn^(5) n 7^+2such that'for a11 x* XEB if and only if G^ e7x;
furthermore, G (x) is also normal, as defined in 5.1 of [2]. Now let C = C\
be some canonical normal set with o (C) = \ (see 5.10 of [2]). Define the
function H by:

H(jc)=G(x)nC,.

Recall from Lemma 5.2 of [2] that, for two normal sets F and G:

o(FnG)=min(o(F),o(G)).
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370 D. CENZER AND R. D. MAULDIN

It follows that:
o(fl(x))=min(o(G(x)).^).

This implies that H maps into T^i and that, for any x, xeB if and only
if ff^) € 7 .̂ Recall from Lemma 5.12 of [2] that the intersection map
is continuous for normal sets. Of course the constant map F(x) =C\ is
continuous. It follows that H is also continuous. D

It should be pointed out that the proof of Theorem 6.2 in [2] required
the introduction of a more complex stitching operator acting on the family
of normal sets.

L. Rgtkiewicz has pointed out that in Proposition 5.8 of [2] 9(?) is
actually normal if and only if y= lim (o(FJ-hl); this does not affect the

M -* 00

proof of Theorem 6.2.
The induction step in the proofs that T, and 7^, are universal depends

on Lemmas 1 and 2 and the following well-known result (a version of
which can be found in LUSIN'S classic book [5]).

LEMMA 6. — Let X be a topological space with a countable basis of
clopen sets (such as 2^ and N^). Then for any countable ordinal a and any
Borel subset BofXof additive class a, B can be written as the disjoint
countable union of Borel sets By each of multiplicative class <a.

THEOREM 7. — (a) For any natural number k and any Borel subset B of
N^ of additive class 2k—1, there is a continuous function H mapping N^
into ^n^(S)OTk+i such that, for all x, xeB if and only if
H (x) e Tfc. ( b) For any countable limit ordinal ̂  any natural number k
and any Borel subset B of N^ of additive class \-\-lk, there is a continuous
function H mapping N^ into:

jrn^(S)nr^^
such that, for all x, xeB if and only ifH(x) 6 T^+f

Proof. - The proofs of parts (a) and (b) proceed from, respectively,
Theorems 4 and 5 in a similar manner. We will give the proof of (fr),
which is of course by induction on k. Theorem 5 covers the case
k=0. Suppose therefore that the result is true for k and let B be a Borel
subset of N" of additive class X -h 2 k -h 2. Since NN\B is of multiplicative
class X+2^+2, there is a decreasing sequence {C, : neN] of sets of
additive class X + 2 f c + l such that N^5=0,0,. Now by Lemma 6,
there exists for each n a disjoint sequence {C,^: meN} of sets of
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multiplicative class ^+2k such that C,=UmC«.^. It is now easy to see
that, for all x:

(i) xeB <-»• { (n ,m) : xeC^} is finite.
Let(no»^i)>("i»Wi), . . . be some one-to-one enumeration of N x N and

let A^Nf1\C^^ By the induction hypothesis, there exists a sequence
{Hi;: ieN} of continuous functions from N" into:

jfn^(S)nT,^
such that, for all x:

(ii) xeA,^Jf.(x)€7^.
The desired reduction H of B to 7^ is now defined by:
(iii) H ( x ) = < S > ( H ^ ( x ) , H , ( x ) , . . ^
H is continuous by Lemma 2. We must now calculate the possible

derived set order of H ( x ) . First of all, from the induction hypothesis
D^+I(J^.(;C))=^ it follows from Lemma 1 that
D^2(H(x))=^((D, < & . . . . )\{0}=0. Thus H(x)€T^2 for
any x. Next suppose that xeB. Then by (i) and the definition of the
A,, { i : x t Ai} is finite. It follows from (ii) that:

{i'.D^^H^x))^}.

is finite. Then by Lemma 1, D^^1 ( H ( x)) = 0 as desired. Finally, sup-
pose that x^B. Then again using (i) and (ii), it follows that:

{i'.D^^H^x))^}

is infinite. Applying Lemma 1 and the fact that each D ^ ' ^ ' 1 ' ^ 1 ( H i ( x ) ) ==?,
we obtain:

Z)^i(H(;c))=<D(<Z),<p , . . . ) = {Q } ,

so that H(x)^ T î. D

THEOREM 8. — (a) For any natural number fc, 7^ is a Borel subset of Jf
of additive class 2 ^ — 1 but not of multiplicative class 2 k — 1. (b) For any
countable limit ordinal K and any finite k, 7^ is a Borel subset ofJff of
additive class X+2J(c but not of multiplicative class ^-h2JL

Proof. — The positive direction is proved by induction, as
follows. TI = { F : F is finite} is an F, set by Lemma 1.1 of [2]. For
any limit ordinal ,̂ 7\= U«<x 7« an(! ̂ 11 therefore be of additive class \
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372 D. CENZER AND R. D. MAULDIN

if the result is assumed for OKA. Finally, T,+i =D~1 (TJ; since D is a
mapping of Borel class 2, the result can always be extended from a to
a-hi. The other direction has similar proofs for parts (a) and (b); we
give the proof of (ft). Let B be an arbitrary subset of N^ which is of
additive class X+2fc but not of multiplicative class ^+2k (see[4\,
p. 425). By Theorem 7, there is a continuous function H such that
B = H~1 ( T^+k) • Now if T^k were of multiplicative class X + 2 k, it would
follow that B must also be of multiplicative class ^-h2k, contradicting
our choice of B.

We can now give the complete solution of the problem of Kuratowski.

THEOREM 9. - (a) For any natural number t, the iterated derived set
operator D* is of Borel class exactly 2k. (b) For any countable limit
ordinal^ and any natural number k, D^ is of Borel class exactly
X+2fc-hl .

Proof. - One direction is given by Theorem 3. The other direction
has similar proofs for parts (a) and (b); we give the proof of (b). Recall
that {0} is a closed subset of Jf. Thus if D^ were of Borel class
^+2k, then:

r^d^-1^})
would have to be a Borel set of multiplicative class ^-h2k, which would
contradict Theorem 8.

The finite cases of Theorems 7, 8 and 9 were previously obtained by
the first author in [1] using different methods.
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