ANDRZEJ SZULKIN

Morse theory and existence of periodic solutions of convex hamiltonian systems

<http://www.numdam.org/item?id=BSMF_1988__116_2_171_0>
MORSE THEORY AND EXISTENCE OF PERIODIC SOLUTIONS OF CONVEX HAMILTONIAN SYSTEMS

PAR

ANDRZEJ SZULKIN (*)

1. Introduction

In this paper we are concerned with the problem of existence of nonconstant periodic solutions of Hamiltonian systems of differential equations

\[\dot{x} = JH'(x). \]
Here \(H \in C^2(\mathbb{R}^{2n}, \mathbb{R}) \) and
\[
J = \begin{pmatrix}
0 & I \\
-I & 0
\end{pmatrix}
\]
is the usual symplectic matrix. We shall denote by \((\ , \)\) the inner product and by \(| \cdot |\) the norm in \(\mathbb{R}^{2n}\). Suppose that \(H \) satisfies the following hypothesis:

\[
\begin{cases}
H \in C^1(\mathbb{R}^{2n}, \mathbb{R}) \cap C^2(\mathbb{R}^{2n} - \{0\}, \mathbb{R}) \text{ is strictly convex}, \\
H(x) > H(0) = 0 \ \forall x \in \mathbb{R}^{2n}, \ x \neq 0, \\
H(x)|x|^{-1} \to \infty \text{ as } |x| \to \infty.
\end{cases}
\]

Let
\[
G(y) = \sup\left\{ (x,y) - H(x) : x \in \mathbb{R}^{2n} \right\}
\]
be the Fenchel conjugate of \(H \) [1]. By (H1), \(G \) is strictly convex and of class \(C^1 \). According to the Legendre reciprocity formula,
\[
y = H'(x) \text{ if and only if } x = G'(y).
\]
Furthermore, if \(x \neq 0 \) and \(H''(x) \) is invertible, \(G \) is \(C^2 \) near \(y = H'(x) \) and \(G''(y) = H''(x)^{-1} \). In addition to (H1), suppose that there exist constants \(\alpha, \beta \in (1, \infty), \alpha^{-1} + \beta^{-1} = 1, \) and \(c_i \) such that

\[
\begin{cases}
|G'(y)| \leq c_1 |y|^\alpha - 1 + c_2 \quad \forall y \in \mathbb{R}^{2n}, \\
|H'(x)| \leq c_3 |x|^\beta - 1 + c_4 \quad \forall x \in \mathbb{R}^{2n}.
\end{cases}
\]

Set
\[
L^\alpha_0 = \left\{ u \in L^\alpha(0, T; \mathbb{R}^{2n}) : \int_0^T u \ dt = 0 \right\}
\]
and let \(\psi \) be a functional given by
\[
\psi(u) = \int_0^T \left[\frac{1}{2} (Ju, Mu) + G(-Ju) \right] \ dt,
\]
where \(Mu \) is the primitive of \(u \) having mean value zero. Denote the duality pairing between \(L^\beta \) and \(L^\alpha \) by \(\langle \ , \ \rangle \). It follows from the hypotheses (H1), (H2) that \(\psi \) is well defined, of class \(C^1 \) on \(L^\alpha_0 \), and
\[
\langle \psi'(u), v \rangle = \int_0^T \left(Mu - G'(-Ju), Jv \right) \ dt.
\]
It is well known [1, 6, 8] that if x is a solution of

$$\dot{x} = JH'(x), \quad x(0) = x(T),$$

then $u = x$ is a critical point of ψ, and conversely, if u is a critical point of ψ, then $x = Mu + \xi$ is a solution of (1) for some $\xi \in \mathbb{R}^{2n}$. So under our hypotheses finding solutions of (1) is equivalent to finding critical points of ψ. Following [9] we shall call a solution \tilde{x} of (1) *admissible* if it is nonconstant and if $H''(\tilde{x}(t))$ is invertible for all t.

The functional ψ is invariant under the S^1-action given by $S_\theta u(t) = u(\theta + t)$ (we identify T-periodic functions on \mathbb{R} with their restrictions to $[0, T]$). Thus, if $\tilde{u} \neq 0$ is a critical point of ψ, then so is $S_\theta \tilde{u}$ for all θ. It follows that the orbit of \tilde{u},

$$C(\tilde{u}) = \{ S_\theta \tilde{u} : 0 \leq \theta \leq T \}$$

consists of critical points. The set $C(\tilde{u})$ will be called a *critical circle*. Note that if $\tilde{u} = \frac{d\tilde{x}}{dt}$, where \tilde{x} is an admissible solution of (1), then the function \tilde{u} is of class C^1 and so is the mapping $\theta \mapsto S_\theta \tilde{u}$. Hence $C(\tilde{u})$ is a C^1-submanifold of L^0_α.

In [8, 9] EKELAND and HOFER use Morse theory in order to find solutions of (1). Since ψ may not be of class C^2 on L^0_α and since L^0_α is not a Hilbert space (unless $\alpha = 2$), Morse theory cannot be applied directly. To get around this difficulty, they reduce the problem to a finite-dimensional one which, however, no longer has the S^1-symmetry (still, it does have \mathbb{Z}_p-symmetry for an appropriate p).

In this paper we propose a different approach to (1). Let

$$\psi_b = \{ u \in L^0_\alpha : \psi(u) \leq b \}.$$

In Section 2 we show that if \tilde{u} is a critical point of ψ corresponding to an admissible solution \tilde{x} of (1), if $\psi(\tilde{u}) = b$ and $C(\tilde{u})$ is the orbit of \tilde{u}, then for a suitable neighbourhood U of $C(\tilde{u})$ the pair $(\psi_b \cap U, \psi_b \cap U - C(\tilde{u}))$ has the structure of a fibre bundle pair with base space $C(\tilde{u})$. In Section 3 we demonstrate that the corresponding fibre pair has the homotopy type of $(\chi_b, \chi_b - \{0\})$, where χ is a function of class C^2 defined in a neighbourhood of the origin in a finite dimensional space. The remaining sections are devoted to the proof of the fact that there exist at least two closed Hamiltonian trajectories on a convex hypersurface in $\mathbb{R}^{2n}, n \geq 3$. Arguing by contradiction, we assume that there is only one such trajectory, and then, using the results of Sections 2-3 and iteration formulas for the index [8, 17], we compute certain critical groups and
corresponding Morse type numbers M_q [5, 22, 23]. The conclusion follows by observing that the M_q do not satisfy the Morse relations. Existence of two closed Hamiltonian trajectories has also been proved by EKELAND and LASSOUED [12], cf. also [11], by means of different methods.

I would like to thank C. VITERBO for helpful discussions.

2. A fibre bundle structure

Throughout this section we assume that (H1), (H2) are satisfied, \bar{x} is an admissible solution of (1), $\bar{u} = d\bar{x}/dt$ and $C = C(\bar{u})$ is a corresponding critical circle of ψ in L_0^α. Recall that C is a 1-dimensional C^1-submanifold of L_0^α (diffeomorphic to S^1).

According to [16, Proposition III.5.8], the restriction of the tangent bundle of L_0^α to C, $T(L_0^\alpha)|_C$, splits and

$$T(L_0^\alpha)|_C = T(C) \oplus N(C).$$

The normal bundle $N(C)$ may be chosen in such a way that the fibre at $u \in C$ consists of all $v \in L_0^\alpha$ which satisfy $\langle Ju, v \rangle = 0$ (note that $\bar{u} \in T_u(C)$ and $\langle Ju, \bar{u} \rangle \neq 0$ because for each fixed t,

$$\langle J u(t), \dot{u}(t) \rangle = \langle J u(t), \dot{x}(t) \rangle = \langle J u(t), J H''(x(t)) u(t) \rangle$$

and $H''(x(t))$ is positive definite). On $T(L_0^\alpha)$ we may define an exponential mapping by $\exp_u(v) = u + v$. Using the argument of [16, Sec. IV.5] it is easy to show that the mapping $(u, v) \mapsto u + v$, where $u \in C$, $v \in N_u(C)$, is a homeomorphism in a neighbourhood of the zero section of C in $N(C)$. Summarizing, we obtain the following

LEMMA 2.1. — There exists a neighbourhood U of C in L_0^α such that each $w \in U$ can be uniquely represented as $w = u + v$, where $u \in C$ and $\langle Ju, v \rangle = 0$.

Suppose that \bar{u} has minimal period T/k, $k \geq 1$ an integer. Let U_0 be a neighbourhood of \bar{u} in the set

$$\bar{u} + N_{\bar{u}}(C) \equiv \{ v \in L_0^\alpha : \langle J \bar{u}, v \rangle = 0 \}$$

and let $U = S^1 U_0$ (i.e., U is obtained from U_0 by taking orbits under the S^1-action). If U_0 is small enough, U satisfies the conclusion of **LEMMA 2.1** and all $u \in U$ have minimal period greater than or equal to T/k.

TOME 116 — 1988 — n° 2
PROPOSITION 2.2. — Set \(\psi(\bar{u}) = b \) and let \(U_0, U \) be as above. Then
\((\psi_b \cap U, \psi_b \cap U - C)\) has the structure of a fibre bundle pair with base
space \(C \) and fibre pair \((\psi_b \cap U_0, \psi_b \cap U_0 - \{\bar{u}\})\).

Proof. — The definition of fibre bundle pair may be found in [24, Sec. 5.7]. Let \(I \subset \mathbb{R} \) be an open interval of length less than \(T/k \) and let

\[
V = \left\{ u \in C : u = S_\theta \bar{u} \quad \text{for some} \quad \theta \in I \right\}.
\]

Such sets \(V \) cover \(C \). Consider the mappings \(p : \psi_b \cap U \to C \) given by
\(p(u + v) = u \), where \(u \in C \) and \(\langle Ju, v \rangle = 0 \) (cf. Lemma 2.1), and

\[
\alpha : V \times \left(\psi_b \cap U_0, \psi_b \cap U_0 - \{\bar{u}\} \right) \to \left(p^{-1}(V), p^{-1}(V) - C \right)
\]
given by \(\alpha(u, \bar{u} + v) = u + S_\theta v \), where \(\theta \) is the unique number in \(I \) such that \(u = S_\theta \bar{u} \). One readily verifies that \(\alpha \) is a homeomorphism and
\(p\alpha : V \times (\psi_b \cap U_0) \to V \) is the projection on the first factor. \(\square \)

3. Structure of the fibre pair

In this section we assume again that \((H1)\) and \((H2)\) are satisfied, \(\bar{x} \) is an admissible solution of (1) and \(\bar{u} = \frac{d\bar{x}}{dt} \). Recall that \(\bar{u} \) is of class \(C^1 \).

It has been shown in [9, Lemma II.1] that the symmetric bilinear form
\(Q(\bar{u}) : L_0^2 \times L_0^2 \to \mathbb{R} \) given by

\[
(2) \quad Q(\bar{u})(v_1, v_2) = \int_0^T \left[(Jv_1, Mv_2) + (G''(-J\bar{u})Jv_1, Jv_2) \right] dt
\]
is well defined. Formally, \(Q(\bar{u})(v_1, v_2) = \langle \psi''(\bar{u})v_1, v_2 \rangle \), but \(\psi''(\bar{u}) \) may not exist (in particular, it can never exist if \(1 < \alpha < 2 \)). Let \(K, A : L_0^2 \to L_0^2 \) be given by

\[
Kv = -JMv, \\
Av = -JG''(-J\bar{u})Jv + \frac{1}{T} \int_0^T JG''(-J\bar{u})Jv dt.
\]

Then \(G(\bar{u})(v, v) = \langle Kv, v \rangle + \langle Av, v \rangle \). Recall that the index of the quadratic form \(Q(\bar{u}) \) is the maximal dimension of a subspace on which \(Q(\bar{u}) \) is negative definite and the nullity is the dimension of the kernel of \(K + A \).

LEMMA 3.1. — There exists a base \((e_i)_{i=1}^{\infty} \) of \(L_0^2 \), \(e_i \in C([0, T], \mathbb{R}^{2n}) \), and a corresponding sequence of real numbers \((\lambda_i)\) such that \(Ke_i = \lambda_i Ae_i \),

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
(\langle \alpha_i e_i, \beta_i e_j \rangle = \delta_{ij}, \lambda_i \to 0 \text{ and } \lambda_i \neq 0. \text{ Furthermore, if } v_1 = \sum \alpha_i e_i \text{ and } v_2 = \sum \beta_i e_i, \text{ then}

\begin{equation}
Q(\bar{u})(v_1, v_2) = \sum (1 + \lambda_i)\alpha_i \beta_i
\end{equation}

(in particular, setting } v_1 = v_2 \text{ one sees that the index and the nullity of } Q(\bar{u}) \text{ are finite).}

\textbf{Proof.} — The argument we sketch here is essentially contained in [8, pp. 36-37]. Since the operator } A \text{ is selfadjoint and positive definite, it has a square root which is invertible in } L_0^2. \text{ Moreover, } K \text{ is compact and } K v \neq 0 \text{ if } v \neq 0. \text{ It follows that there exist sequences } (e_i) \text{ and } (\lambda_i) \text{ such that } K e_i = \lambda_i A e_i, \langle A e_i, e_j \rangle = \delta_{ij}, \lambda_i \to 0, \lambda_i \neq 0 \text{ and } (e_i) \text{ is a base of } L_0^2. \text{ A simple computation gives (3). The equality } K e_i = \lambda_i A e_i \text{ is equivalent to}

\begin{equation}
G''(-J\bar{u}) e_i = \lambda_i^{-1} M e_i + \xi,
\end{equation}

where } \xi \in \mathbb{R}^{2n}. \text{ Since } M e_i \text{ and } G''(-J\bar{u})^{-1} \text{ are continuous, so is } e_i. \quad \Box

\textbf{Lemma 3.2.} [9, Lemma II.5]. — \text{ There exist } \delta > 0, k > 0 \text{ and } \bar{H} \in C^2(\mathbb{R}^{2n}, \mathbb{R}) \text{ such that } k I \leq \bar{H}''(x) \leq k^{-1} I \quad \forall x \in \mathbb{R}^{2n}, \text{ and if } \min_{t} |x - \bar{x}(t)| \leq \delta, \text{ then } \bar{H}(x) = H(x).

Let } G \text{ denote the Fenchel conjugate of } \bar{H} \text{ and let}

\begin{equation}
\overline{\psi}(u) = \int_{0}^{T} \left[\frac{1}{2} (J u, M u) + G(-J u) \right] dt.
\end{equation}

Using \textbf{Lemma 3.2} and the fact that } \bar{u}(t) = J H'(\bar{x}(t)) \text{ one readily obtains the following result which is implicitly contained in } [9, \S \text{ II}].

\textbf{Lemma 3.3.}

\begin{enumerate}
\item [(i)] \text{ There exists a constant } \delta^* > 0 \text{ such that if } \min_{t} |u - \bar{u}(t)| \leq \delta^*, \text{ then } G(-J u) = G(-\bar{u}).
\item [(ii)] \text{ \overline{\psi} is of class } C^2 \text{ in } L_0^p \text{ for each } p \in (2, \infty) \text{ and } \overline{\psi} \text{ is twice Gâteaux differentiable in } L_0^2.
\end{enumerate}

Next we perform a finite dimensional reduction of } \overline{\psi} \text{ near } \bar{u}. \text{ Let } (e_i) \text{ be the base of } L_0^2 \text{ given in } \textbf{Lemma 3.1}. \text{ Set } U = \text{span}\{e_1, \ldots, e_j\} \text{ and } Z_0 = \text{span}\{e_{j+1}, e_{j+2}, \ldots\}. \text{ Then } L_0^2 = U \oplus Z_0. \text{ Since } -J M \text{ is compact and}

\begin{equation}
\langle \overline{\psi}''(u)v, v \rangle \geq \int_{0}^{T} (J u, M v) dt + k \|v\|_2^2 \quad \forall u, v \in L_0^2
\end{equation}
(\| \|_p denotes the norm in \(L^p \)), one may find a number \(j \) and a constant \(c > 0 \) such that

\[
\langle \bar{\psi}''(u)z, z \rangle \geq c\|z\|^2_2 \quad \forall u \in L^2_0, \ z \in Z_0.
\]

Let \(u = \bar{u} + w + z \), where \(w \in W, \ z \in Z_0 \). By (5), the functional \(z \mapsto \bar{\psi}(\bar{u} + w + z) \) is strictly convex \(\forall w \in W \). Fix a number \(p \in (2, \infty), \ p > \alpha \). The restriction of \(\bar{\psi} \) to \(L^p_0 \) (still denoted by \(\bar{\psi} \)) is of class \(C^2 \) and is strictly convex in the \(z \)-variable. Let \(Z_1 = Z_0 \cap L^p_0 \). Then \(L^p_0 = W \oplus Z_1 \).

Since \(\bar{G}''(y) \leq k^{-1}I \quad \forall y \in \mathbb{R}^{2n}, \ |\bar{G}'(y)| \leq k^{-1}|y| + |\bar{G}'(0)| \) and \(\bar{\psi} \) maps \(L^p_0 \) into itself (so \(\forall u \in L^p_0, \bar{\psi}'(u) \in L^p_0 \subseteq L^2_0, \) where \(p^{-1} + q^{-1} = 1 \)).

Below we use an argument close to the one which may be found in [15, pp. 597–598] and [3, pp. 120–121]. Let \(P : L^p_0 = W \oplus Z_1 \to Z_1 \) be the projection along \(W \), let \(P^* \) be the adjoint of \(P \) and consider the mapping \(P^*\bar{\psi}'(\bar{u} + .) : W \oplus Z_1 \to Z_1^* \), where \(Z_1^* = P^*(L^p_0) \subseteq P^*(L^2_0) \). Note that \(P^*\bar{\psi}'(\bar{u}) = 0 \). Since \(\bar{\psi} \in C^2, \ P^*\bar{\psi}' \in C^1 \). For \(z \in Z_1 \),

\[
\langle P^*\bar{\psi}''(\bar{u})z, z \rangle = \langle \bar{\psi}''(\bar{u})z, z \rangle \geq c\|z\|^2_2
\]

according to (5). Hence the derivative \(D_z(P^*\bar{\psi}'(\bar{u})) = P^*\bar{\psi}''(\bar{u})|_{Z_1} \) is injective. Furthermore, by (i) of Lemma 3.3, the mapping \(\bar{A} \) given by

\[
\bar{A}v = -\int_0^T \bar{J}\bar{G}''(-J\bar{u})Jv dt + \frac{1}{T} \int_0^T \bar{J}\bar{G}''(-J\bar{u})Jv dt
\]

is an isomorphism of \(L^p_0 \) onto itself (note that \(A|_{L^2_0} = \bar{A} \) and recall \(A \) is invertible on \(L^2_0 \)). Since \(-JM \) is compact, \(\bar{\psi}''(\bar{u}) = -JM + \bar{A} : L^p_0 \to L^p_0 \) is a Fredholm operator of index zero. The projections \(P \) and \(P^* \) have ranges of the same codimension \(j < \infty \). Accordingly, also the mapping \(P^*\bar{\psi}''(\bar{u})|_{Z_1} : Z_1 \to Z_1^* \) is Fredholm of index zero, and therefore an isomorphism (recall it is injective). It follows now from the implicit function theorem that there exist open balls, \(B_W \) in \(W \) and \(B_{Z_1} \) in \(Z_1 \), centered at \(0 \in W \) and \(0 \in Z_1 \) respectively, and a \(C^1 \)-mapping \(w \mapsto z(w) \) from \(B_W \) to \(B_{Z_1} \) such that for \(w \in B_W \) and \(z \in B_{Z_1}, P^*\bar{\psi}'(\bar{u} + w + z) = 0 \) if and only if \(z = z(w) \). In other words, for each \(w \in B_W \) there is a unique \(z = z(w) \in B_{Z_1} \) such that

\[
\langle \bar{\psi}'(\bar{u} + w + z(w)), y \rangle = 0 \quad \forall y \in Z_1.
\]

Note that \(z(0) = 0 \) because \(\bar{\psi}'(\bar{u}) = 0 \), and

\[
\bar{\psi}(\bar{u} + w + z(w)) < \bar{\psi}(\bar{u} + w + z) \quad \forall z \in B_{Z_1}, \ z \neq z(w)
\]
by strict convexity of $\bar{\psi}$. Let $\bar{\varphi}(w) = \bar{\psi}(\bar{u} + w + z(w))$. Then, using (6) and the fact that $z'(w)v \in Z_1$,

$$
\langle \bar{\varphi}'(w), v \rangle = \langle \bar{\psi}'(\bar{u} + w + z(w)), v + z'(w)v \rangle \\
= \langle \bar{\psi}'(\bar{u} + w + z(w)), v \rangle \quad \forall v \in W.
$$

(8)

So w is a critical point of $\bar{\varphi}$ if and only if $\bar{u} + w + z(w)$ is a critical point of $\bar{\psi}$. It is easily seen from (8) that $\varphi \in C^2$ and

$$
\langle \bar{\varphi}''(0)v, v \rangle = \langle \bar{\psi}''(\bar{u})(v + z'(0)v), v \rangle \quad \forall v \in W.
$$

Since $z'(0)v \in Z_1$, it follows from (3) that $\langle \bar{\psi}''(\bar{u})z'(0)v, v \rangle = Q(\bar{u})(z'(0)v, v) = 0$. Hence

$$
\langle \bar{\varphi}''(0)v, v \rangle = \langle \bar{\psi}''(\bar{u})v, v \rangle = Q(\bar{u})(v, v),
$$

and $\bar{\varphi}''(0)$ has the same index and nullity as $Q(\bar{u})$. Summarizing, we have the following

Proposition 3.4. — There exist open balls, B_W in W and B_{Z_1} in Z_1, centered at the origin, and a unique C^1-mapping $w \mapsto z(w)$ from B_W to B_{Z_1} such that (6) and (7) are satisfied. Furthermore, w is a critical point of the function $\bar{\varphi} : B_W \to \mathbb{R}$ given by $\bar{\varphi}(w) = \bar{\psi}(\bar{u} + w + z(w))$ if and only if $\bar{u} + w + z(w)$ is a critical point of $\bar{\psi}$, and $\bar{\varphi}''(0)$ has the same index and nullity as $Q(\bar{u})$.

Lemma 3.5. — For each $w \in B_W$, $z(w) \in C^1([0,T],\mathbb{R}^{2n})$. Furthermore, the mapping $w \mapsto z(w)$ is continuous from B_W to $C([0,T],\mathbb{R}^{2n})$.

Proof. — It follows from (6) and (8) that

$$
\bar{\psi}'(\bar{u} + w + z(w)) = \varphi'(w) \in W^*,
$$

(9)

where $W^* = (I - P^*)(L_0^*)$. Set $u = \bar{u} + w + z(w)$. By (4) and (9),

$$
-JMu + JG'(-Ju) = \xi + \varphi'(w),
$$

(10)

where $\xi \in \mathbb{R}^{2n}$. Integrating (10) we obtain

$$
\xi = \frac{1}{T} \int_0^T JG'(-Ju) \, dt.
$$
If \(w \to w_0 \), then \(u \to u_0 = \bar{u} + w_0 + z(w_0) \) in \(L^p \), and thus \(\xi \) is continuous as a function of \(w \). According to the Legendre reciprocity formula, (10) is equivalent to

\[
(11) \quad u = J\bar{H}'(Mu - J\xi - J\bar{\varphi}'(w)).
\]

It is easy to see from Lemma 3.1 that \(W^* = \text{span}\{Ae_1, \ldots, Ae_j\} = \text{span}\{JMe_1, \ldots, JMe_j\} \), so all elements of \(W^* \) are continuously differentiable functions of \(t \). Since \(Mu \) is continuous, it follows from (11) that \(u \) and \(z(w) = u - \bar{u} - w \) are continuous. Hence \(Mu \in C^1 \), and by (11) again, \(z(w) \in C^1 \). Also,

\[
\|M(u - u_0)\|_{\infty} \leq C_1 \|M(u - u_0)\|_{H^1,p} \leq C_2 \|u - u_0\|_p
\]

for appropriate constants \(C_1 \) and \(C_2 \). So if \(w \to w_0 \), then \(Mu \to Mu_0 \) in \(L^\infty \), and according to (11), \(z(w) \to z(w_0) \) in \(L^\infty \). \(\square \)

Now we reformulate Proposition 3.4 in terms of \(L^\infty_0 \) and \(\psi \). Let \(Z \) be the closure of \(Z_1 \) in the \(L^\infty_0 \)-topology. Then \(L^\infty_0 = W \oplus Z \).

Proposition 3.6. — There exist open balls, \(B_W \) in \(W \) and \(B_Z \) in \(Z \), centered at the origin, and a unique \(C^1 \)-mapping \(w \mapsto z(w) \) from \(B_W \) to \(B_Z \) such that if \(w \in B_W \), then

\[
\begin{align*}
(12) \quad & \langle \psi' (\bar{u} + w + z), y \rangle = 0 \quad \forall y \in Z \quad \text{if and only if} \quad z = z(w), \\
(13) \quad & \psi(\bar{u} + w + z) < \psi(\bar{u} + w + z(w)) \quad \forall z \in B_Z, \; z \neq z(w).
\end{align*}
\]

Furthermore, \(w \) is a critical point of the function \(\varphi : B_W \to \mathbb{R} \) given by \(\varphi(w) = \psi(\bar{u} + w + z(w)) \) if and only if \(\bar{u} + w + z(w) \) is a critical point of \(\psi \), and \(\varphi''(0) \) has the same index and nullity as \(Q(\bar{u}) \).

Proof. — Our argument is similar to [9, Proof of Lemma II.7]. Since \(\int_0^T G(-Ju) \, dt \) is continuous and convex and \(-JM \) is compact, \(\psi \) is weak lower semicontinuous. So for each \(w \in B_W \), the infimum of \(\psi(\bar{u} + w + z) \) over \(B_Z \) is attained at some \(z = z_0 \). For such \(z_0 \) we have

\[
(14) \quad \langle \psi'(u) + \lambda z_0|z_0|^\alpha - 2, y \rangle = 0 \quad \forall y \in Z,
\]

where \(u = \bar{u} + w + z_0 \) and \(\lambda \geq 0 \) is the Lagrange multiplier. We shall show that if \(B_W \) and \(B_Z \) are sufficiently small, then \(z_0 = z(w) \).

Let \((B^m_Z) \) be a sequence of open balls in \(Z \), centered at the origin, with radii converging to zero as \(m \to \infty \). Since \(z(w) \to z(0) = 0 \) in \(L^p \) as \(w \to 0 \) and since \(p \geq \alpha \), we may choose a sequence \((B^m_W) \) of open balls in
W, centered at the origin, with radii tending to zero, in such a way that $z(w) \in B_{B_W}^m \forall w \in B_{B_W}^m$. Let $u_m = \bar{u} + w_m + z_m$, where $w_m \in B_{B_W}^m$ and z_m is a point at which $\psi(\bar{u} + w_m + z)$ attains its infimum in $B_{B_W}^m$. Then (14) with $z_0 = z_m$, $u = u_m$ and $\lambda = \lambda_m$ is satisfied. We claim that

$$\|z_m\|_\infty \to 0 \quad \text{as} \quad m \to \infty,$$

uniformly with respect to the choice of $w_m \in B_{B_W}^m$.

Set $y = z_m/\|z_m\|_\alpha$ in (14). Then

$$\frac{\langle \psi'(u_m), z_m \rangle}{\|z_m\|_\alpha} + \lambda_m \|z_m\|^{\alpha-1}_\alpha = 0.$$

Since $\psi'(u_m) \to \psi'(\bar{u}) = 0$, $\lambda_m \|z_m\|^{\alpha-1}_\alpha \to 0$. Hence $\lambda_m z_m |z_m|^{\alpha-2} \to 0$ in L^β (because $\|z\|_\alpha^{\alpha-1} = \|z|^{\alpha-2}\|_\beta$). (14) with $z = z_m$, $u = u_m$ and $\lambda = \lambda_m$ is equivalent to

$$-JMu_m + JG'(-Ju_m) + \lambda_m z_m |z_m|^{\alpha-2} = a_m + \xi_m,$$

where $a_m \in W^*$ and $\xi_m \in \mathbb{R}^{2n}$. Since the left-hand side of (16) approaches $\bar{\xi} = T^{-1} \int_0^T JG'(-J\bar{u}) \, dt$ as $m \to \infty$, $a_m + \xi_m \to \bar{\xi}$. Let

$$G_m(t, z) = G(-J\bar{u}(t) - Jw_m(t) - Jz) + \lambda_m \alpha^{-1} |z|^{\alpha}.$$

Then $G_m(t, \cdot)$ is strictly convex, and denoting the derivative of G_m with respect to the second variable by G'_m,

$$\lambda_m \alpha^{-1} |z|^{\alpha} \leq G_m(t, z) \leq (G'_m(t, z), z) + G_m(t, 0)$$

$$\leq \|G'_m(t, z)\| |z| + G_m(t, 0).$$

According to (16), $G'_m(t, z_m(t)) = JMu_m(t) + a_m(t) + \xi_m = v_m(t)$, or equivalently, $z_m(t) = H'_m(t, v_m(t))$, where $H'_m(t, \cdot)$ is the Fenchel conjugate of $G_m(t, \cdot)$. It is easy to verify that H'_m is continuous in both variables. It follows that z_m is a continuous function (because v_m is) and (16) is satisfied pointwise for all t. Suppose (15) is false. Then we may find $w_m \in B_{B_W}^m$ and $t_m \to t$ such that, possibly after passing to a subsequence, $|z_m(t_m)|$ is bounded away from zero. Since

$$\|Mu_m - M\bar{u}\|_\infty \leq C_1 \|Mu_m - M\bar{u}\|_{H^1,\alpha} \leq C_2 \|u_m - \bar{u}\|_\alpha,$$

$Mu_m \to M\bar{u}$ in L^∞. So $|G'_m(t, z_m(t))| = |v_m(t)| \leq C$, where C is a constant independent of t. Hence by (17), $\lambda_m |z_m(t_m)|^{\alpha-1}$ is bounded.
Using (16), it follows that also $y_m(t_m) = G'(\alpha m(t_m))$ is bounded, and by the Legendre reciprocity formula, so is $u_m(t_m) = JH'(y_m(t_m))$. Consequently, taking a subsequence if necessary, $z_m(t_m) = u_m(t_m) - \bar{u}(t_m) - w_m(t_m) - \bar{z} \neq 0$. Since $\lambda m|z_m(t_m)|^{\alpha-1}$ is bounded and $\bar{z} \neq 0$, we may assume that $\lambda m \to \lambda$. Recall that (16) is satisfied pointwise and set $t = t_m$ in (16). Passing to the limit we obtain

$$JG'(-\bar{u}(t) - J\bar{z}) + \bar{\lambda}\bar{z} |\bar{z}|^{\alpha-2} = JM \bar{u}(t) + \bar{\xi} = JG'(-J\bar{u}(t)).$$

Taking the inner product (in \mathbb{R}^{2n}) with \bar{z} gives

$$\left(G'(-\bar{u}(t) - J\bar{z}) - G'(-J\bar{u}(t)), -J\bar{z} \right) + \bar{\lambda}|\bar{z}|^{\alpha} = 0.$$

Since G is strictly convex (and therefore G' is strictly monotone) and $\bar{\lambda} \geq 0$, $\bar{z} = 0$. This is the desired contradiction. According to (15), we may find B_W and B_Z such that if $w \in B_W$ and $u = \bar{u} + w + z_0$ satisfies (14), then $\|u - \bar{u}\|_{\infty} < \delta^*$, where δ^* is the constant in (ii) of Lemma 3.3. So $\psi(u) = \psi(\bar{u})$. Note that hitherto we have not used the minimization property of z_0 but only the fact that (14) is satisfied. By Lemma 3.5, $z(w) \to z(0) = 0$ in L^∞ as $w \to 0$. We may therefore choose B_W in such a way that $\|(\bar{u} + w + z(w)) - \bar{u}\|_{\infty} < \delta^*$. Hence by (7),

$$\psi(\bar{u} + w + z_0) = \tilde{\psi}(\bar{u} + w + z_0) > \tilde{\psi}(\bar{u} + w + z(w)) = \psi(\bar{u} + w + z(w))$$

if $z_0 \neq z(w)$. It follows that $z_0 = z(w)$ and (13) is satisfied. In order to verify (12), note first that $z(w) \in B_Z$, and therefore (14) holds with $z_0 = z(w)$ and $\lambda = 0$. If $\langle \psi'(\bar{u} + w + z_0), y \rangle = 0 \quad \forall y \in Z$, then (14) with $\lambda = 0$ is satisfied. So $\|u - \bar{u}\|_{\infty} < \delta^*$, where again $u = \bar{u} + w + z_0$. Consequently,

$$0 = \frac{d}{dt} \psi(\bar{u} + w + z_0 + ty)|_{t=0} = \frac{d}{dt} \tilde{\psi}(\bar{u} + w + z_0 + ty)|_{t=0} = \langle \tilde{\psi}'(\bar{u} + w + z_0), y \rangle$$

for all $y \in L^\infty \cap Z$, and by continuity, for all $y \in Z_1$. Hence $z_0 = \tilde{z}(w)$ according to (6).

To complete the proof, note that $\phi(w) = \psi(\bar{u} + w + z(w)) = \tilde{\psi}(\bar{u} + w + z(w)) = \tilde{\phi}(w)$ and use the second part of Proposition 3.4.

Let $C = C(\bar{u})$ be the critical circle corresponding to \bar{u} and recall from §2 that $d\bar{u}/dt \in T_{\bar{u}}(C)$. Since $\bar{u} = d\bar{x}/dt = JH'(\bar{x})$, $\bar{x} = G'(-J\bar{u})$, and therefore $M(d\bar{u}/dt) = \bar{u} = d\bar{x}/dt = JH'(-J\bar{u})d\bar{u}/dt$. So by (2),
Q(\bar{u})(d\bar{u}/dt,.) = 0, and d\bar{u}/dt \in \text{Ker}(K + A) \subset W. We may assume that
\frac{d\bar{u}}{dt} = ke_1, where k is a constant. Let \nabla
W_0 = \text{span}\{e_2, \ldots, e_j\}
and \nabla B_{W_0} = \nabla B \cap W_0. Define \chi = \varphi|_{B_{W_0}}.

Proposition 3.7. — 0 is a critical point of \chi and \text{Index}(\chi''(0)) = \text{Index}(Q(\bar{u})) \neq 0. \text{Nullity}(\chi''(0)) = \text{Nullity}(Q(\bar{u})) - 1. Furthermore, 0 is an isolated critical point of \chi if and only if C is an isolated critical circle.

Proof. — We need only show that if C is an isolated critical circle, then 0 is an isolated critical point of \chi. Other conclusions follow from Proposition 3.6.

Recall that \nabla W^* = \text{span}\{Ae_1, \ldots, Ae_j\} and suppose \chi'(w) = 0. Then \varphi'(w) \in \text{span}\{Ae_1\} = \text{span}\{A(\frac{d\bar{u}}{dt})\}. Since A(\frac{d\bar{u}}{dt}) = JM(\frac{d\bar{u}}{dt}) = J\bar{u}, \psi'(u) = \varphi'(w) = sJ\bar{u}, where u = \bar{u} + w + z(w) and s is a real number. Using the \text{S}^1\text{-invariance of } \psi \text{ and the fact that } u \in C^1 \text{ (cf. Lemma 3.5)} and \langle \frac{d\bar{u}}{dt}, J\bar{u} \rangle = \langle \frac{d\bar{u}}{dt}, A(\frac{d\bar{u}}{dt}) \rangle = k^2 \text{ we obtain}

\begin{align*}
0 &= \frac{d}{d\theta}(S_\theta u) \bigg|_{\theta=0} = \langle \psi'(u), \bar{u} \rangle = s\langle J\bar{u}, \bar{u} \rangle = s\langle \frac{d\bar{u}}{dt}, Ju \rangle \\
&= sk^2 + s\langle \frac{d\bar{u}}{dt}, Jw + Jz(w) \rangle.
\end{align*}

Hence

|s|k^2 \leq C|s|\|w + z(w)\|_\alpha,

where C is a constant independent of w. So if \|w\|_\alpha is sufficiently small, s = 0 and \psi'(u) = 0. It follows that u = \bar{u} and w = 0.

Next we shall show that \nabla D_z \psi \text{ satisfies the following compactness condition.}

Lemma 3.8. — Each sequence \((u_m) \) such that \(u_m = \bar{u} + w_m + z_m \), \(w_m \in B_{W_0}, z_m \in B_Z \) and \nabla D_z \psi(u_m) \to 0 \text{, possesses a convergent subsequence.}

Proof. — We may assume that \(w_m \to w \) and \(z_m \to z \) weakly. Then \(u_m \to u \) weakly. Since \nabla D_z \psi(u_m) \to 0, \psi'(u_m) = \alpha_m + \epsilon_m, \text{ where } \alpha_m \in W^* \text{ and } \epsilon_m \to 0 \text{ in } L^0_{\beta}, \text{ or equivalently,}

\begin{equation}
-JMu_m + JG'(-Ju_m) = \xi_m + \alpha_m + \epsilon_m
\end{equation}

for some \(\xi_m \in R^{2n} \). Since the left-hand side of this equality is bounded in \(L^0_{\beta} \) (by (H2)), \(\alpha_m \to \alpha \) and \(\xi_m \to \xi \), possibly after passing to a subsequence. By the Legendre reciprocity formula, (18) is equivalent to

\[u_m = JH'(Mu_m - J(\xi_m + \alpha_m + \epsilon_m)). \]
Taking limits we see that $u_m \to JH'(Mu - J\xi - J\alpha)$ (cf. [8, Proof of Proposition III.4]).

Let

$$V = \left\{ w + z \in B_{W_0} \oplus Z : \psi(\bar{u} + w + z) < \psi(\bar{u} + w + z(w)) + \epsilon_0 \right\},$$

where $\epsilon_0 > 0$ is given, and let V_0 be the connected component of V containing the set $\{ w + z : z = z(w) \}$.

Lemma 3.9. If ϵ_0 is sufficiently small, $V_0 \subset B_{W_0} \oplus B_Z$.

Proof. We may assume without loss of generality that the conclusions of Proposition 3.6 hold in slightly larger balls, $B'_{W_0} \supset B_{W_0}$ and $B'_Z \supset B_Z$. Suppose that the assertion of the lemma is false. Then we may find $w_m \in B_W$ and $z_m \in \partial B_Z = \overline{B}_Z - B_Z$ such that $\psi(\bar{u} + w_m + z_m) < \psi(\bar{u} + w_m + z(w_m)) + (2m)^{-1}$. Using the fact that ψ is Lipschitz continuous on bounded sets we may assume after passing to a subsequence that $w_m \to w$ and $\psi(\bar{u} + w + z_m) < \psi(\bar{u} + w + z(w)) + m^{-1}$. By Ekeland's variational principle [7, Corollary II], there is a $z'_m \in B'_Z$ such that

$$\|z_m - z'_m\|_\alpha \leq m^{-1/2} \quad \text{and} \quad \psi(\bar{u} + w + z) - \psi(\bar{u} + w + z'_m) \geq -\frac{1}{\sqrt{m}} \|z - z'_m\|_\alpha \quad \forall z \in B'_Z.$$

Since $\overline{B}_Z \subset B'_Z$, $z'_m \in B'_Z$ for almost all m. So setting $z = z'_m + ty$, $t > 0$, in the inequality above, dividing by t and letting $t \to 0$ we obtain

$$\|D_z \psi(\bar{u} + w + z'_m)\|_{\beta} \leq m^{-1/2}. \quad \text{By Lemma 3.8, } z'_m \to \tilde{z} \in \partial B_Z \text{ and } D_z \psi(\bar{u} + w + z) = 0, \text{ a contradiction to (12).} \quad \Box$$

Choose now ϵ_0 so that $V_0 \subset B_{W_0} \oplus B_Z$.

Proposition 3.10. Let $j : B_{W_0} \to L_0^\alpha$ be the embedding given by $j(w) = \bar{u} + w + z(w)$ and let $U_0 = \bar{u} + V_0$. Then the pair $(j(B_{W_0}), j(B_{W_0} - \{0\}))$ is a deformation retract of $(U_0, U_0 - (\bar{u} + B_Z))$. Moreover, the deformation r may be chosen so that for each $u \in U_0$, $r(0, u) = u$ and $\psi(r(t, u))$ is a nonincreasing function of t.

Proof. On U_0, $D_z \psi(\bar{u} + w + z) = 0$ if and only if $z = z(w)$ according to (12). Using the method of [20, Lemma 1.6], it is easy to construct a mapping $F : V_0 - \{ w + z : z = z(w) \} \to Z$ which is locally Lipschitz continuous and satisfies

$$\|F(w + z)\|_{\alpha} \leq 2 \|D_z \psi(\bar{u} + w + z)\|_{\beta},$$

$$\langle \psi'(\bar{u} + w + z), F(w + z) \rangle \geq \|D_z \psi(\bar{u} + w + z)\|_{\beta}^2.$$
for all \(w + z \) in the domain of \(F \) (note that for each fixed \(w \), \(F(w + .) \) is a pseudogradient vector field for the functional \(z \mapsto \psi(\bar{u} + w + z) \)). Consider the flow \(\eta \) given by

\[
\begin{align*}
\dot{\eta}(t, w + z) &= -\left(\psi(\bar{u} + w + \eta) - \psi(\bar{u} + w + z(w))\right)F(w + \eta) \\
\equiv F_0(w + \eta), \\
\eta(0, w + z) &= z,
\end{align*}
\]

where \(w + z \in V_0, z \neq z(w) \). The vector field \(F_0 \) is bounded on its domain and locally Lipschitz continuous (because \(z(w) \) is differentiable). By (19), (12) and (13),

\[
\begin{align*}
\frac{d}{dt}\psi(\bar{u} + w + \eta(t, w + z)) &= \langle \psi'(\bar{u} + w + \eta), F_0(w + \eta) \rangle \\
&\leq -\left(\psi(\bar{u} + w + \eta) - \psi(\bar{u} + w + z(w))\right) \\
&\quad \times \|D_z\psi(\bar{u} + w + \eta)\|_\beta^2 < 0
\end{align*}
\]

whenever \(\eta(t, w + z) \neq z(w) \). Hence \(w + \eta \) cannot leave \(V_0 \) for \(t > 0 \). Moreover, by (19),

\[
\begin{align*}
\frac{d}{dt} \left[\psi(\bar{u} + w + \eta) - \psi(\bar{u} + w + z(w)) \right] &= \langle \psi'(\bar{u} + w + \eta), F_0(w + \eta) \rangle \\
&\geq -C \left(\psi(\bar{u} + w + \eta) - \psi(\bar{u} + w + z(w))\right),
\end{align*}
\]

where \(C > 0 \) is a constant independent of \(w, z \) and \(t \). Thus,

\[
\psi(\bar{u} + w + \eta) - \psi(\bar{u} + w + z(w)) \geq \left[\psi(\bar{u} + w + z) - \psi(\bar{u} + w + z(w)) \right] e^{-Ct} > 0,
\]

and \(\eta(t, w + z) \neq z(w) \) whenever \(t \geq 0 \). It follows that \(\eta \) is defined for all \(t \geq 0 \) (cf. [20, (1.13)]).

We shall prove that if \(w \rightarrow w_0, z \rightarrow z_0 \) and \(t \rightarrow \infty \), then

\[
\eta(t, w + z) \rightarrow z(w_0).
\]

Let

\[
V_\epsilon = \left\{ w + z \in V_0 : \|w - w_0\|_\alpha < \epsilon, \psi(\bar{u} + w + z) < \psi(\bar{u} + w + z(w)) + \epsilon \right\}.
\]
If N is a neighbourhood of $w_0 + z(w_0)$, then, by the argument of Lemma 3.9, $V_\epsilon \subset N$ for all sufficiently small ϵ. So it remains to show that one can find δ and T such that $w + \eta(t + w + z) \in V_\epsilon$ whenever $\|w - w_0\|_\alpha < \delta$, $\|z - z_0\|_\alpha < \delta$ and $t > T$. Given $\delta \leq \epsilon$, it follows from Lemma 3.8 that if $\|w - w_0\|_\alpha < \delta$ and $w + \eta \notin V_\epsilon$, then $\|D_z \psi(\bar{u} + w + \eta)\|_\beta \geq \delta_0$ for some $\delta_0 > 0$. So by (20),

$$\frac{d}{dt} \psi(\bar{u} + w + \eta) \leq -\left(\psi(\bar{u} + w + \eta) - \psi(\bar{u} + w + z(w))\right) \|D_z \psi(\bar{u} + w + \eta)\|_\beta^2 \leq -\epsilon \delta_0^2.$$

Furthermore, by (20) again, $w + \eta$ can enter but not leave the set V_ϵ. Consequently, if $w + \eta(t, w + z) \notin V_\epsilon$,

$$\psi(\bar{u} + w + \eta(t, w + z)) - \psi(\bar{u} + w + z) \leq -\epsilon \delta_0^2 t.$$

Since $C_1 \leq \psi(\bar{u} + w + z) \leq C_2$, where the constants C_1 and C_2 are independent of the choice of $w + z \in V_0$, $t \leq (C_2 - C_1) \epsilon^{-1} \delta_0^{-2} \equiv T$. It follows that $w + \eta \in V_\epsilon$ for all $t > T$. This completes the proof of (21).

Now it remains to define the deformation retraction r by setting

$$r(t, \bar{u} + w + z) = \begin{cases}
\bar{u} + w + \eta(t(1 - t)^{-1}, w + z) & \text{if } z \neq z(w) \text{ and } 0 \leq t < 1, \\
\bar{u} + w + z(w) & \text{if } t = 1 \text{ or } z = z(w) \text{ and } 0 \leq t \leq 1.
\end{cases}$$

By shrinking the balls B_{W_0} and B_Z if necessary, we may assume that U_0 is so small that the conclusions of Proposition 2.2 are valid. Recall that

$$W_0 \oplus Z = N_{\delta}(C) = \{v \in L^2_0 : (J\bar{u}, v) = 0\}.$$

Now we state the main result of this section.

Theorem 3.11. — Let $\psi(\bar{u}) = b$ and $C = C(\bar{u})$. Then there exists a neighbourhood U_0 of \bar{u} in $\bar{u} + (W_0 \oplus Z)$ and a corresponding neighbourhood $U = S^1 U_0$ of C in L^2_0 such that $(\psi_b \cap U, \psi_b \cap U - C)$ is a fibre bundle pair with base space C and fibre pair $(\psi_b \cap U_0, \psi_b \cap U_0 - \{\bar{u}\})$. The fibre pair has the homotopy type of $(\chi_b, \chi_b - \{0\})$, where the function $\chi \in C^2(B_{W_0}, \mathbb{R})$ is given by $\chi(w) = \psi(\bar{u} + w + z(w))$ and has the properties that $\chi(0) = 0$, $\text{Index } \chi''(0) = \text{Index } Q(\bar{u})$, $\text{Nullity } \chi''(0) = \text{Nullity } Q(\bar{u}) - 1$, and 0 is an isolated critical point of χ if and only if C is an isolated critical circle.
Proof. — The first part of the theorem coincides with Proposition 2.2. The statement concerning the homotopy type follows from Proposition 3.10 upon observing that \(\psi(\bar{u} + z) > \psi(\bar{u}) = b \) if \(z \in B_Z, z \neq 0 \). Finally, the properties of \(\chi \) are given in Proposition 3.7.

4. Existence of two closed Hamiltonian trajectories

Let \(S \) be the boundary of a compact convex subset \(A \) of \(\mathbb{R}^{2n} \). Suppose that the interior of \(A \) (denoted \(\text{Int}(A) \)) is nonempty, \(0 \in \text{Int}(A) \), and \(S \) is of class \(C^2 \) and has strictly positive Gaussian curvature. For \(x \in S \), denote the outward unit normal vector by \(N(x) \). We want to find the number of closed trajectories of the flow

\[
(22) \quad \dot{x} = JN(x) \quad \text{on } S.
\]

This problem may be put in Hamiltonian form

\[
(23) \quad \dot{x} = JH'(x), \quad x(0) = x(T_0), \quad H(x) = 1,
\]

where \(H \) is strictly convex, of class \(C^2 \) in a neighbourhood of \(S \) and \(H'(x) \neq 0 \) on \(S \) \([8, \S \, 2]\). Here \(x \) and \(T_0 \) are the unknown. We may assume that

\[
(24) \quad H(\lambda x) = \lambda^\beta H(x) \quad \forall x \in \mathbb{R}^{2n}, \ \lambda > 0,
\]

where \(\beta \in (1, 2) \). Then \(H \in C^2(\mathbb{R}^{2n} - \{0\}, \mathbb{R}) \). It is easy to see by homothesy \([8, \text{Lemma II.4}]\) that \(x(t) \) is a solution of (23) if and only if \(x_h(t) = h^{1/\beta} x(h^{1-2/\beta} t) \) is a solution of

\[
\dot{x}_h = JH'(x_h), \quad x_h(0) = x_h(T_0 h^{2/\beta - 1}), \quad H(x_h) = h.
\]

Consequently, the fixed energy problem (23) is equivalent to the fixed period problem (1). Furthermore, if \(x_1 \) is a solution of (1) with minimal period \(T \), then for each positive integer \(k \), \(x_k(t) = k^{1/(\beta - 2)} x_1(kt) \) is a solution of (1) with minimal period \(T/k \). Observe that the trajectory of the flow (22) corresponding to \(x_k \) is obtained by covering the one corresponding to \(x_1 \) \(k \) times.

Denote the Fenchel conjugate of \(H \) by \(G \). If \(\alpha^{-1} + \beta^{-1} = 1 \), then, according to (24),

\[
(25) \quad G(\lambda y) = \lambda^\alpha G(y) \quad \forall y \in \mathbb{R}^{2n}, \ \lambda > 0.
\]

Since the hypersurface \(S \) has positive Gaussian curvature, \(H''(x) \) is invertible \(\forall x \neq 0 \) and \(G \in C^2(\mathbb{R}^{2n} - \{0\}, \mathbb{R}) \). Moreover, since \(\alpha > 2 \),
it follows from (25) that \(G \) has continuous second derivative at the origin. So \(G \in C^2(\mathbb{R}^{2n}, \mathbb{R}) \). Note that the hypotheses \((H1), (H2)\) of Section 2 are satisfied and each nonzero solution of (1) is admissible.

Using the above results and the ones quoted in Section 1 we obtain the following

Proposition 4.1.

(i) Let \(\psi : L^2_0 \to \mathbb{R} \) be defined by

\[
\psi(u) = \int_0^T \left[\frac{1}{2}(Ju, Mu) + G(-Ju) \right] dt.
\]

Then \(\psi \) is of class \(C^2 \), \(u \) is a critical point of \(\psi \) if and only if \(x = Mu + \xi \) is a solution of (1) for some \(\xi \in \mathbb{R}^{2n} \), and \(x \) is admissible whenever \(u \neq 0 \).

(ii) If \(u_1(t) \) is a critical point of \(\psi \), then so is \(u_k(t) = k^{1/(2-\alpha)}u_1(kt) \) for each integer \(k \geq 2 \). Furthermore, if \(u_1 \) has minimal period \(T \) and \(x_k \) is a trajectory of the flow (22) corresponding to \(u_k \), then \(x_k \) is obtained by covering the trajectory \(x_1 \) \(k \) times (so all \(u_k \) correspond to trajectories which are geometrically the same).

It is known that there always exists one closed trajectory of the flow (22) (see [21, §2] and the references therein), there exist at least \(n \) such trajectories if for some \(r > 0 \), \(r \leq |x| < r\sqrt{2} \forall x \in S \) ([10], cf. also [2]), and generically, they are infinitely many ([8], cf. also [25]). We shall show that there always exist at least two closed trajectories. The same result has been obtained by EKELAND and LASSOUEL [11, 12] by means of different methods.

Theorem 4.2. — Let \(S \) be the boundary of a compact convex subset \(A \subset \mathbb{R}^{2n}, n \geq 3 \), such that \(0 \in \text{Int}(A) \). Suppose that \(S \) is of class \(C^2 \) and has strictly positive Gaussian curvature. Then there exist at least two geometrically distinct closed trajectories of the flow (22).

The proof will be given in Section 6.

5. Index of iterated solutions and Morse relations

First we summarize some results which may be found in [8, 17]. Let \(u_1 \) be a critical point of \(\psi \), with minimal period \(T \), and let \(u_k \) be as in **Proposition 4.1**. Denote the index and the nullity of the quadratic form \(Q(u_k) = \psi''(u_k) \) by \(i_k \) and \(n_k \) respectively. Then

\[
(26) \quad i_k = \sum_{\omega^k=1} j(\omega), \quad n_k = \sum_{\omega^k=1} m(\omega),
\]
where \(j \) and \(m \) are functions from \(S^1 = \{ \omega \in \mathbb{C} : |\omega| = 1 \} \) to the set of nonnegative integers. Let \(x_1 \) be the solution of (1) corresponding to \(u_1 \) and let \(R(t) \) be the solution of

\[
\begin{aligned}
 \dot{R}(t) &= JH''(x_1(t))R(t), \\
 R(0) &= I,
\end{aligned}
\]

(\(I \) is the unit matrix). Recall that the eigenvalues of \(R(T) \) are called the Floquet multipliers of \(x_1 \). It is known that 1 is an eigenvalue of multiplicity at least 2. The function \(m \) is defined by \(m(\omega) = \dim \ker(\omega I - R(T)) \). Denote \(j(\omega^\pm) = \lim_{|\omega| \to 0^\pm} j(e^{i\alpha} \omega) \). We shall need the following properties of \(j \) [12, 17]:

Proposition 5.1.

(i) If \(\omega \in S^1 \) is not a Floquet multiplier, then \(j \) is continuous at \(\omega \);

(ii) \(j(1) = i_1 \);

(iii) \(j(\omega) = j(\omega) \) \(\forall \omega \in S^1 \);

(iv) if \(\omega \in S^1 - \{1\} \) is a Floquet multiplier of type \((p, q) \) in the sense of Krein and of multiplicity \(m \) (so that \(p + q = m \)), then \(j(\omega^+) - j(\omega^-) = q - p \) and \(j(\omega) \leq j(\omega^+) \leq j(\omega) + q, j(\omega) \leq j(\omega^-) \leq j(\omega^-) + p \);

(v) \(j(1^\pm) \geq i_1 + n \) and \(j(1^\pm) = i_1 + n + 1 \) provided \(n_1 = 1 \) and \(\alpha \) in (25) is sufficiently close to 2.

A proof of this proposition may be found in [12].

Corollary 5.2. — Suppose that \(\alpha \) is close to 2. Then

(i) \(j(-1) \geq 2 \);

(ii) if \(j(-1) = 2 \), we have \(i_{k+1} - i_k \geq 2 \) for all \(k \);

if in addition \(n \geq 3 \), \(i_{k+1} - i_k > 2 \) for some \(k \).

Proof.

(i) By the \(S^1 \)-invariance of \(\psi \), \(n_1 \geq 1 \). Suppose \(n_1 > 1 \). Then 1 is an eigenvalue of \(R(T) \) of multiplicity at least 4, so there are at most \(n - 2 \) Floquet multipliers (counted with their multiplicities) on the open upper half-circle of \(S^1 \). It follows from (iv) and (v) of Proposition 5.1 that \(j(1^+) \geq i_1 + n \) and \(j(e^{i\theta}) \) can drop by at most \(n - 2 \) as \(\theta \) goes from \(0^+ \) to \(\pi \). Hence \(j(-1) \geq i_1 + n - (n - 2) \geq 2 \). If \(n_1 = 1 \), the same argument shows that \(j(-1) \geq i_1 + n + 1 - (n - 1) \geq 2 \).

(ii) If \(j(-1) = 2 \), one sees from (iv) of Proposition 5.1 that at each Floquet multiplier on the open upper half-circle, \(j(\omega^+) - j(\omega^-) = -m \). So \(p = m, q = 0 \) and \(j(\omega) = j(\omega^+) \). It follows that \(j(e^{i\theta}) \) is nonincreasing as \(\theta \) increases from \(0^+ \) to \(\pi \). In particular, \(j(\omega) \geq 2 \) \(\forall \omega \in S^1 - \{1\} \) and \(j(e^{i2\pi m/(k+1)}) \geq j(e^{i2\pi m/k}) \) for all integers \(m \in [1, k/2] \). Thus, according
to (26), \(i_{k+1} - i_k \geq 2 \). Finally, if \(n \geq 3 \), \(j(1^+) \geq 3 \). So \(i_{k+1} - i_k \geq 3 \) for some \(k \). \[\]

The functional \(\psi \) of PROPOSITION 4.1 is of class \(C^2 \), satisfies the Palais-Smale condition [8, Proposition III.4] and is bounded below (because \(\psi(u) \to \infty \) as \(\|u\|_\alpha \to \infty \), cf. [8, Proof of Proposition III.4] or (28)). One can show (see Remark in § 6) that if \(u \neq 0 \) is a critical point of \(\psi \), then \(\psi(u) < 0 \). Suppose from now on that all critical circles of \(\psi \) are isolated. It follows that the nonzero critical levels may be ordered into an increasing sequence \(\left\{ b_k \right\}_{k=1}^\infty \) with \(b_k \to 0 \). Denote by \(K_b \) the set of critical points of \(\psi \) at level \(b \). Observe that 0 is a non-isolated critical level, \(K_0 = \{0\} \), and each \(K_{b_k} \) is the union of a finite number of disjoint critical circles.

LEMMA 5.3. — Let \(b < c \) and suppose that there are no critical levels in the interval \((b,c)\). Then \(\psi_b \) is a deformation retract of \(\psi_c - K_c \).

Proof. — Since our argument is similar to the one given in [4, pp. 385–387], we only point out the differences. If \(b = 0 \) or \(b \) is not a critical level, the proof in [4] applies. So let \(b = b_k \). Then \(K_b \) is the union of a finite number of critical circles \(C_1, \ldots, C_p \). For each \(i = 1, \ldots, p \) choose \(U_i \subset C_i \) and an open neighbourhood \(U_{i0} \) of \(U_i \) in \(\bigcup_{i=1}^p U_i \) (cf. § 2). Let \(U_i = S^1 U_{i0} \), \(U = U_1 \cup \ldots \cup U_p \) and \(\psi_i = \psi|_{U_{i0}} \). If all \(U_{i0} \) are sufficiently small, then the sets \(U_i \) are pairwise disjoint, \(U - K_b \) contains no critical points, and according to PROPOSITIONS 3.6 and 3.7, \(\psi_i'(u) = 0 \) if and only if \(u = \tilde{u}_i \). By [20, Lemma 1.6], there exists a pseudogradient vector field \(F_i \) for \(\psi_i \) on \(U_{i0} - \{ \tilde{u}_i \} \). Setting \(F_0(S\psi u) = S\psi F_i(u) \) \(\forall u \in U_{i0} - \{ \tilde{u}_i \} \) we obtain an equivariant field \(F_0 \) on \(\tilde{U} = U - K_b \). Let \(N \subset U \) be a closed neighbourhood of \(K_b \) and \(\tilde{V} = \psi_c - (\psi_b \cup N \cup K_c) \). On \(\tilde{V} \) there exists a pseudogradient vector field \(F \) for \(\psi \). Set

\[
\tilde{F}(u) = \rho(u) F(u) + \rho_0(u) F_0(u) \quad \forall u \in \tilde{U} \cup \tilde{V},
\]

where \(\rho, \rho_0 \) are Lipschitz continuous functions which vanish outside \(\tilde{V} \) and \(\tilde{U} \) respectively and satisfy \(\rho(u) \), \(\rho_0(u) \geq 0 \), \(\rho(u) + \rho_0(u) = 1 \) \(\forall u \in \tilde{U} \cup \tilde{V} \). Define a flow \(\eta \) by

\[
\begin{align*}
\dot{\eta}(t,u) &= -\frac{(\psi(u) - b) \tilde{F}(\eta)}{\langle \psi'(\eta), \tilde{F}(\eta) \rangle}, \\
\eta(0,u) &= u, \quad u \in \tilde{U} \cup \tilde{V}.
\end{align*}
\]
Note that if \(u = u_i + v \in N - K_b \), where \(u_i \in C_i \) and \(v \in N_{u_i}(C_i) \), then \(\overline{F}(u) = F_0(u) \in N_{u_i}(C_i) \). Furthermore, \(\langle \psi'(u), F(u) \rangle \geq \| \psi'(u) \|_\alpha^2 \) \(\forall u \in \tilde{V} \) and \(\langle \psi'(u), F_0(u) \rangle = \langle \psi'_i(u), F_i(u) \rangle \geq \| \psi'_i(u) \|_\alpha^2 \) \(\forall u \in U_{i0} - \{ \overline{u}_i \} \). Since \(\psi \) and \(\psi_i \) satisfy the Palais-Smale condition, it follows that if \(A \subset \tilde{U} \cup \tilde{V} \) and \(\overline{A} \cap K_b = \overline{A} \cap K_c = \emptyset \), there is a constant \(d > 0 \) (depending on \(A \)) such that \(\langle \psi'(u), \overline{F}(u) \rangle \geq d \) \(\forall u \in A \). Using these facts one shows as in [4] that \(\eta(t, u) \) is defined for \(t \in [0, 1) \), \(\lim_{t \to 1} \eta(t, u) \) exists, \(\lim_{t \to 1} \psi(\eta(t, u)) = b \) and the mapping

\[
\eta(t, u) = \begin{cases}
\eta(t, u) & \text{if } 0 \leq t < 1 \text{ and } u \in \tilde{U} \cup \tilde{V}, \\
\lim_{t \to 1} \eta(t, u) & \text{if } t = 1 \text{ and } u \in \tilde{U} \cup \tilde{V}, \\
u & \text{if } 0 \leq t \leq 1 \text{ and } u \in \psi_b,
\end{cases}
\]

is a deformation retraction of \(\psi_c - K_c \) onto \(\psi_b \). \(\square \)

Denote by \(H_* \) the (unreduced) singular homology with coefficients in \(\mathbb{Z}_2 \). Since \(\psi \) has no positive critical values, it follows from Lemma 5.3 that \(H_q(\psi_b) \approx H_q(\psi_0) \) for all \(b > 0 \) and all \(q \) (\(\approx \) means isomorphic). Let \(\beta_q = \text{rank } H_q(\psi_0) \). We shall show that

\[
\beta_q = \begin{cases}
1 & \text{if } q = 0, \\
0 & \text{otherwise.}
\end{cases}
\]

Choose \(u \) with \(\| u \|_\alpha = 1 \) and consider the function \(\psi(su), s \geq 0 \). Since \(G \) is homogeneous and \(G(y) > 0 \) \(\forall y \in \mathbb{R}^{2n} - \{0\} \), there exists a constant \(C_1 > 0 \) such that \(\forall y \in \mathbb{R}^{2n}, G(y) \geq C_1 |y|^\alpha \). Consequently

\[
\psi(su) = \int_0^T \left[\frac{1}{2} s^2(Ju, Mu) + s^\alpha G(-Ju) \right] dt \geq C_1 s^\alpha - C_2 s^2,
\]

\[
\frac{d}{ds} \psi(su) = \int_0^T \left[s(Ju, Mu) + \alpha s^{\alpha-1} G(-Ju) \right] dt \geq C_1 \alpha s^{\alpha-1} - 2C_2 s.
\]

Note that the constants \(C_1 \) and \(C_2 \) are independent of the choice of \(u \). Thus, if \(b \) is sufficiently large, one may find a ball \(B \), centered at the origin and having the property that \(\overline{B} \subset \psi_b \) and the radial retraction of \(\psi_b \) onto \(\overline{B} \) is contained in \(\psi_b \). This implies that \(H_q(\psi_0) \approx H_q(\psi_b) \approx H_q(\overline{B}) \). Hence (27).

Choose \(\epsilon > 0 \) so that \(-\epsilon \) is not a critical level. Choose also \(\delta > 0 \) in such a way that \(b_k \) is the only critical level in \([b_k - \delta, b_k + \delta]\) for all \(b_k < -\epsilon \). Define

\[
M^\epsilon_q = \sum_{b_k < -\epsilon} \text{rank } H_q(\psi_{b_k + \delta}, \psi_{b_k - \delta}) + \text{rank } H_q(\psi_0, \psi_{-\epsilon}).
\]
By an algebraic argument due to Pitcher [19, § II], see also [5, 22, 23], it follows that whenever all \(M^\epsilon_q, \ q < q_0, \) are finite, we have the Morse relations

\[
M^\epsilon_q - M^\epsilon_{q-1} + \cdots + (-1)^q M^\epsilon_0 \geq \beta_q - \beta_{q-1} + \cdots + (-1)^q \beta_0 \quad \forall q \leq q_0,
\]

or taking into account (27),

\[
(30) \quad M^\epsilon_q - M^\epsilon_{q-1} + \cdots + (-1)^q M^\epsilon_0 \geq (-1)^q \quad \forall q \leq q_0.
\]

Suppose that \(C \) is a critical circle at level \(b \). Define the \(q \)-th critical group of \(C \) by

\[
(31) \quad c_q(\psi, C) = H_q(\psi_b \cap U, \psi_b \cap U - C),
\]

where \(U \) is a neighbourhood of \(C \) whose closure does not contain other critical points than those in \(C \). By excision, \(c_q \) does not depend on the choice of \(U \). Using Lemma 5.3, excision and the fact that the homology of the union of path components is isomorphic to the direct sum of homologies of each path component, it follows that

\[
H_q(\psi_{b_k + \delta}, \psi_{b_k - \delta}) \approx H_q(\psi_{b_k}, \psi_{b_k - \delta}) \approx H_q(\psi_{b_k}, \psi_{b_k} - K_{b_k}) \approx \bigoplus_{i \in I_k} c_q(\psi, C_i),
\]

where \(I_k \) is the set of all indices \(i \) such that \(\psi(C_i) = b_k \) (cf. [5, 22, 23]). So according to (29), if \(I \) is the set of all indices \(i \) with \(\psi(C_i) < -\epsilon \), then

\[
(33) \quad M^\epsilon_q = \sum_{i \in I} \text{rank } c_q(\psi, C_i) + \text{rank } H_q(\psi_0, \psi_{-\epsilon}).
\]
on W^+_0 and zero on W^0_0. Note that $\dim W^+_0 = \text{Index } \psi''(\bar{u})$. According
to the generalized Morse lemma [9, Theorem II.4; 14, Theorem 3; 18,
Theorem 1], there is an open neighbourhood N of the origin in B_{W_0}, an
origin-preserving homeomorphism $\gamma : N \to \gamma(N) \subset B_{W_0}$ and a function
$\xi \in C^2(N \cap W^0_0, \mathbb{R})$ such that

\[
(34) \quad \chi(\gamma(w)) = \frac{1}{2}(\chi''(0)w^-, w^-) + \frac{1}{2}(\chi''(0)w^+, w^+) + \xi(w^0),
\]

where $w = w^- + w^0 + w^+ \in W^0_0 \oplus W^0_0 \oplus W^+_0$ and $\xi'(0) = 0, \xi''(0) = 0$.

Proposition 5.4. — Suppose that $\text{Index } \psi''(\bar{u}) = i$. Then

(i) $c_q(\psi, C) \approx 0 \quad \forall q < i$;

(ii) if 0 is a local minimum of ξ,

\[
c_q(\psi, C) \approx \begin{cases}
\mathbb{Z}_2 & \text{for } q = i, i + 1; \\
0 & \text{otherwise;}
\end{cases}
\]

(iii) if 0 is not a local minimum of ξ, $c_q(\psi, C) \approx 0 \quad \forall q \leq i$.

Proof.

(i) By the shifting theorem [5], cf. also [13],

\[
(35) \quad c_q(\chi, 0) \approx \begin{cases}
0 & \text{if } q < i, \\
c_q-i(\xi, 0) & \text{if } q \geq i.
\end{cases}
\]

Consequently, $H_q(\chi_b, \chi_b - \{0\}) = c_q(\chi, 0) \approx 0 \quad \forall q < i$ (recall that 0
is the only critical point of χ). Since $(\psi_b \cap U, \psi_b \cap U - C)$ is a fibre
bundle pair whose fibre pair has the homotopy type of $(\chi_b, \chi_b - \{0\})$, $c_q(\psi, C) = H_q(\psi_b \cap U, \psi_b \cap U - C) \approx 0 \quad \forall q < i$ [24, Lemma 5.7.16].

(ii) Since

\[
c_q(\xi, 0) \approx \begin{cases}
\mathbb{Z}_2 & \text{if } q = 0, \\
0 & \text{otherwise,}
\end{cases}
\]

it follows from (35) that

\[
c_q(\chi, 0) \approx \begin{cases}
\mathbb{Z}_2 & \text{if } q = i, \\
0 & \text{otherwise.}
\end{cases}
\]

Consequently, the fibre pair has the homology of the pair (D^i, S^{i-1}), where
D^i is the i-dimensional closed ball with boundary S^{i-1}. So $(\psi_b \cap U, \psi_b \cap U - C)$ is a spherical bundle and therefore orientable over \mathbb{Z}_2 [24, Corollary
5.7.18]. Using Thom’s isomorphism [24, Theorem 5.7.10] and the homology
of S^1 we obtain the conclusion.
(iii) Since \(c_0(\xi,0) \approx 0, \ c_q(\chi,0) \approx 0 \ \forall q \leq i \) according to (35). The conclusion follows by repeating the argument of (i).

Note that if \(\text{Nullity}(\psi''(\bar{u})) = 1 \), then \(W_0^0 = \{0\} \) and (ii) of Proposition 5.4 applies.

Proposition 5.5. — For each \(q_0 \) there exists an \(\epsilon > 0 \) such that \(H_q(\psi_0, \psi_{-\epsilon}) \approx 0 \ \forall q \leq q_0 \).

Proof. — First we note that there is an \(\epsilon > 0 \) such that for each critical point \(u \) with \(\psi(u) > -\epsilon \), \(\text{Index}(\psi''(u)) > q_0 + 1 \). Indeed, if this is not the case, we may find a sequence \((u_m) \) of critical points such that \(\psi(u_m) \to 0 \) and \(\text{Index}(\psi''(u_m)) \leq q_0 + 1 \). By the Palais-Smale condition, \(u_m \to \bar{u} \) (possibly after passing to a subsequence). Since \(\psi(\bar{u}) = 0 \), and \(\psi'(\bar{u}) = 0 \), \(\bar{u} = 0 \). Hence \(\text{Index}(\psi''(0)) \leq q_0 + 1 \). On the other hand, \(\text{Index}(\psi''(0)) = \infty \) because

\[
\langle \psi''(0)v, v \rangle = \int_0^T (Jv, Mv) \, dt.
\]

Next we show that

\[
H_q(\psi_0, \psi_{-\epsilon}) \approx H_q(\psi_0^0, \psi_{0}^0) \quad \forall q \leq q_0,
\]

where \(\psi_0^0 = \{ u \in L_0^0 : \psi(u) < 0 \} \). Since \(\psi_{-\epsilon} \subset \psi_0^0 \subset \psi_0 \), we have the exact sequence of the triple \((\psi_0, \psi_0^0, \psi_{-\epsilon}) \) [24, Section 4.5]:

\[
H_q(\psi_0^0, \psi_{-\epsilon}) \to H_q(\psi_0, \psi_{-\epsilon}) \to H_q(\psi_0, \psi_0^0) \to H_{q-1}(\psi_0^0, \psi_{-\epsilon}).
\]

So (36) will follow if we prove that \(H_q(\psi_0^0, \psi_{-\epsilon}) \approx 0 \ \forall q \leq q_0 \). Suppose \(H_q(\psi_0^0, \psi_{-\epsilon}) \neq 0 \). For a relative \(q \)-cycle \(c \) we shall denote its support (i.e., the union of the images of all singular simplexes of \(c \)) by \(|c| \) and its homology class by \([c] \). If \(c_1 \) and \(c_2 \) are homologous, we shall write \(c_1 \sim c_2 \). Let \(c \) be such that \([c] \in H_q(\psi_0^0, \psi_{-\epsilon}) \) and \(c \neq 0 \). Then \(\max_{u \in |c|} \psi(u) = d \), where \(-\epsilon < d < 0 \). According to Lemma 5.3, we may assume that \(d = b_j \), where \(b_j \) is a critical level. Choose \(\delta > 0 \) so that the interval \([b_j - \delta, b_j] \) contains no critical level. By the first part of the proof, (i) of Proposition 5.4 and (32), \(H_q(\psi_{b_j}, \psi_{b_j+\delta}) \approx 0 \ \forall q \leq q_0 + 1 \). So in the exact sequence

\[
H_{q+1}(\psi_{b_j}, \psi_{b_j+\delta}) \to H_q(\psi_{b_j+\delta}, \psi_{-\epsilon}) \to H_q(\psi_{b_j}, \psi_{-\epsilon}) \to H_q(\psi_{b_j}, \psi_{b_j-\delta})
\]

the first and the last term are zero. Hence the middle terms are isomorphic. We may therefore find \(c' \in [c] \) such that \(\max_{u \in |c'|} \psi(u) < b_j \). Proceeding
in this way, we eventually find \(c'' \in [c] \) such that \(\max_{u \in |c''|} \psi(u) \leq -\epsilon \). Therefore \(c \sim 0 \), a contradiction.

We complete the proof by using (36) and showing that
\[
H_q(\psi_0, \psi_0^0) = 0 \quad \forall q \leq q_0.
\]
This is clear for \(q = 0 \). Let \(q \geq 1 \) and let \(c \) be a relative \(q \)-cycle with boundary \(\partial c \). Since \(|\partial c| \) is compact and \(|\partial c| \subset \psi_0^0 \), we may find a finite dimensional subspace \(X_0 \) of \(L_0^\omega \) and a projection \(P : L_0^\omega \rightarrow X_0 \) such that \((1 - t)u + tPu \in \psi_0^0 \forall u \in |\partial c|, 0 \leq t \leq 1 \). It follows that \(\partial c \) is chain homotopic (and therefore homologous) to a \((q - 1)\)-cycle in \(\psi_0^0 \) whose support lies in \(X_0 \). Thus we may assume \(|\partial c| \subset X_0 \). Since \(\text{Index}(\psi''(0)) = \infty \), we may choose \(X_0 \) so that \(\text{Index}[(\psi|_{X_0})''(0)] > q \). Note that \(\text{Nullity}(\psi''(0)) = 0 \). Accordingly, \(0 \) is a nondegenerate critical point of \(\psi|_{X_0} \). Let \(c' \) be the relative \(q \)-cycle obtained from \(\partial c \) by taking linear segments joining all points of \(|\partial c| \) to the origin. For \(u \in |\partial c| \) and all \(s \in (0,1] \)
\[
\psi(su) = s^2 \int_0^T [\frac{1}{2}(Ju, Mu) + s^{\alpha - 2}G(-Ju)] dt \leq s^2 \psi(u) < 0.
\]
So \([c'] \in H_q(\psi_0, \psi_0^0)\). Consider the exact sequence
\[
H_q(\psi_0) \rightarrow H_q(\psi_0, \psi_0^0) \xrightarrow{\partial^*} H_{q-1}(\psi_0^0).
\]
Since rank \(H_q(\psi_0) = \beta_q = 0 \), \(H_q(\psi_0) \approx 0 \). Thus \(\partial^* \) is a monomorphism.

It follows that \(c' \sim c \). The mapping \(u \mapsto (1 - s)u + s au, 0 \leq s \leq 1, \alpha > 0 \)
small and fixed, induces a chain homotopy between \(c' \) and a relative \(q \)-cycle \(c'' \) whose support is contained in a small neighbourhood of \(0 \in X_0 \). So \(c \sim c' \sim c'' \). Since \(\text{Index}[(\psi|_{X_0})''(0)] > q \), \(c_q(\psi|_{X_0}, 0) \approx 0 \). Consequently, \(c \sim c'' \sim 0 \). \(\square \)

6. Proof of Theorem 4.2

Let \(C_1 \) be a critical circle obtained by minimizing \(\psi \). Then all \(u \in C_1 \)
have minimal period \(T \) [6, 9]. By Proposition 4.1, there exists a sequence \(C_1, C_2, \ldots \) of critical circles which correspond to the same trajectory of (22). Also, \(\psi(C_k) < \psi(C_{k+1}) \quad \forall k \) and \(\psi(C_k) \rightarrow 0 \) as \(k \rightarrow \infty \). Suppose that \(\psi \) has no other critical circles (which means that there is only one closed trajectory of the flow (22)). We shall consider two cases, \(j(-1) \geq 3 \) and \(j(-1) = 2 \) (cf. (i) of Corollary 5.2).
Let $j(-1) \geq 3$. It is easy to see that $c_0(\psi, C_1) \approx c_1(\psi, C_1) \approx \mathbb{Z}_2$ and $c_q(\psi, C_1) \approx 0$ $\forall q \geq 2$. By (26), $i_2 = j(1) + j(-1) \geq 3$. So according to Corollary 5.2 and (i) of Proposition 5.4, $c_q(\psi, C_k) \approx 0$ for $q = 0, 1, 2$ and $k \geq 2$. Hence if $\epsilon > 0$ is small enough, $M^\varepsilon_0 = M^\varepsilon_1 = 1$ and $M^\varepsilon_2 = 0$ (cf. (33) and Proposition 5.5). This contradicts (30) with $q = 2$.

Suppose now $j(-1) = 2$. We shall show that for all $k \geq 1$,

\begin{equation}
 i_k = 2k - 2,
\end{equation}

\begin{equation}
 c_q(\psi, C_k) \approx \begin{cases}
 \mathbb{Z}_2 & \text{if } q = 2k - 2, 2k - 1; \\
 0 & \text{otherwise}.
\end{cases}
\end{equation}

This will complete the proof of the theorem because $i_k > 2k - 2$ for some k according to (ii) of Corollary 5.2. It is clear that (37) and (38) are satisfied if $k = 1$. Assume they are satisfied $\forall k \leq k_0$. Using Corollary 5.2, (33) and Propositions 5.4(i) and 5.5, it follows that $i_{k_0+1} \geq 2k_0$ and $M^\varepsilon_q = 1$ $\forall q \leq 2k_0 - 1$. So according to (30) with $q = 2k_0$, $M^\varepsilon_{2k_0} \geq 1$. Since $c_{2k_0}(\psi, C_k) \approx 0$ $\forall k \geq k_0 + 2$, $c_{2k_0}(\psi, C_{k_0+1}) \neq 0$. Consequently, $i_{k_0+1} = 2k_0$. Also, by (ii) and (iii) of Proposition 5.4, (38) with $k = k_0 + 1$ is satisfied.

\[\square \]

Remark.

(i) If $u \neq 0$ is a critical point of ψ, then $\psi(u) < 0$. Indeed, $G(y) > 0$ $\forall y \in \mathbb{R}^{2n} - \{0\}$, and by homogeneity, $(G'(y), y) = \alpha G(y) \forall y \in \mathbb{R}^{2n}$. Hence

\begin{align*}
0 &= \langle \psi'(u), u \rangle = \int_0^T \left[(Ju, Mu) + (G'(-Ju), -Ju) \right] \, dt \\
&= \int_0^T \left[(Ju, Mu) + \alpha G(-Ju) \right] \, dt.
\end{align*}

It follows that

$$
\psi(u) = \int_0^T (1 - \frac{1}{2} \alpha) G(-Ju) \, dt < 0.
$$

(ii) Using the above fact and (ii) of Proposition 5.4, it is easy to show by our arguments that if all critical circles are nondegenerate (i.e., have nullity 1), then for each even number $k \geq 0$ there exists a critical circle of index k. This is the main result in [8, § III].

Note. — In a very recent manuscript "Hamiltonian flows with finitely many trajectories", I. EKELAND and H. HOFER have shown that if the critical circle C_1 is degenerate (i.e., nullity $n_1 \geq 2$), then $j(-1) \geq 3$.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
Using this and (v) of PROPOSITION 5.1, it follows easily that $i_{k+1} - i_k > 2$ for some k also when $n = 2$ (cf. COROLLARY 5.2). So the conclusion of THEOREM 4.2 remains valid for $n = 2$.

Ekeland’s and Hofer’s paper contains still another proof of THEOREM 4.2.

BIBLIOGRAPHIE

[17] Lassoud (L.) and Viterbo (C.). — La théorie de Morse pour les systèmes hamiltoniens, [Colloque du Ceremade], Hermann, to appear.

