FRANCESCO AMOROSO

Some remarks about algebraic independence measures in high dimension

<http://www.numdam.org/item?id=BSMF_1989__117_3_285_0>
SOME REMARKS ABOUT ALGEBRAIC INDEPENDENCE MEASURES IN HIGH DIMENSION

BY

FRANCESCO AMOROSO (*)

0. Introduction

In a recent paper ([P3]) PHILIPPON considers some relations between algebraic independence measures and approximation measures.

Let us recall some definitions. For any proper homogeneous unmixed ideal $I \subset \mathbb{Z}[x_0, \ldots, x_n]$, with $I \cap \mathbb{Z} = \{0\}$, we define $t(I)$ as the size of the Chow form F associated with I. The norm $||I||_\omega$ of I at $\omega \in \mathbb{C}^{n+1} - \{0\}$ is defined as $H(F(S^1\omega, \ldots, S^{n-k+1}\omega))|\omega|^{-(n+1-k)\delta}$ where $k = \text{rank} I$, δ is the degree of F in the first group of variables and S^1, \ldots, S^{n-k+1}

F. AMOROSO, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 PISA, Italie.
are skew-symmetric matrices in the new variables $s_{k\ell}^{(j)}$, $0 \leq k < \ell < n$, $j = 1, \ldots, n - k + 1$. Here $t(I)$ and $\|I\|_w$ play a role analogous to that of the size $t(Q)$ and the modulus $|Q(\omega)|$ for a polynomial $Q \in \mathbb{Z}[x]$.

Given $\omega \in \mathbb{C}^n$, we denote by ω also $(1, \omega) \in \mathbb{C}^{n+1} - \{0\}$. An algebraic independence measure in codimension k ($0 \leq k \leq n+1$) for ω is a function $\varphi_k : \mathbb{R}_+ \to \mathbb{R}_+$ such that the inequality

$$||hI||_w \geq \exp(-\varphi_k(t(I)))$$

holds for any proper unmixed ideal $I \subset \mathbb{Z}[x_1, \ldots, x_n]$ with $I \cap \mathbb{Z} = \{0\}$ and rank $I = k$.

Let $\theta \in \mathbb{C}$ be algebraic over a purely transcendental extension $K = \mathbb{Q}(\alpha_1, \ldots, \alpha_D)$. Let

$$f(y) = \sum_{h=0}^{\delta} P_h(\alpha_1, \ldots, \alpha_D) y^h, \quad P_h \in \mathbb{Z}[x_1, \ldots, x_D],$$

be the irreducible polynomial of $\mathbb{Z}[x_1, \ldots, x_D, y]$ such that $f(\alpha_1, \ldots, \alpha_D, \theta) = 0$. The size of θ with respect to K is defined as

$$t_K(\theta) = \max_{0 \leq h \leq \delta} (t(P_h), \delta).$$

An approximation measure in dimension D ($0 \leq D \leq n+1$) for ω is a function $\gamma_D : \mathbb{R}_+ \to \mathbb{R}_+$ such that the inequality

$$|\theta - \omega| \geq \exp\left(-\gamma_D\left(\max_{1 \leq i \leq n} (t_K(\theta_i))\right)\right)$$

holds for any $\theta \in \mathbb{C}^n$ with algebraic coordinates over a pure transcendental extension K of \mathbb{Q} with $\text{tr deg}_Q K = D$.

PHILIPPON finds the following results:

Theorem 0.1. — Let $\omega \in \mathbb{C}^n$. There exist positive constants α_1, α_2, α_3, α_4 depending only on n and $|\omega|$, with the following properties. If φ_k is an algebraic independence measure in codimension k for ω, then the function

$$\gamma_{n-k}(T) = \varphi_k(a_1 T^n) - a_2 T^n$$

is an approximation measure in dimension $n-k$ for ω. Conversely, let γ_D be an approximation measure in dimension D for ω. Then the function

$$\varphi_{n-D}(T) = T[\gamma_D(a_3 T) - a_4]$$
is an algebraic independence measure in codimension $n - d$ for ω.

If the approximation measures which can be derived from algebraic independence measures seem to be the best possible ones, in the opposite direction the result seems to be weaker. For example, if $n = 1$, it is well-known (see [W, page 133] for instance) that $\varphi_1(T) = a_5 \max(\gamma_0(T), T^2)$ is an algebraic independence measure in codimension 1 for $\omega \in \mathbb{C}$ if γ_0 is any approximation measure in dimension 0 and a_5 is some constant depending only on $|\omega|$. The reason for this gap between dimension one and higher dimensions is in the “inversion theorem” (see [P2, lemma 2.7]) which is the main tool for the proof of the second part of Theorem 0.1:

Theorem 0.2 ("Inversion theorem"). — Let $\omega \in \mathbb{C}^n$. There exists a positive constant a_6 depending only on n and $|\omega|$ with the following properties. Let P be a proper prime ideal of $\mathbb{Z}[x_1, \ldots, x_n]$ with $P \cap \mathbb{Z} = \{0\}$. Then there exists $\theta \in \mathbb{V}_{\mathbb{C}^n}(P) = \{x \in \mathbb{C}^n \mid f(x) = 0 \ \forall f \in P\}$ such that

$$|\omega - \theta| \leq a_6 \|P\|_{\omega}^{1/\ell(P)}.$$

We observe that a stronger result is available in dimension one:

Theorem 0.3. — Let $\omega \in \mathbb{C}$. There exists a positive constant a_7 depending only on $|\omega|$ with the following properties. Let $Q \in \mathbb{Z}[x]$ be a prime polynomial. Then there exists a root α of Q such that

$$|\omega - \alpha| \leq |Q(\omega)| \exp(a_7t(Q)^2).$$

In this paper we extend Theorem 0.3 to higher dimensions, under suitable "smoothness" conditions for the variety of zeros of P, obtaining a stronger version of Theorem 0.2. These results yields the following improvements of Theorem 0.1:

Theorem 0.4. — Let $\omega \in \mathbb{C}^n$. There exists a positive constant a_8 depending only on n and $|\omega|$ with the following properties. Let φ_D be an approximation measure in dimension D for ω. Suppose that $\varphi_D(x)/x$ is an increasing function. Then for any proper unmixed ideal $I \in \mathbb{Z}[x_1, \ldots, x_n]$ with $I \cap \mathbb{Z} = \{0\}$ and rank $I = n - D$ the following inequality

$$\|hI\|_{\omega} > \exp\left(\max(a_8t(I)^{D+2}, \varphi_D(a_8t(I)))\right)$$

holds, provided that $\mathbb{V}_{\mathbb{P}(\mathbb{C}^n)}(hI)$ is a smooth variety. In other terms

$$\psi_{n-D}(T) = \max(a_8T^{D+2}, \varphi_D(a_8T))$$
is an algebraic independence measure "for smooth ideals" in codimension \(n - D \) for \(\omega \).

Theorem 0.5. — Let \(\omega \in \mathbb{C}^n \). There exists a positive constant \(a_0 \) depending only on \(n \) and \(|\omega| \) with the following properties. Let \(\phi_{D-1}, \phi_D \) be approximation measures in dimension \(D - 1, D \) for \(\omega \). Suppose that \(\phi_h(x)/x \) is an increasing function for \(h = D - 1, D \). Then

\[
\psi_{n-D}(T) = \max \left(a_0 T^{D+2}, \phi_D(a_0 T), T^2 \phi_{D-1}(a_0 T^2) \right)
\]

is an algebraic independence measure in codimension \(n - D \) for \(\omega \).

1. Inversion of ideals

The following lemmas will be useful:

Lemma 1.1. — Let \(P \) be a prime homogeneous ideal of \(\mathbb{Z}[x_0, \ldots, x_n] \) with \(P \cap \mathbb{Z} = \{0\} \), \(\text{rank} \ P = k \). Let \(f_1, \ldots, f_m \) be homogeneous polynomials of \(\mathbb{Z}[x_0, \ldots, x_n] \) of total degree at most \(\delta \). Let \(r = \text{rank}(P, f_1, \ldots, f_m) \). Then there exists homogeneous polynomials \(\lambda_{ij} \in \mathbb{Z}[x_0, \ldots, x_n] \) with \((1 \leq i \leq r-k, 1 \leq j \leq m) \), \(\deg \lambda_{ij} = \delta - \deg f_j \) and \(H(\lambda_{ij}) \leq \delta r^{-k} \deg P \) such that the polynomials \(Q_1, \ldots, Q_{r-k} \) defined by

\[
Q_i = \lambda_{i1} f_1 + \cdots + \lambda_{im} f_m , \quad 1 \leq i \leq r-k ,
\]

are a "semi"-regular sequence in \(\mathbb{Z}[x_0, \ldots, x_n]/P \), i.e. if \(I_0 = P \) and we define for \(i = 1, \ldots, r-k \) the ideal \(I_i \) as the intersection of the isolated components of \((I_{i-1}, Q_i) \), we have \(I_i : Q_{i+1} = I_i \) for \(i = 1, \ldots, r-k \).

The proof of this lemma is standard. See for instance [P2, lemma 1.9] or [M-W, lemma 2], although these authors take \(P = 0 \).

Lemma 1.2. — Let \(P \) be a homogeneous prime ideal of \(\mathbb{C}[x_0, \ldots, x_n] \) of rank \(n - d + 1 \). Let \(F \in \mathbb{C}[u_{ij}]_{i=1,\ldots,d, j=0,\ldots,n} \) be a Chow form associated to \(P \). Let us denote by \(F_j, j = 0, \ldots, n \) the derivation of \(F \) with respect to \(u_{dj} \). For \(\omega \in \mathbb{C}^{n+1} - \{0\} \) let us consider the homomorphism \(\sigma_{\omega} : \mathbb{C}[u_{ij}] \to \mathbb{C}[s_{k\ell}]_{0 \leq k < \ell \leq n, i=1,\ldots,d} \) given on each \(u_i \) by \(u_i \mapsto S^i \omega \) where the \(S^i \) are skew-symmetric matrices in the variable \(s_{k\ell}^i \). Let us assume

\[
\sigma_{\omega} F \equiv \sigma_{\omega} F_0 \equiv \cdots \equiv \sigma_{\omega} F_n \equiv 0.
\]

Then \(\omega \) is a singular point of \(V = V_{\mathbb{P}(\mathbb{C}^n)}(P) \).

Proof. — Let us denote by \(\delta \) the degree of \(F \) with respect to the variables \(u_i \). Let us assume \(\omega \) be a regular point of \(V \). We show that

\[
\sigma_{\omega} F \equiv \sigma_{\omega} F_h \implies \omega_h = 0.
\]
We can find $d-1$ skew-symmetric matrices T^1,\ldots,T^{d-1} such that ω is a regular point of

\[V' = V \cap \{ xT^1\omega = 0 \} \cap \cdots \cap \{ xT^{d-1}\omega = 0 \} \]

and $\dim V' = 0$. Let us consider the homomorphism $\tau_\omega : \mathbb{C}[u_{ij}] \to \mathbb{C}[u_{ij}]$ given on each u_i, $1 \leq i < d$, by $u_i \mapsto T^i\omega$. Then $\tau_\omega F$ is a Chow form of V':

\[\tau_\omega F = a \prod_{\ell=1}^{d} \theta_\ell u_d \quad a \in \mathbb{C}^*, \quad \theta_\ell \in V'. \]

We have:

\[\frac{\partial}{\partial u_{dh}} \tau_\omega F = a \sum_{\ell=1}^{m=d} \theta_{\ell h} \prod_{m \neq \ell} \theta_m u_d \]

$\tau_\omega F|_{u_d=S^d\omega} \equiv 0$, thus $\omega = \theta_1$, say. Hence

\[0 \equiv \tau_{\omega}(F_h)|_{u_d=S^d\omega} = a^h \prod_{m \neq 1} \theta_m S^d\omega \]

ω is a regular point of V', thus $\prod_{m \neq 1} \theta_m S^d\omega \neq 0$. Hence $\omega_h = 0$. \[\Box \]

Theorem 1.1. — Let $\omega \in \mathbb{C}^n$. There exists a positive constant c_1 depending only on n and $|\omega|$ with the following properties. Let P be a homogeneous prime ideal of $\mathbb{C}[x_0,\ldots,x_n]$ with $P \cap \mathbb{Z} = \{ 0 \}$. If $V = V_{P(\mathbb{C}^n)}(P)$ is a smooth variety of dimension D then there exists $\theta \in V$ with $\theta_0 = 1$ such that

\[|\theta - \omega| \leq \|P\|_\omega \exp(2c_1 t(P)^{D+2}). \]

Proof. — We use the same notation as in Lemma 1.2. We can assume $\|P\|_\omega < \exp(-c_1 t(P)^{D+2})$. We denote by c_2,c_3,\ldots positive constants depending only on n and $|\omega|$. Let $d = D + 1$. We can find a finite subset Λ of monomials in the variables $s^i_{k\ell}$ and homogeneous polynomials $f_{Mh} \in \mathbb{Z}[x_0,\ldots,x_n]$, $M \in \Lambda$, $0 \leq h \leq n$ of total degree $d\delta - 1$ such that

\[\sigma_x F_h = \sum_{M \in \Lambda} f_{Mh}(x)M. \]

By Lemma 1.2 the ideal $(P,f_{Mh})_{M \in \Lambda, 0 \leq h \leq n}$ has rank $n + 1$. Using Lemma 1.1 we can find homogeneous polynomials Q_1,\ldots,Q_d with $t(Q_1) \leq c_2 t(P)$ and $\max_i |Q_i(\omega)| \leq c_2 \max_M |f_M(\omega)|$ such that (Q_1,\ldots,Q_d) is a
"semi"-regular sequence in \(\mathbb{Z}[x_0, \ldots, x_N]/P \). By induction, we define the following sequence of Chow forms:

\[
\begin{align*}
F_0 &= F; \\
F_k &= \text{Res}(F_{k-1}, Q_k), \quad 1 \leq k \leq d.
\end{align*}
\]

Using proposition 3 of [N] it is easy to see

\[
t(F_d) \leq c_3 t(P)^{d+1};
\]

\[
\|F_d\|_\omega \leq c_3 t(P)^{d+1} \max_{0 \leq h \leq n} \left(\|P\|_\omega, |f_{\mathcal{M}_h}(\omega)| |\omega|^{-d+1} \right).
\]

\(F_d \) is a Chow form of an ideal of rank \(n+1 \). Thus, if \(c_1 \) is sufficiently large with respect to \(c_3 \),

\[
\max_{0 \leq h \leq n, \mathcal{M} \in \Delta} (|f_{\mathcal{M}_h}(\omega)|) \geq \exp(-c_4 t(P)^{d+1}).
\]

In other terms, for some \(\tilde{h} \)

\[
(1) \quad H(\sigma_\omega F_{\tilde{h}}) \geq \exp(-c_4 t(P)^{d+1}).
\]

By lemma 4 of [N], we can find \(a \in \mathbb{Z}[u_1, \ldots, u_{d-1}] \) and \(\theta_{ij}, 1 \leq \ell \leq \delta, 0 \leq j \leq n \), algebraic over \(Q(u_1, \ldots, u_{d-1}) \) such that

\[
(2) \quad F = a \prod_{\ell=1}^\delta \theta_{\ell} u_\ell.
\]

Moreover, since \(x_{\tilde{h}} \notin P \) (otherwise \(F_{\tilde{h}} \equiv 0 \)), we may assume \(\theta_{ij} = 1, 1 \leq \ell \leq \delta \).

We can specialize the \(S_i, 1 \leq i \leq d-1 \) to the open set of skew-symmetric matrices \(T^i = (t^i_{k\ell}) \) with \(t^i_{k\ell} \) in the unit polydisk \(|t^i_{k\ell}| < 1 \) such that under the substitution \(\tau_\omega \) given on each \(u_i, 1 \leq i \leq d-1 \), by \(u_i \mapsto T^i \omega \), we get

\[
(3) \quad H\left(\tau_\omega(F_{\tilde{h}})_{u_d = S^d \omega}\right) \geq \frac{1}{2} H(\sigma_\omega F_{\tilde{h}}).
\]

We have

\[
(4) \quad H\left(\tau_\omega(F)_{u_d = S^d \omega}\right) \leq (\delta + 1)^c \|P\|_\omega.
\]
The derivation of (2) with respect to \(u_d \) gives

\[
F^\delta_h = a \sum_{\ell=1}^{\delta} \prod_{m \neq \ell} \theta_{\ell} u_d
\]

by the continuity of \(\| \| \omega \) in \(\omega \), we can assume \(\tau_{\omega} a \neq 0 \). We extend \(\tau_{\omega} \) to a homomorphism \(\tau_{\omega} : \mathbb{C}[u_1, \ldots, u_d] \rightarrow \mathbb{C} \) (see B, p. 7). Thus

\[
\tau_{\omega}(F)|_{u_d = S^d_{\omega}} = \tau_{\omega} a \prod_{\ell=1}^{\delta} \tau_{\omega} \theta_{\ell} S^d_{\omega}
\]

(6)

\[
\tau_{\omega}(F^\delta_h)|_{u_d = S^d_{\omega}} = \tau_{\omega} a \sum_{\ell=1}^{\delta} \prod_{m \neq \ell} \tau_{\omega} \theta_{\ell} S^d_{\omega}
\]

(7)

Let us suppose

\[
H(\tau_{\omega} \theta_{1} S^d_{\omega}) \leq \cdots \leq H(\tau_{\omega} \theta_{\delta} S^d_{\omega}).
\]

Using Gel'fond's inequality, (6), (7) and (8) give

\[
H(\tau_{\omega}(F)|_{u_d = S^d_{\omega}}) \geq (\delta + 1)^{c_0} H(\tau_{\omega}(F^\delta_h)|_{u_d = S^d_{\omega}}) H(\tau_{\omega} \bar{\theta} S^d_{\omega})
\]

(9)

where \(\bar{\theta} = \theta_1 \). Combining (1), (3), (4) and (9) we obtain

\[
\max_{0 \leq i, j \leq n} |\tilde{\theta}_j \omega_j - \tilde{\theta}_j \omega_i| = H(\tau_{\omega} \bar{\theta} S^d_{\omega}) \leq ||P||_{\omega} \exp(\frac{3}{2} c_1 t(P)^{d+1})
\]

(10)

In particular \(|\tilde{\theta}_0 \omega_1 - 1| \leq \frac{1}{2} \), thus \(\bar{\theta} \geq c_6 \). Let \(\theta_i = \tilde{\theta}_i / \tilde{\theta}_0 \). \(\theta \in V, \theta_0 = 1 \) and

\[
|\theta - \omega| \leq ||P||_{\omega} \exp(2c_1 t(P)^{d+1})
\]

Theorem 1.1 is proved. \(\square \)

Proof of Theorem 0.4. — Let \(I \) be any proper unmixed ideal \(I \in \mathbb{Z}[x_1, \ldots, x_n] \) with \(I \cap \mathbb{Z} = \{0\} \), \(\text{rank} I = n - D \) and \(V_{P(C^n)}(hI) \) smooth. Using proposition 2 of [N], we can find a prime ideal \(P \) of \(hI \) such that \(||P||_{\omega}^{1/t(P)} \leq ||hI||_{\omega}^{c_1/t(I)} \). \(V_{P(C^n)}(P) \) is smooth and we apply Theorem 1.1 : if \(||hI||_{\omega} < \exp(-c_8 t(I)^D) \), there exists \(\theta \in V_{P(C^n)}(P) \) such that

\[
|\theta - \omega| \leq ||P||_{\omega}^{1/2}
\]

Without any restriction, we may assume \(\theta_1, \ldots, \theta_D \) algebraically independent over \(\mathbb{Q} \) and \(\theta_j \) algebraic over \(K = \mathbb{Q}(\theta_1, \ldots , \theta_D) \). For the size of \(\theta_j \) we find

\[
t_K(\theta_j) \leq c_9 t(P)
\]
Thus
\[\|hI\|_\omega > e^{-\varphi_D(c_{10}t(I))} \]
and Theorem 0.4 is proved with \(A_8 = \max(c_8, c_{10})\).

Proof of Theorem 0.5. — Let \(I\) be any proper unmixed ideal \(I \in \mathbb{Z}[x_1, \ldots, x_n]\) with \(I \cap \mathbb{Z} = \{0\}\), rank \(I = n - D\). Let us assume \(\|hI\|_\omega < \exp(-c_{11}t(I)^{d+1})\). Using Proposition 2 of [N], we can find a prime ideal \(P\) of \(hI\) such that \(\|P\|_{\omega}^{t(P)} \leq \|hI\|_{\omega}^{c_{12}/t(I)}\). Let \(F\) be the Chow form of \(P\). Now we follow the pattern of the proof of Theorem 1.1.

Case 1. — \(\max_{0 \leq h \leq n} H(\sigma_\omega F_h) \geq \|P\|_{\omega}^{2/3}\). Then there exists \(\theta \in \mathbb{V}\) with \(\theta_0 = 1\) such that \(|\theta - \omega| \geq \|P\|_{\omega}^{1/2}\) and we find \(\|hI\|_\omega \geq \exp(-\varphi_D(c_{13}t(I)))\).

Case 2. — \(\max_{0 \leq h \leq n} H(\sigma_\omega F_h) < \|P\|_{\omega}^{2/3}\). \(\dim \operatorname{Sing} \mathbb{V} < D\), thus there exist \(\widetilde{M}, \tilde{h}\) such that \(f_{\widetilde{M}\tilde{h}} \notin P\) and \(J\) be the ideal associated with \(G\). We have
\[
\begin{align*}
\operatorname{rank} J &= n - D + 1; \quad t(J) \leq c_{14}t(P)^2; \\
\|J\|_\omega &\leq c_{14}t(P)^2 \max(\|P\|_\omega, |f_{\widetilde{M}\tilde{h}}(\omega)||\omega|^{-d+1}).
\end{align*}
\]
Using Proposition 2 of [N], we can find a prime ideal \(Q\) of \(J\) such that
\[\|Q\|_{\omega}^{t(Q)} \leq \|P\|_{\omega}^{c_{15}/t(P)^2}. \]

Theorem 0.2 ensures the existence of \(\theta \in \mathbb{V}_{P(C^n)}(J)\) with \(\theta_0 = 1\) such that
\[|\theta - \omega| \leq \|P\|_{\omega}^{c_{16}/t(P)^2} \]
Thus
\[\|hI\|_\omega \geq \exp(-t(I)^2\varphi_D-1(c_{17}t(I)^2)). \]
Hence Theorem 0.5 is proved with \(a_9 = \max(c_{11}, c_{13}, c_{17})\).

Tome 117 — 1989 — N° 3
2. Inversion of polynomials

If we have some information on the generators of the ideal \(P \), we can improve the results of the last section.

Theorem 2.1. — Let \(\omega \) in \(\mathbb{C}^n \) and \(m \in \mathbb{N} \). There exists a positive constant \(c_{18} \) depending only on \(n, m \) and \(|\omega| \) with the following properties. Let \(Q_1, \ldots, Q_m \) be homogeneous polynomials in \(\mathbb{Z}[x_0, \ldots, x_n] \) with \(P = (Q_1, \ldots, Q_m) \) prime of rank \(k \). If \(V = V_{P(C^n)}(P) \) is a smooth variety and \(\max_{1 \leq i \leq m} |Q_i(\omega)| < \exp(-c_{18} \max_{1 \leq i \leq m} t(Q_i)^{n+1}) \) then there exists \(\theta \in \mathbb{C}^{n+1} - \{0\} \) with \(\theta_0 = 1 \) and a projective variety \(W \supset V \) such that \(\theta \in W \), \(\dim_\theta W = \dim_\theta V = n - k \) and

\[
|\theta - \omega| \leq \left(\max_{1 \leq i \leq m} |Q_i(\omega)| \right)^{1/2}.
\]

In the proof of this theorem we use the following lemma in which we yield explicit bounds for the neighbourhoods which appear in Dini’s theorem:

Lemma 2.1. — Let \(\omega \) in \(\mathbb{C}^k \). There exists a positive constant \(c_{19} \) depending only on \(k \) and \(|\omega| \) with the following properties. Let \(R_1, \ldots, R_k \in \mathbb{C}[y_1, \ldots, y_k] \). Let \(T = \max_{1 \leq i \leq k} t(R_i) \), \(F = (R_1, \ldots, R_k) : \mathbb{C}^k \to \mathbb{C}^k \), \(\| \cdot \| \) the euclidean norm. Let us suppose:

\[
\det F^t F \geq c_{19} e^{2kT} \| F(\omega) \|^{1/2}.
\]

Then there exists \(\theta \in \mathbb{C}^k \) such that \(F(\theta) = 0 \) and

\[
|\theta - \omega| \leq \| F(\omega) \|^{1/2}.
\]

Proof. — Let

\[
K = B_{C^k}(\omega, k^{-1/4} \| F(\omega) \|^{1/2}), \quad M = dF(\omega),
\]

\[
\psi : K \to \mathbb{C}^k, \quad \psi(x) = x - M^{-1} F(x).
\]

For any \(x \in K \) we have:

\[
\| d\psi(x) \| \leq \| M^{-1} \| \| dF(\omega) - dF(x) \|
\]

\[
\leq c_{20} e^{kT} \| \det M \|^{-1} c_{21} e^{kT} |x - \omega|
\]

\[
\leq \frac{1}{2}.
\]
Thus, for any x in K

$$|\psi(x) - \omega| \leq |\psi(x) - \psi(\omega)| + |\psi(\omega) - \omega| \leq k^{-1/4}\|F(\omega)\|^{1/2}.$$

Hence ψ is a contraction from K to K and we can find a fixed point θ which satisfies our requirements. \[
\]

Proof of Theorem 2.1. — Let us denote by T the maximum of the size of the polynomials Q_i. Let M_1, \ldots, M_t the determinants of the $k \times k$ minors of the jacobian matrix $(\partial Q_i/\partial x_j)_{1 \leq i \leq m, 0 \leq j \leq n}$. V is smooth, thus the ideal $(Q_1, \ldots, Q_m, M_1, \ldots, M_t)$ has rank $n + 1$. We apply theorem 13 of [P1]: there exists $\ell, 1 \leq \ell \leq t$ such that

$$|M_{\ell}(\omega)| \geq \exp(-c_{22}T^{n+1}).$$

Using Euler's formula we may assume $\partial/\partial x_0$ do not appear in M_{ℓ}. Hence we may suppose

$$M_{\ell} = \text{Det}\left(\frac{\partial Q_i}{\partial x_j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}.$$

Let $R_i(y_1, \ldots, y_k) = Q_i(1, y_1, \ldots, y_k, \omega_{k+1}, \ldots, \omega_n)$, $i = 1, \ldots, k$. We apply **Lemma 2.1**: there exists $\bar{\theta} \in C^k$ such that $R_i(\bar{\theta}) = 0$ ($i = 1, \ldots, k$) and $|\bar{\theta} - \tilde{\omega}| \leq (\max_{1 \leq i \leq k} |R_i(\tilde{\omega})|^{1/2}$, where $\tilde{\omega} = (\omega_1, \ldots, \omega_k)$. Let $\theta = (1, \bar{\theta}_1, \ldots, \bar{\theta}_k, \omega_{k+1}, \ldots, \omega_n)$. We have:

$$|\theta - \omega| \leq \left(\max_{1 \leq i \leq k} |R_i(\tilde{\omega})|\right)^{1/2}.$$

Let $W = \{Q_1 = \cdots = Q_k = 0\}$. $\theta \in W$ and inequalities (11) and (12) give:

$$\text{Det}\left(\frac{\partial Q_i}{\partial x_j}\right), 1 \leq i \leq k_{1 \leq j \leq k} \quad (\theta) \neq 0.$$

Hence

$$\dim_\theta V \leq \dim_\theta W \leq \dim T_{W,\theta} \leq n - k = \dim_\theta V$$

where $T_{W,\theta}$ is the tangent space of W at θ. i) and ii) are proved. \[
\]
BIBLIOGRAPHY

