GAIL LETZTER
LEONID MAKAR-LIMANOV

Rings of differential operators over rational affine curves

<http://www.numdam.org/item?id=BSMF_1990__118_2_193_0>
RINGS OF DIFFERENTIAL OPERATORS OVER
RATIONAL AFFINE CURVES

BY
GAIL LETZTER, LEONID MAKAR-LIMANOV (*)

1. Introduction

Let X and Y be irreducible algebraic curves over the complex numbers, \mathbb{C}. Let $D(X)$ and $D(Y)$ denote their ring of differential operators, respectively. (For definition see [9]). This paper is motivated by the following open question.† Does $D(X) \cong D(Y)$ imply that $X \cong Y$? Let \tilde{X} denote

(*) Supported by a grant from the National Science Foundation. Texte reçu le 29 juin 1989, révisé le 11 mai 1990.
G. LETZTER, L. MAKAR-LIMANOV, Dept. of. Mathematics, Wayne State University, Detroit, Michigan 48202, USA
† G. LETZTER has now found nonisomorphic curves X and Y with isomorphic rings of differential operators (see [4]).

BULLETIN DE LA SOCIÉTÉ MATHEMATIQUE DE FRANCE 0037–9484/1990/193/$ 5.00
© Société mathématique de France
the normalization of X. MAKAR–LIMANOV [5] shows that the set of ad-nilpotent elements $N(X)$ is exactly $O(X)$ whenever $O(X)$ is not a subring of a polynomial ring in one variable over C. He thus answers the question affirmatively for these curves. Let \mathbb{A}^1 denote the affine line. PERKINS [8] extends this result showing that $D(X) \cong D(Y)$ implies $X \cong Y$ whenever $\tilde{X} \neq \mathbb{A}^1$, or $\tilde{X} = \mathbb{A}^1$ but the normalization map $\pi : \tilde{X} \to X$ is not injective. Thus, in the paper, we are interested in curves X such that $\tilde{X} \cong \mathbb{A}^1$ and $\pi : \tilde{X} \to X$ is injective. STAFFORD [10] shows the conjecture holds the following two examples of such curves: when X is the affine line \mathbb{A}^1, or when X is the cubic cusp $y^2 = x^3$.

For the remainder of the paper, assume that X is a curve such that its normalization is isomorphic to the affine line \mathbb{A}^1 with an injective normalization map. We may therefore assume that the coordinate ring of X, denoted $O(X)$, is a subring of a polynomial ring in one variable $C[x]$ such that the integral closure of $O(X)$, written $\widetilde{O(X)}$, is equal to $C[x]$. Furthermore $D(X)$ is a subring of $C(x)[\partial]$ where $[\partial, x] = 1$. Here ∂ is just $\partial/\partial x$ and the element $f_n(x)\partial^n + \cdots + f_0(x)$ of $D(X)$ sends $g(x) \in O(X)$ to $f_n(x)g^{(n)}(x) + \cdots + f_0(x)g(x)$ where $g^{(n)}(x)$ denotes the nth derivative of $g(x)$.

PERKINS studies rings that satisfy these conditions in [8]. He shows that in many cases, $D(X)$ contains maximal commutative ad-nilpotent subalgebras not isomorphic to $O(X)$. Thus, for these curves, the set $N(X)$ of ad-nilpotent elements does not determine $O(X)$.

In this paper, we obtain an invariant for $D(X)$ and a nice description of the maximal ad-nilpotent subalgebras of $D(X)$. Set $T = C(x)[\partial]$ and set ∂-deg $w = n$ where $w = f_n(x)\partial^n + \cdots + f_0(x)$ is an element of T. Define a filtration on T by $T_i = \{w \in T \mid \partial$-deg $w \leq i\}$ and hence on any subring R of T by $R_i = R \cap T_i$. (Note that this is the same filtration on $D(X)$ as the one defined by the order of the differential operator.) We may form the associated graded ring ∂-gr $R = \bigoplus R_i/R_{i-1}$. We define $\text{codim} R$ to be equal to $\dim_C \partial$-gr $C[x, \partial]/\partial$-gr R for those subrings R of T such that ∂-gr $R \subset \partial$-gr $C[x, \partial]$.

Now assume that both X and Y are affine curves with normalization equal to the affine line and injective normalization map. By [9], both ∂-gr $D(X)$ and ∂-gr $D(Y)$ are subrings of ∂-gr $C[x, \partial]$ and $\text{codim} D(X)$ and $\text{codim} D(Y)$ are finite numbers.

Our main results are:

Theorem. — Suppose that B is a maximal ad-nilpotent subalgebra of $D(X)$. Then there exists elements x' and ∂' in the quotient field of
C(x)[\partial] such that [\partial', x'] = 1, D(X) is a subring of C(x')[\partial'], D(X) \cap C(x') = B, and the integral closure of B is C[x']. Furthermore, \partial'-gr D(X) is a subring of \partial'-gr C[x', \partial'] and

\dim_X \partial'-gr C[x', \partial']/\partial'-gr D(X) = \text{codim} D(X).

Corollary. — If D(X) \cong D(Y), then \text{codim} D(X) = \text{codim} D(Y).

This result permits one to distinguish many rings of differential operators. For example, set O(X_n) = C + \sum C^k. Then it will follow from the **Corollary**, that D(X_n) \cong D(X_m) implies that n = m.

2. Graded Algebras of D(X)

In this section, \alpha and \beta are nonnegative real numbers with \alpha + \beta > 0. Define valuations V_{\alpha, \beta} on C(x)[\partial] as follows. Set

V_{\alpha, \beta}\left(w_0(x)\partial^n + w_{n-1}(x)\partial^{n-1} + \cdots + w_0(x)\right)

equal to \max\{\alpha d_m + \beta m \mid n \geq m \geq 0\} where d_m = \text{deg}(w_n(x)).

This extends the notion of valuations introduced by Dixmier in [2] for the Weyl algebra. For each valuation V_{\alpha, \beta} we may define a filtration of C(x)[\partial], and hence on any subring R of C(x)[\partial] as follows. Recall that T = C(x)[\partial]. Set T_i = \{z \in T \mid V_{\alpha, \beta}(z) \leq i\} and R_i = R \cap T_i. We may then define the associated graded algebra gr_{\alpha, \beta} R = \bigoplus R_i/R_{i-1}.

Now the commutator [x^i\partial^j, x^k\partial^\ell] = (kj - il)x^{i+k-1}\partial^{j+\ell-1} + \text{terms with x-degree less than } i + k - 1 \text{ and } \partial\text{-degree less than } j + \ell - 1. \text{ Therefore } V_{\alpha, \beta}([x^i\partial^j, x^k\partial^\ell]) < \alpha(i + k) + \beta(\ell + j). \text{ It follows that } gr_{\alpha, \beta}(C(x)[\partial]) \text{ is a commutative algebra.}

Note that when \alpha = 0 and \beta is positive, then the filtration defined by V_{0, \beta} on D(X) is the same filtration on D(X) as the one defined by \partial\text{-deg in the introduction. We will write } \partial\text{-gr } D(X) \text{ for } gr_{0, \beta} D(X) \text{ and } \partial\text{-deg for } V_{0, \beta}. \text{ Similarly, when } \beta = 0 \text{ and } \alpha \text{ is positive the graded algebra determined by } V_{\alpha, 0} \text{ is the same as } x\text{-gr } R \text{ determined by } x\text{-deg defined in [8].}

Set gr_{\alpha, \beta} x = x \text{ and } gr_{\alpha, \beta} \partial = y. \text{ Since } D(\tilde{X}) \text{ is just the first Weyl algebra, } A_1, \text{ we have that } \partial\text{-gr } D(\tilde{X}) = C[x, y] \text{ where } \partial\text{-gr } x = x \text{ and } \partial\text{-gr } \partial = y. \text{ By [9, Proposition 3.11], it follows that } \partial\text{-gr } D(X) \text{ is a subring of } C[x, y] \text{ and by [8, Lemma 2.3], } x\text{-gr } D(X) \text{ is also a subring of } C[x, y]. \text{ In the following lemma, we extend this to other gradings.}

Lemma 2.1. — Let R be a subring of C(x)[\partial] such that \partial\text{-gr } R \subset C[x, y]. Then the graded algebra gr_{\alpha, \beta} R is a subring of C[x, y].
Proof. — If $\alpha = 0$ then $\text{gr}_{\alpha, \beta} R = \partial - \text{gr} R$. So we may assume that α is positive. Let w be a typical element of $D(X)$. Write $w = g_m(x) \partial^m + \cdots + g_0(x)$ where $g_i(x) \in C(x)$ for $0 \leq i \leq m$. Set degree of $g_i(x)$ equal to d_i for $0 \leq i \leq m$. Since $\partial - \text{gr} R \subset C[x, y]$, it follows that $g_m(x) \subset C[x]$ and thus $d_m \geq 0$. Set $N = V_{\alpha, \beta}(w)$. By the definition of $V_{\alpha, \beta}$, it follows that $N = \max \{d_i \alpha + i \beta \mid 0 \leq i \leq m \}$. Hence $\text{gr}_{\alpha, \beta}(w) = \sum_{0 \leq s \leq m} \gamma_s x^{d_s} y^s$ where $\gamma_s = 0$ if $V_{\alpha, \beta}(x^{d} \partial^s) < N$, and $\gamma_s x^{d_s}$ is the leading term of $g_s(x)$ if $V_{\alpha, \beta}(x^{d} \partial^s) = N$. We need to show that whenever $\gamma_s \neq 0$, we have $x^{d_s} y^s \in C[x, y]$. In particular, since $0 \leq s \leq m$, we need to show that $d_s \geq 0$ whenever $\gamma_s \neq 0$. Now $N = V_{\alpha, \beta}(w) = V_{\alpha, \beta}(g_m(x) \partial^m) = d_m \alpha + m \beta$. Hence $d_s \alpha + s \beta \geq d_m \alpha + m \beta$. Recall that $m \geq s, d_m \geq 0$, and that α is positive. It follows that $d_s \geq d_m \geq 0$. The lemma now follows.

Define a linear map $\phi : C(x)[\partial] \to C[x, \partial]$ as follows. Suppose that $w = g_m(x) \partial^m + \cdots + g_0(x)$ is an element of $C(x)[\partial]$. For each i such that $1 \leq i \leq m$, there exists a unique polynomial $f_i(x)$ such that $\deg(g_i(x) - f_i(x)) < 0$. Set

$$\phi(w) = f_m(x) \partial^m + \cdots + f_0(x).$$

Now consider two rational functions $g_1(x)$ and $g_2(x)$ such that $\phi(g_1(x)) = f_1(x)$ and $\phi(g_2(x)) = f_2(x)$. Then clearly

$$\deg\left(\lambda_1 g_1(x) + \lambda_2 g_2(x) - (\lambda_1 f_1(x) + \lambda_2 f_2(x))\right) < 0 \quad \text{and} \quad \phi(\lambda_1 g_1(x) + \lambda_2 g_2(x)) = \lambda_1 f_1(x) + \lambda_2 f_2(x).$$

It follows that ϕ is a well defined linear map from $C(x)[\partial]$ to $C[x, \partial]$.

Corollary 2.2. — Let R be a subring of $C(x)[\partial]$ such that $\partial - \text{gr} R \subset C[x, y]$. If w is an element of R, then $\text{gr}_{\alpha, \beta} \phi(w) = \text{gr}_{\alpha, \beta}(w)$.

Proof. — This is clear since $\text{gr}_{\alpha, \beta}(w - \phi(w))$ does not contain any monomials $x^{d_s} y^s$ with $d_s \geq 0$.

Remark 2.3. — Note that $\phi(R)$ is a linear subspace of the first Weyl algebra $A_1 = C[x, \partial]$, but, generally speaking, is not a subalgebra. Nevertheless α, β gradings are defined on $\phi(R)$ and $\text{gr}_{\alpha, \beta} \phi(R) = \text{gr}_{\alpha, \beta} R$. Now

$$\dim C[x, y]/\partial - \text{gr} D(X) < \infty \quad ([9, \text{3.12}]) \quad \text{and} \quad \dim C[x, y]/x - \text{gr} D(X) < \infty \quad ([8, \text{Lemma 2.5}])$$

In the next proposition, we will show that these two finite numbers are equal. We will later show that this codimension is an invariant for $D(X)$.

TOME 118 — 1990 — N° 2
Proposition 2.4. — Suppose that R is a subring of $\mathbb{C}(x)[\partial]$ such that
∂-$\text{gr } R \subseteq \mathbb{C}[x,y]$ and $\dim_{\mathbb{C}} \mathbb{C}[x,y]/\partial$-$\text{gr } R < \infty$. Then $\text{gr}_{\alpha,\beta} R$ is a subring of $\mathbb{C}[x,y]$ and $\dim_{\mathbb{C}} \mathbb{C}[x,y]/\text{gr}_{\alpha,\beta} R = \dim_{\mathbb{C}} \mathbb{C}[x,y]/\partial$-$\text{gr } R$.

Using Corollary 2.2 and Remark 2.3, we may replace R by $\phi(R)$ and prove the following.

Proposition 2.4'. — Suppose that R' is a linear subspace of the Weyl algebra $\mathbb{C}[x,\partial]$ and that $\dim_{\mathbb{C}} \mathbb{C}[x,y]/\partial$-$\text{gr } R' < \infty$. Then $\text{gr}_{\alpha,\beta} R'$ is a linear subspace of $\mathbb{C}[x,y]$ and $\dim_{\mathbb{C}} \mathbb{C}[x,y]/\text{gr}_{\alpha,\beta} R' = \dim_{\mathbb{C}} \mathbb{C}[x,y]/\partial$-$\text{gr } R'$.

Before proving Proposition 2.4', we need some additional notation and lemmas. Set, for $i \geq 0$,

$$E_i = \mathbb{C}[x] + \mathbb{C}[x]y + \cdots + \mathbb{C}[x]y^i$$
and
$$B_i = \{ w \in R' | \partial$-$\text{gr } w \in E_i \}.$$

Note that $\bigcup_{i \geq 0} B_i = R'$. Set $E = \bigcup_{i \geq 0} E_i = \mathbb{C}[x,y]$.

In Proposition 2.4', we assume that $\dim_{\mathbb{C}} E/\partial$-$\text{gr } R' < \infty$. Since ∂-$\text{gr } w \in E_i$ if and only if $w \in B_i$ for any $w \in R'$, it follows that $\dim_{\mathbb{C}} E_i/\partial$-$\text{gr } B_i < \infty$ for all $i \geq 0$, and that there exists an $N > 0$ such that $\dim_{\mathbb{C}} E_i/\partial$-$\text{gr } B_i = \dim_{\mathbb{C}} E/\partial$-$\text{gr } R'$ for all $i \geq N$. Hence for each $i \geq 0$, there exists an integer $M_i \geq -1$ such that for each $m > M_i$ there exists a monic polynomial $p_{i,m}(x)$ of degree m in $\mathbb{C}[x]$ such that $p_{i,m}(x)y^i$ is an element of ∂-$\text{gr } B_i$. Furthermore, for $i \geq N$, we may assume that $M_i = -1$.

We have the following lemmas.

Lemma 2.5

Suppose that R' satisfies the conditions of Proposition 2.4'. Suppose that $w = (ax^d + f_{i+1}(x))\partial^{i+1} + \cdots + f_0(x)$ is an element of B_{i+1} where $\alpha \in \mathbb{C} \setminus \{0\}$ and $\deg f_{i+1}(x) < d$. Then there exists a $w' \in B_{i+1}$ such that $w' = (ax^d + g_{i+1}(x))\partial^{i+1} + g_i(x)\partial^i + \cdots + g_0(x)$ and $\deg g_k(x) \leq M_k$ for each k such that $i + 1 \geq k \geq 0$.

Proof. — Let us use the following induction. Set $w_{-1} = w$. Suppose that

$$w_k = (ax^d + g_{i+1}(x))\partial^{i+1} + \cdots + g_{i-k}(x)\partial^{i-k} + f_{i-k-1}(x)\partial^{i-k-1} + \cdots + f_0(x),$$

where $\deg g_j(x) \leq M_j$, is defined. There exists $b \in B_{i-k-1}$ such that ∂-$\text{gr } b = (f_{i-k-1} - g_{i-k-1})y^{i-k-1}$ where $\deg g_{i-k-1} \leq M_{i-k-1}$ by the
paragraph preceding the lemma. So we can define w_{k+1} as $w_k - b$, and w' as w_i.

Let P_i be the set of positive integers m such that there exists a nonzero polynomial $q_{i,m}(x)$ of degree m in $\mathbb{C}[x]$ with $q_{i,m}(x)y^i \in \partial\text{-gr} \mathcal{R}'$. Note that if n is an integer such that $n > M_i$, then $n \in P_i$. By Lemma 2.5, it now follows that for each $m \in P_i$ there exists a monic polynomial $p_{i,m}(x)$ of degree m in $\mathbb{C}[x]$ such that $b_{i,m} = p_{i,m}(x)\partial^i + g_{i-1}(x)\partial^{i-1} + \cdots + g_0(x)$ is an element of B_i with $\deg g_k(x) \leq M_k$ for $i - 1 \geq k \geq 0$. Furthermore, for $i \geq N$, we may assume that $p_{i,m}(x) = x^m$. Note that the set

$$\{b_{i,m} \mid i \geq 0 \text{ and } m \in P_i\}$$

forms a basis for R' over \mathbb{C}, and

$$\{p_{i,m}(x)y^i \mid i \geq 0 \text{ and } m \in P_i\}$$

forms a basis for $\partial\text{-gr} R'$ over \mathbb{C}. Thus if $w \in R'$, with $\partial\text{-gr} w = f(x)y^i$, then for $i > k \geq 0$, there exist $f_k(x) \in \mathbb{C}[x]$ with $\deg f_k(x) \leq M_k$, such that $f(x)\partial^i + f_{i-1}(x)\partial^{i-1} + \cdots + f_0(x)$ is an element of R'.

Set $M = \max\{M_k \mid N > k \geq 0\}$. Then we may assume that $b_{i,m} = p_{i,m}(x)\partial^i + w_{i,m}$ with $\deg w_{i,m} < \min(i, N)$ and $x\deg w_{i,m} \leq M$.

Lemma 2.6

Assume that R' satisfies the conditions of Proposition 2.4'. For each $m \geq 0$, there exists a positive integer S_m such that for all $i \geq S_m$, there is an element $c_{i,m}$ in R' of the form $p_{i,m}(x)\partial^i + t_{i,m}$ with $\deg p_{i,m}(x) = m$ and $\partial\deg t_{i,m} < i$ and $x\deg t_{i,m} \leq m$. If $m > M$ we may set $S_m = 0$.

Proof. — If $m > M$, then we may take $c_{i,m} = b_{i,m}$. So we may assume that $m \leq M$. Consider the subset $\{b_{i,m} = p_{i,m}(x)\partial^i + w_{i,m} \mid i \geq 0\}$ of R'. Let $E_{M,N} = \{r \in E \mid x\deg r \leq M \text{ and } y\deg r \leq N\}$, and let V be the vector space spanned by $\{w_{i,m} \mid i \geq 0\}$. Set $W = \{x\text{-gr} w \mid w \in V\} \cap E$. Note that W is a subspace of $E_{M,N}$. It is clear that $E_{M,N}$ and hence W is a finite dimensional subspace of E. So there is an $S_m > 0$ such that W is spanned by a subset of

$$\{x\text{-gr} w \mid w \text{ is in the span of the set } \{w_{i,m} \mid S_m \geq i \geq 0\}\}.$$

It follows that for $i > S_m$, there exist complex numbers $\alpha_{k,m}$ for $S_m \geq k \geq 0$ such that

$$x\deg\left(w_{i,m} - \sum_{k=0}^{S_m} \alpha_{k,m} w_{k,m}\right) < 0$$

and

$$\partial\deg\left(w_{i,m} - \sum_{k=0}^{S_m} \alpha_{k,m} w_{k,m}\right) < 0.$$
We may now set $c_{i,m} = b_{i,m} - \sum_{k=0}^{S_m} \alpha_{k,m} b_{k,m}$.

The next corollary follows immediately from Lemma 2.6.

Corollary 2.7. — We have $\dim_{\mathbb{C}} C[x,y]/x\cdot \text{gr } R' < \infty$.

Lemma 2.8

Let W be a linear subspace of A_1. Then $\dim_{\mathbb{C}} W = \dim_{\mathbb{C}} \text{gr}_{\alpha,\beta} W$.

Proof. — Suppose that W is a vector space and that

$$\{W_i \mid i \text{ is an integer} \}$$

is a filtration for W such that the vector spaces $W_i = 0$ for $i < 0$ and $W = \bigcup_{i \geq 0} W_i$. Then clearly W and $\bigoplus W_i/W_{i-1}$ are isomorphic as vector spaces. Hence $\dim_{\mathbb{C}} W = \dim_{\mathbb{C}} \bigoplus W_i/W_{i-1}$. In particular if W is a linear subspace of A_1, then $\dim_{\mathbb{C}} W = \dim_{\mathbb{C}} \text{gr}_{\alpha,\beta} W$.

We are now ready to prove Proposition 2.4'.

Proof of Proposition 2.4'. — Note that R' is a linear subspace of $\mathbb{C}[x,\partial]$. Hence, it follows from the definition of $\text{gr}_{\alpha,\beta} R'$ that $\text{gr}_{\alpha,\beta} R'$ is a linear subspace of $\text{gr}_{\alpha,\beta} \mathbb{C}[x,\partial]$. Thus we only need to prove the statement about dimensions.

Set $V_n = \{x^i y^j \mid \alpha i + \beta j \leq n \}$ for all $n \geq 0$. Note that each V_n has finite dimension and that $\bigcup_{n \geq 0} V_n = \mathbb{C}[x,y]$. Set $W_n = \{w \in R' \mid \text{gr}_{\alpha,\beta} w \in V_n \}$.

Since $\text{gr}_{\alpha,\beta} R' \subseteq \mathbb{C}[x,y]$, we have that $\bigcup_{n \geq 0} W_n = R'$. Suppose that $w \in W_n$. We can write $w = p(x)\partial^k + c$ for some $p(x) \in \mathbb{C}[x]$ and $k \geq 0$ such that $\partial\cdot \deg(c) < k$ and $\alpha \deg p(x) + \beta k \leq n$. So $\partial\cdot \text{gr } w = p(x)y^k$ is also in V_n. Thus $\partial\cdot \text{gr } W_n \subseteq V_n$ for all $n \geq 0$.

Set $L = \alpha M + \beta N$. We will show that $\partial\cdot \text{gr } W_n = \partial\cdot \text{gr } R' \cap V_n$ for all $n \geq L$. Since $\partial\cdot \text{gr } W_n \subseteq V_n$, it is clear that $\partial\cdot \text{gr } W_n \subseteq \partial\cdot \text{gr } R' \cap V_n$. Suppose $\partial\cdot \text{gr } w = p(x)y^j$ is an element of $\partial\cdot \text{gr } R' \cap V_n$. So $\alpha \deg p(x) + \beta j \leq n$. By Lemma 2.5, we may find in R' an element $w = p(x)\partial^j + g_N(x)\partial^N + \cdots + g_0(x)$ and $\deg g_k(x) \leq M_k$ for each k such that $N \geq k \geq 0$. Now

$$V_{\alpha,\beta}(g_N(x)\partial^N + \cdots + g_0(x)) \leq \alpha M + \beta N = L.$$

Hence $V_{\alpha,\beta}(w) \leq \max\{\alpha \deg p(x) + \beta j, L\}$. If $\alpha \deg p(x) + \beta j > L$, then $V_{\alpha,\beta}(w) = \alpha \deg p(x) + \beta j \leq n$ since $p(x)y^j$ is an element of V_n. Hence $w \in W_n$. If $\alpha \deg p(x) + \beta j \leq L$, then $V_{\alpha,\beta}(w) \leq L \leq n$, hence again $w \in W_n$. Therefore $\partial\cdot \text{gr } W_n = \partial\cdot \text{gr } R' \cap V_n$ for all $n \geq L$.

Since W_n is a linear subspace of $\mathbb{C}[x,\partial]$, by Lemma 2.8, we have that

$$\dim_{\mathbb{C}} W_n = \dim_{\mathbb{C}} \partial\cdot \text{gr } W_n$$

and

$$\dim_{\mathbb{C}} W_n = \dim_{\mathbb{C}} \text{gr}_{\alpha,\beta} W_n.$$
Furthermore, for all \(n \geq L \), we have that \(\dim_{\mathbb{C}} \partial \text{-} \text{gr} \ R' \cap V_n = \dim_{\mathbb{C}} W_n = \dim_{\mathbb{C}} \text{gr}_{\alpha, \beta} W_n \). Since \(\dim_{\mathbb{C}} V_n \) is finite, it follows that \(\dim_{\mathbb{C}} V_n / \partial \text{-} \text{gr} \ R' \cap V_n = \dim_{\mathbb{C}} V_n / \text{gr}_{\alpha, \beta} W_n \) for all \(n \geq L \). Clearly

\[
\lim_{n \to \infty} \dim_{\mathbb{C}} V_n / \partial \text{-} \text{gr} \ R' \cap V_n = \dim_{\mathbb{C}} W_n = \dim_{\mathbb{C}} \text{gr}_{\alpha, \beta} W_n.
\]

Therefore \(\dim_{\mathbb{C}} C[x, y] / \partial \text{-} \text{gr} \ R' = \dim_{\mathbb{C}} C[x, y] / \text{gr}_{\alpha, \beta} R' \).

By Corollary 2.7, we have that \(\dim_{\mathbb{C}} C[x, y] / x \text{-} \text{gr} \ R' < \infty \). So we may apply the first part of the proof with \(x \) replaced by \(\partial \) and vice versa to show that \(\dim_{\mathbb{C}} C[x, y] / x \text{-} \text{gr} \ R' = \dim_{\mathbb{C}} C[x, y] / \text{gr}_{\alpha, \beta} R' \) which completes the proof of Proposition 2.4 and therefore of Proposition 2.4.

Recall that codim \(R \) is defined to be \(\dim_{\mathbb{C}} C[x, y] / \partial \text{-} \text{gr} R \). Proposition 2.4 implies that codim \(R = \dim_{\mathbb{C}} C[x, y] / \text{gr}_{\alpha, \beta} R \) for any two nonnegative not both zero real numbers \(\alpha \) and \(\beta \). We will eventually show that codim \(R \) is an invariant of \(R \).

3. Ad-Nilpotent subalgebras of \(D(X) \)

Suppose that \(D(X) \cong D(Y) \). Then \(D(X) \) contains a maximal commutative ad-nilpotent subalgebra isomorphic to \(O(Y) \). So it is interesting to understand the maximal commutative ad-nilpotent subalgebras of \(D(X) \). Let \(D \) denote the quotient field of the first Weyl algebra, \(A_1 \). In this section, we show that if \(B \) is a maximal commutative ad-nilpotent subalgebra of \(D(X) \), then there exists an element \(b \in D \) such that \(B \) is a subring of \(\mathbb{C}[b] \).

Lemma 3.1. — Suppose that \(R \) is a subalgebra of \(D \) so that the quotient ring of \(R \) is \(D \), and that \(u \) is an element of \(D - \mathbb{C} \) that acts ad-nilpotently on \(R \). Then there exists a \(v \in D \) such that \([u, v] = 1\). Furthermore, for any \(v \in D \) such that \([u, v] = 1\), we have \(R \subseteq C_D(u)[v] \) where \(C_D(u) \) denotes the centralizer of \(u \) in \(D \).

Proof. — Define \(R_0 = C_D(u) \) and \(R_i = \{ z \in D \mid [z, u] \in R_{i-1} \} \).

Now \(R \subseteq \bigcup_{i \geq 0} R_i \) since \(u \) acts ad-nilpotently on \(R \). Let \(a \) be a nonzero element of \(R_1 - R_0 \). (Note that \(R_1 - R_0 \) is nonempty since \(u \notin \mathbb{C} \) and \(\mathbb{C} \) is the center of \(R \).) Then \(0 \neq [u, a] = b \in R_0 \). So \([u, b^{-1}a] = b^{-1}[u, a] = 1\). Set \(v = b^{-1}a \).

Clearly \(R_0 \subseteq C_D(u) \). We will show by induction on \(i \) that

\[
R_i \subseteq C_D(u)v^i + \cdots + C_D(u) \quad \text{for all} \ i \geq 0.
\]
Assume that $R_{i-1} \subset C_D(u) v_i^{-1} + \cdots + C_D(u)$ and choose $z \in R_i$. Then $[z, u] \in R_{i-1}$, hence $[z, u] = \sum_{0 \leq m \leq i-1} f_m(u) v^m$. Then

$$[z - \sum_{0 \leq m \leq i-1} f_m(u) m!^{-1}] = 0.$$

Hence $z - \sum_{0 \leq m \leq i-1} f_m(u) m!^{-1} = 0 \in \mathbb{C}(u)$. Therefore

$$z \in C_D(u) v^i + \cdots + C_D(u).$$

We may define the graded algebra $v\text{-gr} C_D(u)[v]$ by setting $v\text{-gr} a = u_i w^i$ where $a = u_i v^i + \cdots + u_0$ is an element of $C_D(u)[v]$ with $u_k \in C_D(u)$ for $i \geq k \geq 0$.

We will show that $C_D(u)$ is in fact a rational function field in one variable.

The next lemma is well known. See for example [3, Corollary 3.2].

Lemma 3.2. — If $f \in D - \mathbb{C}$ then $C_D(f)$ is commutative.

Lemma 3.3. — If $u \in D$ acts ad-nilpotently on R, where R is a subalgebra of D such that the quotient ring of R is D, then there exists $z \in D$ such that $C_D(u)$ is isomorphic to a rational function field $\mathbb{C}(z)$.

Proof. — Let us call an element $a \in D$ ad-nilpotent if it acts ad-nilpotently on some subalgebra $R(a)$ of D such that the quotient ring of $R(a)$ is D. By Lemma 3.1, there exists an element $v \in D$ such that $[v, u] = 1$ and $D = C_D(u)(v)$.

We will first assume that there exists an ad-nilpotent element a of D with $v\text{-deg} a \neq 0$. Now for each element $c \in C_D(u)$, there exists elements $c_1 = c_1(c)$ and $c_2 = c_2(c)$ in $R(a)$ such that $c = c_1 c_2^{-1}$. It is clear that $v\text{-gr} a$ acts nilpotently by Poisson bracket action on $v\text{-gr} c_1$ and $v\text{-gr} c_2$. Let $v\text{-gr} a = a_0 w^n$, $v\text{-gr} c_1 = c_1 w^m$, and $v\text{-gr} c_2 = c_2 w^m$. (Since $c \in C_D(u)$, it is clear that $v\text{-deg} c_1 = v\text{-deg} c_2$.)

By the same arguments as in [5, Lemma 7], there exists an element b in the algebraic closure of $C_D(u)$ such that $c_1 w^m = (a_0 w^n)^m/n p_1(b)$ and $c_2 w^m = (a_0 w^n)^m/n p_2(b)$ where $p_1(b)$ and $p_2(b)$ are polynomials.

Since $v\text{-deg} c = 0$, we have that $c = c_1 c_2^{-1} = c_1 c_2^{-1} = p_1(b)(p_2(b))^{-1}$. Therefore $C_D(u) \subset C(b)$. By Luroth’s theorem, $C_D(u)$ is isomorphic to a field of rational functions in one variable.

Now assume that $v\text{-deg} a = 0$ for all ad-nilpotent elements. Consider the standard generators x and ∂ for D. These are ad-nilpotent elements of D since they act ad-nilpotently on $\mathbb{C}[x, \partial]$. Therefore $1 = [\partial, x]$ has negative v-degree which is impossible.
4. Codim is an invariant of $D(X)$

In this section $R = D(X)$ for a curve X satisfying the conditions of the introduction. Suppose that u and v are elements of D with commutator $[v, u] = 1$ such that $D(X) \subset C(u)[v]$ and v-gr $D(X)$ is a subring of the polynomial ring in two generators, $u = v$-gr u and $w = v$-gr v. We may define codim$_{u,v} D(X)$ as dim$_C C[u, w]/v$-gr $D(X)$. In this section, we will show that codim$_{u,v} D(X) = \text{codim} D(X)$. So codim does not depend on the embedding of $D(X)$ inside of $C(x)[\partial]$.

Note that u-gr $C[u, v]$ and v-gr $C[u, v]$ are isomorphic polynomial rings. We will identify these isomorphic rings and thus write u-gr $u = v$-gr $u = u$ and u-gr $v = v$-gr $v = w$.

Lemma 4.1. — Suppose that $R \subset C(u)[v] \subset D$, where $[v, u] = 1$, such that the quotient ring of R is D, the graded algebra v-gr R is a subset of $C[u, w]$, and codim$_{u,v} R$ is finite. Then there exist elements u' and v' of D such that u-gr $v' = w$ and u-gr $u' = -u$, the commutator $[u', v']$ is 1, and the ring R is a subring of $C(v')[u']$. Moreover, there is an isomorphism from u'-gr $C[u', v']$ to u-gr $C[u, v]$ which restricts to an isomorphism from the graded algebra u'-gr R to u-gr R, and codim$_{u',v'} R = \text{codim}_{u,v} R$.

Proof. — Define subalgebras R_i of R for $i \geq 0$ as follows:

$$R_i = \{ z \in R \mid u\text{-deg}(z) \leq i \}.$$

(The following argument is similar to [8, Theorem 2.7].) Now

$$u \text{-gr} [f(v)u^i, g(v)] = u \text{-gr} (-if(v)g'(v)u^{i-1}) \quad \text{for } i \geq 0.$$

Also u-gr R is a subset of $C[u, w]$ by Lemma 2.1. Hence, it is easy to see that R_0 is a maximal commutative ad-nilpotent subalgebra of R. Furthermore the map which sends z to u-gr z is an isomorphism of R_0 to u-gr $R_0 = u$-gr $R \cap C[w]$. By assumption, codim$_{u,v} R < \infty$, hence dim$_C C[w]/u$-gr $R_0 < \infty$. So the integral closure of u-gr R_0 is $C[w]$, and thus the integral closure of R_0 is $C[v']$ for some $v' \in D$ with u-gr $v' = w$ and $R_0 = R \cap C[v']$ for some $v' \in D$ with u-gr $v' = w$ and $R_0 = R \cap C[v']$. Note that u-gr $p(v') = p(w)$ for any polynomial $p(t) \in C[t]$.

By Lemma 3.3, $C_D(v')$ is a rational function field in one variable. Let us check that $C_D(v') = C(v')$. Let $f \in C_D(v')$. Then u-deg $f = 0$, because otherwise $[v', f] \neq 0$, and u-gr $f = r(w)$ where $r(w) \in C(w)$. Therefore $f = r(v') + f_1$ where u-deg $f_1 < 0$. But $f_1 \in C_D(u)$ and can not have a negative degree. Hence f_1 is 0. Now, according to Lemma 3.1, there exists a $u' \in D$ such that $[u', v'] = 1$ and $R \subset C(v')[w']$.

TOME 118 — 1990 — N° 2
Suppose that \(u - \text{gr} u' = f(w)u \). Since \(u - \text{gr} v' = w \), we must have \(u - \text{gr} [u', v'] = -i f(w)u^{i-1} \) unless \(i = 0 \). If \(i = 0 \), then either \([u', v'] = 0\) or \(u - \text{deg}[u', v'] < -1 \). Since \([u', v'] = 1\), it follows that \(i \neq 0 \). Hence \(-i f(w)u^{i-1}\) must equal 1. Therefore \(i = 1 \) and \(f(w) = -1 \) and \(u - \text{gr} u' = -u \).

Suppose that \(z \) is an element of \(R \subset C(v')[u'] \). We may write \(z = f(v')(u'^j + e) \) where \(u'^-\text{deg} e < j \), and \(f(v') \) is a polynomial, and \(j \geq 0 \). Since \(u - \text{deg} v' = 0 \) and \(u - \text{deg} u' = 1 \), we must have that \(u - \text{deg} e < j \) and \(u - \text{gr} z = u - \text{gr} f(v')(u'^j) \). Since \(u - \text{gr} f(v') = f(w) \) and \(u - \text{gr} u' = -u \), it follows that \(u - \text{gr} z = f(w)(-u)^j \). Hence the isomorphism from \(u - \text{gr} C[u', v'] \) to \(u - \text{gr} C[u, v] \) which sends \(u - \text{gr} u' \) to \(u - \text{gr} u' = -u \) and \(u - \text{gr} v' \) to \(u - \text{gr} v' = w \) restricts to an isomorphism from \(u - \text{gr} R \) to \(u - \text{gr} R \). Since \(\text{codim}_{u,v} R \) is finite, by Proposition 2.4, we have that \(\text{codim}_{u,v} R = \dim C[u, w]/u - \text{gr} R \). It follow immediately that \(\text{codim}_{u,v} R = \text{codim}_{v', u} R \).

For the next three lemmas, assume that \(R \) is a subring of \(C(u)[v] \subset D \), where \(u \) and \(v \) are elements of \(D \) whose commutator is 1, and that \(v - \text{gr} R \subset C[u, w] \) with \(\text{codim}_{u,v} R < \infty \). Write \(R_0 \) for the ad-nilpotent subalgebra \(\{ z \in R \mid u - \text{gr} z = 0 \} \). We may define valuations \(V_{\alpha, \beta} \) and corresponding graded algebras on \(R \) as in Section 1 using \(u \) and \(v \) instead of \(x \) and \(\partial \). For example, \(V_{\alpha, \beta}(u^j v^j) = \alpha i + \beta j \).

Lemma 4.2. Suppose that \(r \) is an ad-nilpotent element of \(R \) that is not contained in \(C(u) \) and is not contained in \(R_0 \). Then there exist positive integers \(n \) and \(m \) and complex numbers \(\lambda \) and \(\gamma \) such that \(u - \text{gr} r = (\lambda u)^n \) and \(v - \text{gr} r = (\gamma w)^m \). Furthermore, \(V_{m,n}(r) = mn \).

Proof. Since \(r \) is not an element of \(C(u) \) and is not an element of \(R_0 \), it follows that \(u - \text{deg} r > 0 \) and \(v - \text{deg} r > 0 \). We will argue as in [2, Lemma 8.7]. We may write

\[
r = \sum_{i \geq 0, j \geq 0} \sigma_{i,j} u^i v^j + f_k(u)v^k + \cdots + f_0(u)
\]

where \(\text{deg} f_j(u) < 0 \) for \(k \geq j \geq 0 \). Clearly, \(v - \text{deg} r > k \). Let \(n \) be the smallest nonnegative integer such that \(\sigma_{j,0} = 0 \) for all \(j > n \). Let \(m \) be the smallest nonnegative integer such that \(\sigma_{0,k} = 0 \) for all \(k > m \). We claim that \(\sigma_{i,j} = 0 \) for all pairs \(i, j \) such that \(mi + nj > mn \).

Assume the claim is false. Then there exist positive real numbers \(\alpha \) and \(\beta \) and a pair of positive integers \(i \) and \(j \) with \(\sigma_{i,j} \neq 0 \), such that \(\text{gr}_{\alpha, \beta} r = \sigma_{i,j} u^i w^j \). Without loss of generality, \(\sigma_{i,j} = 1 \). First assume \(i \geq j \).
Now there exists a monic polynomial $p(t)$ such that $p(u) \in R$. Since both α and β are positive, we have that $\text{gr}_{\alpha,\beta} p(u) = u^d$ where $d = \deg p(u)$. Note that $\text{gr}_{\alpha,\beta}[r, p(u)] = dj u^{i+1+d} w^{j-1}$. Suppose that
\[\text{gr}_{\alpha,\beta} \text{ad}_r^k(p(u)) = \alpha_k u^{k(i-1)+d} w^{k(j-1)}. \]
Then
\[\text{gr}_{\alpha,\beta} \text{ad}_r^{k+1}(p(u)) = \alpha_k (k(i-1)+d)j - i k(j-1)] u^{(k+1)(i-1)+d} w^{(k+1)(j-1)}. \]
Now $(k(i-1)+d)j - i k(j-1) = (i-j)k + dj > 0$ for all $k \geq 0$ since $i \geq j$. This contradicts the fact that r is ad-nilpotent.

Now assume that $i < j$. Consider a nonconstant element $z \in R_0$. Recall that R_0 sits inside a polynomial algebra $C[v']$ where $v' \in D$ where $u-\text{gr} v' = w$. So $z = q(v')$ for some nonconstant polynomial $q(t)$. Since both α and β are positive, it follows that $\text{gr}_{\alpha,\beta} z = w^k$ where $k = \deg q(t)$. The argument now follows as in the preceding paragraph.

We have shown that $\sigma_{i,j} = 0$ for all pairs of positive integers i and j such $mi + nj > nm$. In particular, $u-\text{gr} r = \sigma_{n,0} u^n$, and $v-\text{gr} r = \sigma_{0,m} w^m$, and $V_{m,n}(r) = mn.$

Lemma 4.3. — Suppose that r is an ad-nilpotent element of R that is not contained in $C(u)$ and is not contained in R_0. Set $n = u-\text{deg} r$ and $m = v-\text{deg} r$. Then one of the following two statements hold where $\lambda, \lambda', \gamma, \gamma'$ are elements of C, and i is an integer such that $n \geq i \geq 0$.

1. If $n \geq m$, then n is a multiple of m and
 \[\text{gr}_{m,n} r = ((\lambda u)^{n/m} + \gamma w)^m. \]

2. If $m > n$, then m is a multiple of n and
 \[\text{gr}_{n,m} r = (\lambda u + (\gamma w)^{m/n})^n. \]

Proof. — By Lemma 4.2, both n and m are positive. So there exist nonzero complex numbers σ_1 and σ_2 such that $u-\text{gr} r = \sigma_1 u^n$ and $v-\text{gr} r = \sigma_2 w^m$. Now by Lemma 2.1, $\text{gr}_{m,n} R \subset C[u, w]$, and by Proposition 2.4, $\dim_C C[u, w]/\text{gr}_{m,n} R < \infty$. Hence we may apply the arguments of [2, Lemma 7.3] to the ad-nilpotent element r of R.

In the next lemma, we will show that codim R is independent of the choice of generator for $C(u)$.
LEMMA 4.4. — Suppose that u_1 and v_1 are elements of D whose commutator is 1 such that $C(u) = C(u_1)$, the ring R is a subring of $C(u_1)[v_1] \subset D$, and that $v_1\text{-gr} R \subset C[u_1, w_1]$ with $\text{codim}_{u_1, v_1} R < \infty$. Then $\text{codim}_{u, v} R = \text{codim}_{u_1, v_1} R$.

Proof. — Set $B = R \cap C(u) = R \cap C[u]$. Since $C(u_1) = C(u)$ and $v_1\text{-gr} R \subset C[u_1, w_1]$, we have that $B = R \cap C(u_1) = R \cap C[u_1]$. By assumption, both $\text{codim}_{u, v} R$ and $\text{codim}_{u_1, v_1} R$ are finite. Hence both $\dim_C C[u]/B$ and $\dim_C C[u_1]/B$ are finite. Therefore the integral closure of B in $C(u)$ is $C[u]$ and is also $C[u_1]$. So $C[u] = C[u_1]$ and there exist integers α and β such that $u = \alpha u_1 + \beta$. Since $[v_1, u_1] = 1$, we have that $[\alpha v - v_1, u] = 0$. So $v + g(u) = \alpha^{-1} v_1$ for some $g(u) \in C(u)$.

Set $v_2 = v + g(u)$. Note that $[v_2, u] = 1$ and $R \subset C(u)[v_2]$. Now $f(u)v^i = f(u)(v_2 - g(u))^i$, hence $v\text{-gr} R = v_2\text{-gr} R$ and $\text{codim}_{u, v} R = \text{codim}_{u_1, v_1} R$. Without loss of generality, we may assume that $v = v_2$ and that $v = \alpha^{-1} v_1$. The isomorphism of $C[u, w]$ to $C[u_1, w_1]$ which sends u to αu_1 and w to $\alpha^{-1} w_1$ clearly induces an isomorphism from $v\text{-gr} R$ to $u\text{-gr} R$. The result now follows.

We are now ready to show that $\text{codim} D(X)$ is an invariant of $D(X)$.

THEOREM 4.5. — Suppose that X is an affine curve such that the normalization of X is the affine line, with the normalization map $\pi: \tilde{X} \to X$ injective. Then for any pair of elements u and v in D, such that $[v, u] = 1$, the ring $D(X)$ is a subring of $C(u)[v]$, and $v\text{-gr} D(X)$ is a subring of the polynomial ring with generators $v\text{-gr} u$ and $v\text{-gr} v$, we have that $\text{codim}_{u, v} D(X) = \text{codim} D(X)$.

Proof. — Now $D(X)$ is a subring of $C(x)[\partial]$ and $\text{codim} D(X) = \text{codim}_{x, 0} D(X)$. Assume that u and v are elements of D such that $[v, u] = 1$, the ring $D(X)$ is a subring of $C(u)[v]$, and $v\text{-gr} D(X)$ is a subring of the polynomial ring $C[u, w]$ where $v\text{-gr} u = u$ and $v\text{-gr} v = w$. Let r be a nonconstant ad-nilpotent element of $D(X)$ contained inside $C(u)$. Set $x\text{-deg} r = n$ and $\partial\text{-deg} r = m$. We will induct on $t = m + n$.

If $m = 0$, then r is an element of $C(x)$ and the result now follows by LEMMA 4.4.

If $n = 0$, then r is an element of $\{z \in D(X) \mid x\text{-deg} z = 0\}$, and the result follows from LEMMA 4.1 and LEMMA 4.4. Hence the theorem holds for $t = 0$.

So we may assume that both n and m are positive.

First assume that $n \geq m$. By LEMMA 4.3, n is a multiple of m and there exist elements λ, and γ of C such that $\text{gr}_{m, n} r = (\lambda x)^{n/m} + \gamma y)^m$. Hence

$$r = ((\lambda x)^{n/m} + \gamma \partial)^m + c$$
where $V_{m,n}(c) < mn$ and $x\text{-deg} c < n$ and $\partial\text{-deg} c < m$. Set $\partial_1 = \partial - (\gamma)^{-1}(\lambda x)^{n/m}$ and $x_1 = x$. Note that $((\lambda x)^{n/m} + \gamma \partial)^m = (\gamma \partial_1)^m$. Furthermore $(\partial)^i = (\partial_1 + (\gamma)^{-1}(\lambda x_1)^{n/m})^i$. It follows that $\partial_1\text{-deg} c < m$ and $\partial_1\text{-deg} r = m$. Also $x_1\text{-deg} c \leq (m - 1)n/m < n$. Since $r = (\gamma \partial_1)^m + c$, we have that $x_1\text{-deg} r < n$. By Lemma 4.4, $\text{codim}_{x_1,\partial_1} D(X) = \text{codim}_{x,\partial} D(X)$. Now $\partial_1\text{-deg} r + x_1\text{-deg} r < t$, hence the result now follows by induction for this case.

Now assume that $n < m$. By Lemma 4.1, there exist elements x_1 and ∂_1 in D such that $D(X) \subset C(\partial_1)[x_1]$, $[x_1, \partial_1] = 1$, $x_1\text{-gr} \partial = x_1\text{-gr} \partial_1$, $x_1\text{-gr} R \cong x\text{-gr} R$, and $\text{codim}_{\partial_1,x_1} R = \text{codim}_{x,\partial} R$. It follows that $x_1\text{-deg} r = x\text{-deg} r = n$. If $\partial_1\text{-deg} r < m$, then the proof follows by induction.

Otherwise $\partial_1\text{-deg} r \geq m > n$ and we may apply the methods used above repeatedly to find elements $\partial_2 = \partial_1$ and $x_2 = x_1 + g(\partial_1)$ where $g(\partial_1) \in C(\partial_1)$ such that $x_2\text{-deg} r = n$ and $\partial_2\text{-deg} r < m$. The proof again follows by induction.

We are now able to obtain a nice description of the maximal ad-nilpotent subalgebras of $D(X)$.

Corollary 4.6. — Suppose that X is an affine curve such that the normalization of X is the affine line, with the normalization map $\pi : \tilde{X} \rightarrow X$ injective. Suppose that B is a maximal ad-nilpotent subalgebra of $D(X)$. Then there exists an element u in D such that B is a commutative finitely generated algebra with integral closure $C[u]$ and the centralizer of B in $D(X)$ is the rational function field $C(u)$.

Proof. — By Lemma 3.3 and Lemma 3.4, there exists u in D such that $C_D(B) = C(u)$ and $B \subset C[u]$. By Lemma 3.1, there exists v in D such that $D(X) \subset C(u)[v]$. Recall that the set of ad-nilpotent elements of $D(X)$ is strictly larger than the maximal commutative ad-nilpotent subalgebra $O(X)$ of $D(X)$. Since B is commutative, B cannot contain all the ad-nilpotent elements of $D(X)$. Hence $D(X)$ contains an ad-nilpotent element s not contained in B. By [8, Lemma 1.7], $v\text{-gr} s = \lambda w^n$ for some $\lambda \in C$ and $n > 0$. Since s acts ad-nilpotently on $D(X)$, it is clear that $v\text{-gr} D(X) \subset C[u,w]$. By Theorem 4.5, $\dim C[u]/B$ is finite hence the integral closure of B is $C[u]$. By Eakin’s theorem [6, Section 35], B is finitely generated.

The invariant $\text{codim} D(X)$ can be used to distinguish rings of differential operators.

Corollary 4.7. — Suppose that X and Y are both affine curves with normalization equal to the affine line and with injective normalization.
maps. If \(D(X) \cong D(Y) \), then \(\text{codim} D(X) = \text{codim} D(Y) \).

Proof. — Consider both \(D(X) \) and \(D(Y) \) as subalgebras of \(C(x)[\partial] \) using the standard embedding. Let \(\phi \) be an isomorphism which maps \(D(Y) \) to \(D(X) \). Set \(u = \phi(x) \) and \(v = \phi(\partial) \). Clearly \(u \) and \(v \) satisfy the conditions of Theorem 4.5. Therefore \(\text{codim} D(Y) = \text{codim}_{u,v} D(X) = \text{codim} D(X) \).

5. Examples

In this section, we will consider two families of curves. We will calculate codimensions to show that their rings of differential operators are mutually nonisomorphic.

Recall that \(X \) is a monomial curve if \(O(X) \) is generated by monomials \(x^k \) as an algebra over \(C \). Let \(\Lambda \) be the subset \(\{ k \mid x^k \in O(x) \} \) of the integers. Define the set \(\Lambda - i \) to be \(\{ k - i \mid k \in \Lambda \} \) where \(i \) is an integer. Musson gives a complete description of \(D(X) \) in \([7]\). In particular,

\[
D(X) = \sum_{k \in \mathbb{Z}} x^k f_k(x\partial) C[x\partial]
\]

where

\[
f_k(x\partial) = \prod_{\alpha \in \Lambda - (\Lambda - k)} (x\partial - \alpha).
\]

Let \(X_n \) be the monomial curve with \(O(X_n) = C + x^n C[x] \) as coordinate ring, where \(n \) is a positive integer. Then by the previous paragraph, we have

\[
D(X_n) = \sum_{k \in \mathbb{Z}} x^k f_k(x\partial) C[x\partial]
\]

where the polynomial \(f_i \) is 1 for \(i = 0 \) and \(i \geq n \); the polynomial \(f_i \) is \(x\partial \) for \(1 \leq i \leq n - 1 \); the polynomial \(f_i \) is

\[
(x\partial) \prod_{n-i<k\geq n} (x\partial - k) \quad \text{for} \quad -1 \geq i \geq -(n-1)
\]

and the polynomial \(f_i \) is

\[
(x\partial) \prod_{n-k<i} (x\partial - k) \prod_{-i<k<n-i} (x\partial - k) \quad \text{for} \quad i \leq -n.
\]

Note that if \(g(x\partial) \) is a monic polynomial in \(C[x\partial] \), then

\[
\partial^{-\text{gr}} g(x\partial) = x^d \partial^d \quad \text{where} \quad d = \deg g(x\partial).
\]
Hence $\partial - gr D(X_n) = \sum_{k \in \mathbb{Z}} g_k \mathbb{C}[x,y]$ where

$$
\begin{align*}
g_0 &= 1; \\
g_i &= x^{i+1}y \quad \text{for } 1 \leq i \leq n-1; \\
g_i &= x^i \quad \text{for } i \geq n; \\
g_i &= xy^{i+1} \quad \text{for } -n+1 \leq i \leq -1; \\
g_i &= y^i \quad \text{for } i \leq -n.
\end{align*}
$$

A basis for $\mathbb{C}[x,y]/\partial - gr D(X_n)$ is just $x, x^2, \ldots, x^{n-1}, y, y^2, \ldots, y^{n-1}$. Therefore $\text{codim } D(X_n) = 2(n-1)$. By Corollary 4.7, $D(X_n)$ is isomorphic to $D(X_m)$ if and only if $O(X_n) \cong O(X_m)$.

Now set $Y_{2n} = \mathbb{C} + \mathbb{C}x^2 + \cdots + \mathbb{C}x^{2n} \mathbb{C}[x]$ for $n \geq 1$. A similar calculation shows that $\text{codim } D(Y_{2n}) = n(n+1)$. Therefore $D(Y_{2n}) \cong D(Y_{2m})$ if and only if $O(Y_{2n}) \cong O(Y_{2m})$.

Consider just the curves X_4 and Y_4. Now $O(X_4) = \mathbb{C} + x^4 \mathbb{C}[x]$ and $O(Y_4) = \mathbb{C} + x^2 + x^4 \mathbb{C}[x]$. Clearly $O(X_4)$ is not isomorphic to $O(Y_4)$. But $\text{codim } D(X_4) = \text{codim } D(Y_4) = 6$. Therefore codim does not distinguish between these two rings of differential operators. We should add that it has now been shown that $D(X_4)$ and $D(Y_4)$ are actually isomorphic rings even though $O(X_4)$ and $O(Y_4)$ are not isomorphic (see [4]).

BIBLIOGRAPHY

