BULLETIN DE LA S. M. F.

GREGOR MASBAUM

On the cohomology of the classifying space of the gauge group over some 4-complexes

Bulletin de la S. M. F., tome 119, nº 1 (1991), p. 1-31

<http://www.numdam.org/item?id=BSMF_1991__119_1_1_0>

© Bulletin de la S. M. F., 1991, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 119, 1991, p. 1-31.

ON THE COHOMOLOGY OF THE CLASSIFYING SPACE OF THE GAUGE GROUP OVER SOME 4-COMPLEXES

 $\mathbf{B}\mathbf{Y}$

GREGOR MASBAUM (*)

RÉSUMÉ. — Nous étudions l'algèbre de cohomologie de l'espace classifiant du groupe de jauge d'un SU(2)-fibré sur certains espaces de dimension 4. En particulier, nous obtenons des renseignements sur les propriétés de divisibilité, et de non-divisibilité, des classes obtenues par l'application μ introduite par S. Donaldson. Ces résultats ont été annoncés dans [M3].

ABSTRACT. — We study the cohomology algebra of the classifying space of the gauge group of a SU(2)-bundle over some 4-dimensional spaces. In particular, we obtain information on divisibility and indivisibility properties of classes obtained via the map μ introduced by S. Donaldson. These results were announced in [M3].

1. Introduction

We consider pairs (X, [X]), where X is a space having the homotopy type of a bouquet of a finite number of 2-spheres with one 4-cell attached, and [X] is a generator of $H_4(X; \mathbb{Z}) \approx \mathbb{Z}$. For example, it is well known (see for instance [MH]) that any oriented closed simply-connected 4-manifold X, with fundamental class [X], is of this type. The algebraic invariants of the pair (X, [X]) are (L, φ) , where $L = H_2(X; \mathbb{Z})$ is a free \mathbb{Z} -module of finite rank, and $\varphi \in BS(L^*)$ is the symmetric bilinear form on $L^* = H^2(X; \mathbb{Z})$ given by the cup product and evaluation on [X]. We call φ the "intersection form" of X, even though X in general cannot be realized as a manifold.

Consider a principal SU(2)-bundle $P \to X$, with second Chern number k. Let $\mathcal{G}_k(X)$ be the gauge group of P, that is the group of automorphisms of the bundle inducing the identity on X. It is well known [D2]

^(*) Texte reçu le 24 janvier 1990, révisé le 26 septembre 1990.

G. MASBAUM, Université de Nantes, Département de Mathématiques, URA CNRS 758, 2 chemin de la Houssinière, 44072 Nantes Cedex 03, France.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE0037-9484/1991/1/\$ 5.00© Société mathématique de France

that the classifying space $B\mathcal{G}_k(X)$ has the (weak) homotopy type of the function space $\mathcal{C}(X, BS^3)_k$ of continuous maps $f: X \to BS^3 = BSU(2)$ of degree k, *i.e.* such that $\langle f^*(c_2), [X] \rangle = k$. We are interested in the cohomology of this space.

As in [D2], consider the linear map

$$\mu: H_i(X; \mathbb{Z}) \to H^{4-i}(\mathcal{C}(X, \mathbf{B}S^3)_k; \mathbb{Z})$$

defined by the slant product $\mu(\alpha) = ev^*(c_2)/\alpha$, where :

$$\operatorname{ev}: X \times \mathcal{C}(X, \operatorname{B}S^3)_k \to \operatorname{B}S^3$$

is the evaluation map. As observed by DONALDSON, the map μ generates all of the *rational* cohomology of $\mathcal{C}(X, BS^3)_k$. More precisely, the rational cohomology of $\mathcal{C}(X, BS^3)_k$ is isomorphic to the polynomial algebra

$$\mathbb{Q}\big[\mu([\text{base point}]), \ \mu(lpha_1), \dots, \mu(lpha_s)\big],$$

where $\alpha_1, \ldots, \alpha_s$ is a basis of L.

To analyze the situation, and study integral cohomology, we can proceed as follows. There is a natural isomorphism $BS(L^*) \approx \pi_3(M(L,2))$, where M(L,2) denotes the 2-dimensional Moore space over L. Viewing φ as an element of $\pi_3(M(L,2))$ via this isomorphism, we can replace X, up to (oriented) homotopy, by the cofibre of $\varphi : X \sim M(L,2) \cup_{\varphi} D^4$. This induces a fibration :

(1)
$$\Omega^4 \widehat{B} \to \mathcal{C}(X, \mathrm{B}S^3)_k \xrightarrow{r} \mathcal{C}(M(L, 2), \mathrm{B}S^3).$$

Here r denotes restriction of maps, \hat{B} is the 4-connective covering of BS^3 , and Ω is the loop space functor.

Set $A(L) = H^*(\mathcal{C}(M(L,2), \mathbb{B}S^3); \mathbb{Z})$. This algebra is a covariant functor of L, and was determined in [M1].

THEOREM 1.1.

$$egin{aligned} A(L) &= igoplus_{i\geq 0} A_i(L) \ &= \mathbb{Z}ig[pig]ig[\{\mu_i(lpha) \mid i\geq 0, \; lpha\in L\}ig]/I. \end{aligned}$$

томе 119 — 1991 — N° 1

Here p has degree 4, $\mu_i(\alpha)$ has degree 2*i*, and the ideal I is given by the following relations :

(i)
$$\mu_0(\alpha) = 1;$$

(ii)
$$\mu_n(\alpha + \alpha') = \sum_{i+j=n} \mu_i(\alpha)\mu_j(\alpha');$$

(iii)
$$\mu_i(\alpha)\mu_j(\alpha) = \sum_k \binom{i+j-2k}{i-k} \binom{i+j-k-1}{k} \mu_{i+j-2k}(\alpha)p^k$$

Moreover, we have μ ([base point])= $r^*(p)$, and $\mu(\alpha) = r^*(\mu_1(\alpha))$, $\alpha \in L = H_2(X; \mathbb{Z})$. Consider then Serre's spectral sequence of fibration (1):

$$E_2^{**} = A(L) \otimes H^*(\Omega^4 \widehat{B}; \mathbb{Z}) \Longrightarrow H^*(\mathcal{C}(X, BS^3)_k; \mathbb{Z}).$$

Note that the E_2 -terms is independent of φ and k. Moreover, A(L) has no torsion, whereas $\widetilde{H}^*(\Omega^4 \widehat{B}; \mathbb{Z})$ is torsion since $\pi_i(\Omega^4 \widehat{B}) = \pi_{i+3}(S^3)$ is finite for $i \geq 1$. Thus the restriction map r induces an inclusion

$$r^*: A(L) \hookrightarrow H^*(\mathcal{C}(X, \mathbf{B}S^3)_k; \mathbb{Z})$$

whose cokernel is torsion. From now on, we will identify A(L) with its image under r^* .

Here is a brief outline of this paper.

In paragraph 2, we define and study some "natural" cohomology classes on the space $\mathcal{C}(X, BS^3)_k$. In particular, the intersection form φ defines an integral class Ω of degree 4, and as a corollary we show that the class $(kp+n\Omega)p^{n-1} \in H^{4n}(\mathcal{C}(X, BS^3)_k; \mathbb{Z})$ is divisible by 2n+1. This also shows that in general A(L) is not a direct summand in the integral cohomology of the space $\mathcal{C}(X, BS^3)_k$.

In paragraph 3, we use some results on Dyer-Lashof-operations to describe explicitly the homology of $\Omega^4 \widehat{B}$, the fiber of fibration (1).

Paragraph 4 is devoted to studying a certain map $j : \Omega^4 \widehat{B} \to BO$ in homology, which will be used later. We also describe the mod 2 cohomology algebra of $\Omega^4 \widehat{B}$ as a quotient of $H^*(BO; \mathbb{F}_2)$.

In paragraph 5, we put together the results of the previous sections to obtain some divisibility properties in the cohomology of $\mathcal{C}(X, BS^3)_k$ that depend heavily on the second Chern number k. For example, in

G. MASBAUM

PROPOSITION 5.4 we show that in the integral cohomology of the space $C(S^4, BS^3)_k$, for any odd prime ℓ , the element $p^{(\ell-1)/2}$ is divisible by ℓ if and only if $k \neq 0$ (ℓ). The results of this section allow to distinguish some of the topological group extensions :

$$1 \to \mathcal{G}_{\bullet} \approx \mathcal{C}_{\bullet}(X, S^3) \to \mathcal{G}_k(X) \to S^3 \to 1,$$

where \mathcal{G}_{\bullet} is the subgroup of gauge transformations that act as the identity on one fibre (see REMARK 5.6).

In paragraph 6, we study integral cohomology modulo torsion in the special case $X = S^4$, k = 1. The main result of this section is stated in PROPOSITION 6.1, where we completely determine the subring of $H^*(\mathcal{C}(S^4, BS^3)_1; \mathbb{Z})/\text{torsion}$ generated by p and the natural classes of paragraph 2. It is possible that this subring is actually equal to $H^*(\mathcal{C}(S^4, BS^3)_1; \mathbb{Z})/\text{torsion}$. We show this to be the case at least in low degrees, and after inverting 2 (see COROLLARY 6.3).

Finally, the main result of paragraph 7 is THEOREM 7.1 where we show that in the case of base-point-preserving maps, the analogue of fibration (1) is a product when localised at a prime ≥ 5 . This gives an upper bound on divisibility of classes of the form $\mu(\alpha)^n$ (see COROLLARY 7.2).

REMARK. — Gauge Theory has been used by DONALDSON to prove striking results on smooth 4-manifolds (see [D1] for an overview). These results are obtained by studying moduli spaces of anti-self-dual connections, using non-linear analysis and algebraic geometry. The definition of Donaldson's "polynomial invariants" [D3] makes use, at least formally, of the cohomology of the moduli space of all (irreducible) connections on a SU(2)-bundle over a compact smooth 4-manifold X. This space has the (weak) homotopy type of the classifying space of the group $\mathcal{G}'_k(X)$, the quotient of the gauge group $\mathcal{G}_k(X)$ of the bundle by its center $\{\pm 1\}$ (cf. [D2]). Hence this space is at odd primes the same as the space $B\mathcal{G}_k(X) \approx C(X, BS^3)_k$ studied in this paper. This relationship originally motivated our interest in divisibility properties in the cohomology ring of $B\mathcal{G}_k(X)$.

2. Natural cohomology classes on $\mathcal{C}(\mathbf{X}, \mathbf{BS}^3)_k$

Suppose we can associate to each (X, [X]) a cohomology class $\omega(X)$ on $\mathcal{C}(X, BS^3)_k$ such that for any degree one map $f: X \to X'$ (*i.e.* such that $f_*[X] = [X']$) we have $F^*(\omega(X)) = \omega(X')$, where

$$F: \mathcal{C}(X', BS^3)_k \to \mathcal{C}(X, BS^3)_k$$

томе 119 — 1991 — n° 1

is composition with f. Then we will call $\omega(X)$ a *natural* cohomology class. For example, $p = \mu$ ([base point]) is natural. The intersection form φ of X defines another natural class Ω as follows.

Recall that the universal quadratic module $\Gamma_2(L)$ is defined as F/R, where F is the free \mathbb{Z} -module generated by L, and R is the smallest submodule such that the map $\gamma_2 : L \to \Gamma_2(L)$ defined in the obvious way satisfies :

- 1) $\gamma_2(n\alpha) = n^2 \gamma_2(\alpha)$ for $n \in \mathbb{Z}$;
- 2) the map $(\alpha, \beta) \mapsto \gamma_2(\alpha + \beta) \gamma_2(\alpha) \gamma_2(\beta)$ is bilinear.

There is a well known natural isomorphism $\Gamma_2(L) \approx BS(L^*)$, given by sending $\gamma_2(\alpha)$ to the bilinear form $(\ell_1, \ell_2) \mapsto \ell_1(\alpha)\ell_2(\alpha)$. Next observe that $\Gamma_2(L)$ is also the degree 4 part of the classical divided power algebra

$$\Gamma(L) = \bigoplus_{i \ge 0} \Gamma_i(L) = \mathbb{Z} \big[\big\{ \gamma_i(\alpha) \mid i \ge 0, \ \alpha \in L \big\} \big] / J,$$

where $\gamma_i(\alpha)$ has degree 2i, and the ideal J is given by relations (i), (ii) and (iii) of THEOREM 1.1 with μ_i replaced by γ_i , and p = 0. (Note that (iii) becomes simply $\gamma_i(\alpha)\gamma_j(\alpha) = \binom{i+j}{i}\gamma_{i+j}(\alpha)$.) The correspondence $\mu_n(\alpha) \mapsto \gamma_n(\alpha)$ defines a ring homomorphism $A(L) \to \Gamma(L)$, whose kernel is the ideal generated by p (cf. [M1]). Moreover, the exact sequence

$$0 \to \mathbb{Z} \cdot p \to A_2(L) \to \Gamma_2(L) \to 0$$

is canonically split, upon lifting $\gamma_2(\alpha)$ to $\mu_2(\alpha)$. Here is then the promised definition : the class $\Omega \in A_2(L) \subset H^4(\mathcal{C}(X, \mathbb{B}S^3)_k; \mathbb{Z})$ is the canonical lift of the intersection form $\varphi \in BS(L^*)$, where the latter group is identified with $\Gamma_2(L)$ as explained above.

Here is the main result of this section :

Theorem 2.1

(i) There are natural classes $\tilde{p}_n(X) \in H^{4n}(\mathcal{C}(X, BS^3)_k; \mathbb{Z}[\frac{1}{2}])$, verifying:

$$2(2n+1)s_n(\tilde{p}_1(X),\tilde{p}_2(X),\ldots) = (-1)^{n+1}(kp+n\Omega)p^{n-1}.$$

(ii) If the intersection form of X is even, there are natural classes $\tilde{w}_i(X) \in H^i(\mathcal{C}(X, BS^3)_k; \mathbb{F}_2)$, verifying :

$$s_n(\tilde{w}_1(X),\tilde{w}_2(X),\ldots)^4 = (k\bar{p} + n\bar{\Omega})\bar{p}^{n-1}.$$

Moreover in this case the $\tilde{p}_n(X)$ are integral classes, and they verify the relations given above in integral cohomology modulo an element of order 2.

Here s_n is the *n*-th Newton polynomial, and "" means reduction mod 2.

Before defining these classes and proving their properties, let us point out the following corollary :

COROLLARY 2.2. — The class $(kp + n\Omega)p^{n-1} \in H^{4n}(\mathcal{C}(X, BS^3)_k; \mathbb{Z})$ is divisible by 2n + 1.

Note that if $\varphi \in BS(L^*)$ is indivisible $(e.g. \text{ if } \varphi \text{ is non-degenerate})$, and if (k,n) = 1, then $(kp+n\Omega)p^{n-1}$ is indivisible in $A_{2n}(L)$. (Indeed, it is obvious from the definition of the class Ω that $kp+n\Omega$ is indivisible in $A_2(L)$ if (k,n) = 1. Moreover, it is not hard to see that A(L) is isomorphic as a $\mathbb{Z}[p]$ -module (but not as a ring, cf. [M1]), to $\mathbb{Z}[p] \otimes \Gamma(L)$. Hence multiplication by p preserves indivisible elements, and the statement follows.)

Thus the corollary implies that the subalgebra

$$A(L) \subset H^*(\mathcal{C}(X, \mathrm{B}S^3)_k; \mathbb{Z})$$

is not a direct summand in this case.

REMARK 2.3. — Note that $H^*(\mathcal{C}(X; \mathbb{B}S^3)_k; \mathbb{Z})/\text{torsion}$ injects into $A(L) \otimes \mathbb{Q}$. A calculation shows that modulo torsion, we have :

$$1 - \tilde{p}_1 + \tilde{p}_2 - \cdots$$

= $(1 + p)^{-k/2} \exp\left[\left(k - \frac{\Omega}{2p}\right)\left(1 - \frac{\arctan\sqrt{p}}{\sqrt{p}}\right)\right]$
= $1 - \frac{1}{6}(kp + \Omega) + \frac{1}{360}\left[(18k + 5k^2)p^2 + (10k + 36)p\Omega + 5\Omega^2\right] + \cdots$

To define the classes appearing in THEOREM 2.1, we need the following lemma, whose proof is left to the reader.

LEMMA 2.4. — The homology Chern character of X is injective. Moreover, for all X of the considered type, we have

$$\operatorname{ch}_*(K_0(X)) \otimes \mathbb{Z}\left[\frac{1}{2}\right] \approx H_*(X; \mathbb{Z}\left[\frac{1}{2}\right]) \subset H_*(X; \mathbb{Q}),$$

and if X has even intersection form, then

$$\operatorname{ch}_*(K_0(X)) = H_*(X;\mathbb{Z}) \subset H_*(X;\mathbb{Q}).$$

We introduce the following notation. Let :

$$[X]_K = (ch_*)^{-1}[X] \in K_0(X; \mathbb{Z}[\frac{1}{2}]).$$

Define $\eta_X \in \widetilde{K}^0(X \times \mathcal{C}(X, BS^3)_k; \mathbb{Z}[\frac{1}{2}])$ by the evaluation map

$$X \times \mathcal{C}(X, BS^3)_k \to BS^3 = BSU(2) \to BSU$$

томе 119 — 1991 — N° 1

and put $\xi_X = \eta_X / [X]_K \in K^0 (\mathcal{C}(X, BS^3)_k; \mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix})$. We now define :

$$\tilde{p}_n(X) = (-1)^n c_{2n}(\xi_X) \in H^{4n}(\mathcal{C}(X, \mathrm{B}S^3)_k; \mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}).$$

Note that, by LEMMA 2.4, we have $[X]_K \in K_0(X) \subset K_0(X; \mathbb{Z}[\frac{1}{2}])$ if X has even intersection form. Hence $\xi_X \in K^0(\mathcal{C}(X, BS^3)_k)$ in this case, and $\tilde{p}_n(X) \in H^{4n}(\mathcal{C}(X, BS^3)_k; \mathbb{Z})$. Moreover, we can then define $\tilde{w}_i(X) = w_i(\xi_X) \in H^i(\mathcal{C}(X, BS^3)_k; \mathbb{F}_2)$.

It is not hard to see that ξ_X qualifies as natural in our sense, hence the classes $\tilde{p}_n(X)$ and $\tilde{w}_i(X)$ are natural. Moreover, after inverting 2, a space X which is the cofiber of $\varphi \in \pi_3(M(L,2))$ has the same homotopy type as a space X' which is the cofiber of 4φ because there is an obvious degree one map $X \to X'$ induced by multiplication by 2 on L. Hence, to prove THEOREM 2.1 we may suppose that X has even intersection form.

Consider $S_g = M(\mathbb{Z}^{2g}, 2) \cup_{\varphi_g} D^4$, where $\varphi_g = \sum [e_i, e'_i]$, the standard basis of \mathbb{Z}^{2g} being $(e_1, e'_1, \ldots, e_g, e'_g)$. (Here, $[\alpha, \beta] = \gamma_2(\alpha + \beta) - \gamma_2(\alpha) - \gamma_2(\beta)$ is the Whitehead product.) Note that S_g has the homotopy type of a connected sum of g copies of $S^2 \times S^2$. If X has even intersection form φ , then we can write $\varphi = \sum [\alpha_i, \alpha'_i]$ where $\alpha_i, \alpha'_i \in L$. Clearly the map $f : \mathbb{Z}^{2g} \to L$, defined by $f(e_i) = \alpha_i$, $f(e'_i) = \alpha'_i$, extends to a degree one map $f : S_g \to X$. Since the classes $p, \Omega, \tilde{p}_n, \tilde{w}_i$ are all natural, this shows that it suffices to prove THEOREM 2.1 in the case $X = S_q$.

From now one, we consider $X = S_g$. The idea of proof is as follows. The stabilisation map $j: S^3 = SU(2) \rightarrow SU$ induces a commutative diagram :

Here η and $\tilde{\eta}$ are the evaluation maps. Let $c_n \in H^{2n}(BSU; \mathbb{Z})$ be the *n*-th Chern class. For $n \geq 3$ we have $j^*(c_n) = 0$, hence $(1 \times j)^*(c_n(\tilde{\eta})) = 0$. Writing this equation explicitly will prove the theorem.

In order to calculate the total Chern class of $\tilde{\eta}$, we will first decompose the space $\mathcal{C}(S_g, \text{BSU})_k$ as a product. Let $\mathcal{C}_{\bullet}(S_g, \text{BSU})_k$ be the subspace formed by the base-point preserving maps. The restriction map

$$r: \mathcal{C}_{\bullet}(S_g, \mathrm{BSU})_0 \to \mathcal{C}_{\bullet}(M(\mathbb{Z}^{2g}, 2), \mathrm{BSU})$$

admits a canonical section s defined as follows : thinking of $M(\mathbb{Z}^{2g}, 2)$ as a bouquet of 2g copies of the 2-sphere, we have :

$$\mathcal{C}_{\bullet}(M(\mathbb{Z}^{2g},2),\mathrm{BSU}) = (\Omega^2 \mathrm{BSU})^{2g}.$$

Let $\varepsilon_i, \varepsilon'_i : S^2 \to M(\mathbb{Z}^{2g}, 2) \hookrightarrow S_g$ correspond to $e_i, e'_i \in \mathbb{Z}^{2g}$, and define retractions $r_i, r'_i : S_g \to S^2 \times S^2 \to S^2$ by first contracting to the base point those parts of the 2-skeleton corresponding to an index different from *i*, identifying the result in a standard way with $S^2 \times S^2$, and then projecting onto one of the two factors. Then the section *s* is defined by the formula

$$s(f_1, f'_1, \dots, f_g, f'_g)(x) = f_1(r_1(x)) \cdot f'_1(r'_1(x)) \cdots f_g(r_g(x)) \cdot f'_g(r'_g(x)).$$

(Here we use the multiplication on BSU induced by Whitney sum of bundles.) Next, define a map $\widetilde{Q} : \mathcal{C}(S_g, \mathrm{BSU})_k \to \mathcal{C}(S_g, \mathrm{BSU})_k$ by the formula

$$\widetilde{Q}(f) = \left(s\left(r\left(f(pt)^{-1} \cdot f\right)\right)\right)^{-1} f(pt)^{-1} \cdot f.$$

We may suppose that the multiplication on BSU has a strict identity. Then the restriction of $\tilde{Q}(f)$ to $M(\mathbb{Z}^{2g}, 2)$ is the trivial map, hence \tilde{Q} factors in the obvious way over a map $Q : \mathcal{C}(S_g, BSU)_k \to \Omega_k^4 BSU$. Moreover, the following is a homotopy equivalence :

$$\begin{aligned} \mathcal{C}(S_g, \mathrm{BSU})_k & \xrightarrow{\approx} \mathrm{BSU} \times \mathcal{C}_{\bullet} \big(M(\mathbb{Z}^{2g}, 2), \mathrm{BSU} \big) \times \Omega_k^4 \, \mathrm{BSU} \\ f & \longmapsto \big(f(pt), r\big(f(pt)^{-1} \cdot f \big), Q(f) \big). \end{aligned}$$

Let $F: S^2 \times BU \to BSU$, $\tilde{F}: S^4 \times BU \times k \to BSU$ be adjoint to the Bott equivalences $BU \approx \Omega^2 BSU$, $BU \times k \approx \Omega_k^4 BSU$. Using the inverse of the above homotopy equivalence, the evaluation map $\tilde{\eta}$ becomes :

$$S_g \times BSU \times (BU)^{2g} \times BU \times k \approx S_g \times \mathcal{C}(S_g, BSU)_k \longrightarrow BSU$$
$$(x, z, (y_1, y'_1, \dots, y_g, y'_g), y) \longmapsto z \cdot F(r_1(x), y_1) \cdot F(r'_1(x), y'_1) \cdots$$
$$\cdots F(r_g(x), y_g) \cdot F(r'_g(x), y'_g) \cdot \widetilde{F}([x], y).$$

(Here, [x] means the image of $x \in S_g$ in $S_g/M(L,2) \approx S^4$.) Let c be the total Chern class. A standard calculation using the splitting principle shows :

$$F^*(c) = 1 + \sigma_2 \otimes A, \text{ where } A = \sum_{n \ge 1} (-1)^{n+1} s_n(c_1, c_2, \ldots);$$

$$\widetilde{F}^*(c) = 1 + \sigma_4 \otimes B, \text{ where } B = k + \sum_{n \ge 1} (-1)^{n+1} (n+1) s_n(c_1, c_2, \ldots).$$

томе 119 — 1991 — № 1

(Here, σ_i is the standard generator of $H^i(S^i; \mathbb{Z})$.) Let $(a_1, a'_1, \ldots, a_g, a'_g)$ be the basis of $H^2(S_g; \mathbb{Z}) = (\mathbb{Z}^{2g})^*$ dual to $(e_1, e'_1, \ldots, e_g, e'_g)$, and let $\sigma = [S_g]^* \in H^4(S_g; \mathbb{Z})$ be the standard generator of $H^4(S_g; \mathbb{Z})$. Since our multiplication on BSU is induced by Whitney sum of bundles, the total Chern class of $\tilde{\eta}$ is given by :

$$c(\tilde{\eta}) = (1 \otimes c) (1 + a_1 \otimes A_1) (1 + a'_1 \otimes A'_1) \cdots$$
$$\cdots (1 + a_g \otimes A_g) (1 + a'_g \otimes A_g) (1 + \sigma \otimes B)$$
$$= 1 \otimes c + \sum a_i \otimes cA_i + \sum a'_i \otimes cA'_i + \sigma \otimes c (B + \sum A_i A'_i).$$

(Here, the classes c, A_i , A'_i and $B \in H^*(\mathcal{C}(S_g, \mathrm{BSU})_k; \mathbb{Z})$ are meant to correspond in the obvious way to the different components of $\mathcal{C}(S_g, \mathrm{BSU})_k \approx \mathrm{BSU} \times (\mathrm{BU})^{2g} \times \mathrm{BU} \times k$. We also used $a_i a'_j = \delta_{ij} \sigma$ and $a_i a_j = 0 = a'_i a'_j$.)

Now consider diagram (2). Clearly the total Chern class of η is of the form :

$$c(\eta) = 1 \otimes (1+p) + \sum a_i \otimes b_i + \sum a'_i \otimes b'_i + \sigma \otimes k.$$

Since $H^*(S_q; \mathbb{Z})$ has no torsion, we deduce :

$$j^*(c) = 1 + p, \quad j^*(cA_i) = b_i, \quad j^*(cA'_i) = b'_i, \quad j^*(c(B + \sum A_iA'_i)) = k.$$

Multiplying by $\sum_{n\geq 0} (-p)^n = 1/(1+p)$, we deduce $j^*(A_i) = b_i/(1+p)$, $j^*(A'_i) = b'_i/(1+p)$. Hence

$$j^{*}(B) = \frac{k}{1+p} - \frac{\Omega}{(1+p)^{2}} = k + \sum_{n \ge 1} (-1)^{n} (kp + n\Omega) p^{n-1},$$

where we used $\sum b_i b'_i = \Omega$. Thus, the following lemma immediately implies Theorem 2.1.

LEMMA 2.5. — We have :

(i)
$$2j^*(B) = 2\left(k - 2\sum_{n\geq 1}(2n+1)s_n(\tilde{p}_1, \tilde{p}_2, \ldots)\right) \in H^*(\mathcal{C}(S_g, BS^3)_k; \mathbb{Z});$$

(ii) $\overline{j^*(B)} = \sum_{n\geq 1}s_n(\tilde{w}_1(X), \tilde{w}_2(X), \ldots)^4 \in H^*(\mathcal{C}(S_g, BS^3)_k; \mathbb{F}_2).$

G. MASBAUM

Proof. — The main point here is that $\tilde{\eta}/[S_g] \in \tilde{K}^0(\mathcal{C}(S_g, \mathrm{BSU})_k)$ is represented by the map $Q: \mathcal{C}(S_g, \mathrm{BSU})_k \to \Omega_k^4 \operatorname{BSU} \approx \operatorname{BU}$. This can be seen as follows. Put $\pi_i = \varepsilon_i \circ r_i, \pi'_i = \varepsilon'_i \circ r'_i$, and let $\pi: S_g \to S_g$ be the constant map to the base point. Then for $f \in \mathcal{C}(S_g, \mathrm{BSU})_k, \widetilde{Q}(f)$ can be written :

$$\left((f \circ \pi)^{-1} \cdot (f \circ \pi_1) \cdot (f \circ \pi)^{-1} \cdot (f \circ \pi'_1) \cdots (f \circ \pi)^{-1} \cdot (f \circ \pi_g) \cdot (f \circ \pi)^{-1} \cdot (f \circ \pi')_g) \right)^{-1} \cdot (f \circ \pi)^{-1} \cdot f.$$

Define $\Phi: S_g \times \mathcal{C}(S_g, BSU)_k \to BSU$ by the formula

$$\Phi(x,f) = \widetilde{Q}(f)(x) = \widetilde{\eta}(x,\widetilde{Q}(f)).$$

Since $\tilde{\eta}(x, f \circ \pi_i) = f(\pi_i(x)) = \tilde{\eta}(\pi_i(x), f)$, we see that in K-theory we can write :

$$\Phi = (q \times 1)(\tilde{\eta}) \in K^0 (S_g \times \mathcal{C}(S_g, \mathrm{BSU})_k),$$

where $q = K^0(S_g) \to K^0(S_g)$ is given by $q = 1 - \sum \pi_i^* - \sum \pi_i^{'*} + (2g - 1)\pi^*$.

Clearly, q is a projector onto $\widetilde{K}^0(S^4) \subset K^0(S_g)$. Applying the Chern character, it is not hard to see that q corresponds to $[S_g]_K = ch_*^{-1}([S_g])$ under the canonical isomorphism :

$$\operatorname{Hom}\left(K^{0}(S_{g}), \widetilde{K}^{0}(S^{4})\right) \approx \operatorname{Hom}\left(K^{0}(S_{g}), \mathbb{Z}\right) \approx K_{0}(S_{g}).$$

It follows

$$\Phi = \theta \otimes \left(\tilde{\eta} / [S_g]_K \right),$$

where $\theta \in \widetilde{K}^0(S^4) \subset K^0(S_g)$ denotes the canonical generator. Since Φ is essentially the adjoint of Q, this shows $Q = \tilde{\eta}/[S_g]_K$ as required.

Thus, we have from the very definition of B:

$$B = k + \sum_{n \ge 1} (-1)^{n+1} (n+1) s_n \big(c_1(\tilde{\eta}/[S_g]_K), c_2(\tilde{\eta}/[S_g]_K), \ldots \big).$$

Since $\xi_{S_g} = \eta_{S_g}/[S_g]_K = j^*(\tilde{\eta}/[S_g]_K) \in K^0(\mathcal{C}(X, \mathbf{B}S^3)_k)$, it follows :

$$j^*(B) = k + \sum_{n \ge 1} (-1)^{n+1} (n+1) s_n (c_1(\xi_{S_g}), c_2(\xi_{S_g}), \ldots).$$

Now recall that we have defined $\tilde{p}_n = (-1)^n c_{2n}(\xi_{S_g})$, $\tilde{w}_i = w_i(\xi_{S_g})$. Of course, the reason for this definition is that ξ_{S_g} is in the image of

томе 119 — 1991 — N^o 1

.

the complexification $KO^0 \to K^0$, since the stabilisation map $S^3 \to SU$ factors over Sp. Thus, it follows from the well known description of the complexification map BO \to BU in integral cohomology that the odd Chern classes of ξ_{S_a} are torsion of order 2. This implies :

$$s_{2n}(c_1(\xi_{S_g}), c_2(\xi_{S_g}), \ldots,) = 2s_n(\tilde{p}_1, \tilde{p}_2, \ldots) + \text{an element of order } 2,$$

whence part (i) of the lemma. Part (ii) is proved similarly.

This completes the proof of THEOREM 2.1.

REMARK 2.6. — Let M_g a closed orientable (real) surface of genus g. Note that M_g has the homotopy type of a bouquet of circles with one 2cell attached. The analogy of this with the homotopy type of S_g may be used to apply the above method to study the cohomology algebra of $\mathcal{C}(M_g, BS^3) \approx B\mathcal{G}(M_g)$, the classifying space of the gauge group of a (necessarily trivial) SU(2)-bundle over M_g . This generalizes [M1]. Here we only state the result; details may be found in [M2].

Let $\alpha_1, \ldots, \alpha_g, \alpha'_1, \ldots, \alpha'_g$ be a symplectic basis of $H_1(M_g; \mathbb{Z})$. Define

$$p = \mu([\text{base point}]), \quad \beta_i = \mu(\alpha_i), \quad \beta'_i = \mu(\alpha'_i), \quad t = \mu([M_g]),$$

where $\mu: H_i(M_g; \mathbb{Z}) \to H^{4-i}(\mathcal{C}(M_g, \mathbb{B}S^3); \mathbb{Z})$ is defined as in paragraph 1. Set $\Phi = \sum \beta_i \beta'_i \in H^6(\mathcal{C}(M_g, \mathbb{B}S^3); \mathbb{Z})$. Let $\eta \in K^0(M_g \times \mathcal{C}(M_g, \mathbb{B}S^3))$ correspond to the evaluation map, set $[M_g]_K = \operatorname{ch}_*^{-1}[M_g]$, and define $x_i = c_i(\eta/[M_g]_K) \in H^{2i}(\mathcal{C}(M_g, \mathbb{B}S^3); \mathbb{Z})$. Note $x_1 = t$. Then

$$\begin{split} H^*\big(\mathcal{C}(M_g,\mathrm{B}S^3);\mathbb{Z}\big) \subset H^*(\mathcal{C}_g;\mathbb{Q}) \\ &\approx \mathbb{Q}[p] \otimes \Lambda_{\mathbb{Q}}\big(\beta_1,\ldots,\beta_g,\beta_1',\ldots,\beta_g'\big) \otimes \mathbb{Q}[t] \end{split}$$

is the subalgebra generated $p, \beta_1, \ldots, \beta_g, \beta'_1, \ldots, \beta'_g$, and the x_i . (This fact was already shown in [AB].) Calculating as in [M1], we find :

$$\sum_{n=0}^{\infty} x_n = \exp\left[\left(t - \frac{\Phi}{2p}\right) \frac{\arctan\sqrt{p}}{\sqrt{p}} + \frac{\Phi}{2p(1+p)}\right]$$

(This power series can be written $\exp(tf(p) + \Phi f'(p))$, where $f(p) = \arctan(\sqrt{p})/(\sqrt{p})$.)

Here is a description of this algebra analoguous to THEOREM 1.1. As an algebra over $\mathbb{Z}[p] \otimes \Lambda_{\mathbb{Z}}(\beta_1, \ldots, \beta'_g)$ (which is the cohomology algebra corresponding to the 1-skeleton of M_g), $H^*(\mathcal{C}(M_g, BS^3); \mathbb{Z})$ is isomorphic

to the algebra generated by the x_i , divided by an ideal of relations of the form :

$$x_i x_j = \sum_{k,\ell=0}^{\infty} A_{ijk\ell} \, x_{i+j-2k-3\ell} \, p^k \frac{\Phi^\ell}{\ell!} \cdot$$

(Note that Φ^{ℓ} is divisible by ℓ ! in $\Lambda_{\mathbb{Z}}(\beta_1, \ldots, \beta'_g)$.) Here is a formula for the numbers $A_{ijk\ell}$:

$$\begin{split} A_{ijk\ell} &= \sum_{s=0}^{k} (-1)^{s} \binom{i+j-k-s-3\ell-1}{k-s} \times \\ &\sum_{\substack{-s \leq h \leq s \\ h \equiv s \bmod 2}} \binom{i+j-2k-2\ell}{i-k-\ell+h} \binom{\ell+\frac{1}{2}(s-h)-1}{\frac{1}{2}(s-h)} \binom{\ell+\frac{1}{2}(s+h)-1}{\frac{1}{2}(s+h)}. \end{split}$$

Note that, as they must, the numbers A_{ijk0} coincide with the A_{ijk} given in Theorem 1.1. It also follows from this description that $x_1^n \in H^{2n}(\mathcal{C}(M_g, BS^3); \mathbb{Z})$ is divisible precisely by the power of 2 contained in n!. This generalizes Corollary 1 of [M1].

3. The classifying space of the based gauge group on S^4

The subgroup of the gauge group formed by those gauge transformations whose restriction to the fiber over the base point is the identity, is called the *based* gauge group, and denoted by $\mathcal{G}_{\bullet}(X)$. It is well known that for any S^3 -bundle, it is isomorphic to the group $\mathcal{C}_{\bullet}(X, S^3)$ of basepoint preserving maps $X \to S^3$. Hence the classifying space of the based gauge group on S^4 has the homotopy type of the space $\Omega^4 \hat{B}$, the fiber of fibration (1).

The space $\Omega^4 \widehat{B}$ is the zero component of $\Omega^4 BS^3 \approx \Omega^3 S^3 \approx \Omega^3 \Sigma^3 S^0$, and it is well known how to describe the homology of the latter in terms of Dyer-Lashof-operations acting on $[1] \in H_0(\Omega_1^3 S^3)$ (see for example [CLM]). However, since we are ultimately interested in cohomology, it is more convenient to restrict attention to the zero component. We proceed as follows. From the definition of \widehat{B} , we deduce a fibration :

$$S^1 \approx K(\mathbb{Z}, 1) \to \Omega^2 \widehat{B} \to \Omega^2 \operatorname{B} S^3 \approx \Omega S^3.$$

An easy calculation with the Serre spectral sequence then shows :

$$H_*(\Omega^2 B; \mathbb{F}_\ell) \approx P(z_{2\ell}) \otimes E(\beta z_{2\ell}).$$

томе 119 — 1991 — N° 1

(Here, ℓ is a prime, P means polynomial algebra, E means exterior algebra, z_n is an element of degreee n, and β is the Bockstein operator in (mod ℓ) homology.) Proceeding as in [CLM, p. 229], we see that $H_*(\Omega^4 \hat{B}; \mathbb{F}_{\ell})$ is the free graded commutative algebra on generators obtained by certain Dyer-Lashof-operations acting on an element $y_{2\ell-2} \in$ $H_*(\Omega^4 \hat{B}; \mathbb{F}_{\ell})$ obtained from $z_{2\ell}$ by transgression. (Note however that if $\ell = 2, y_2$ is well defined only modulo $(\beta y_2)^2$.) Here is the result :

PROPOSITION 3.1.

a) $H_*(\Omega^4 \widehat{B}; \mathbb{F}_2) \approx P[(Q_1)^i \beta y_2, (Q_1)^i (Q_2)^j y_2; i, j \ge 0];$

b) for $\ell \geq 3$, $H_*(\Omega^4 \widehat{B}; \mathbb{F}_{\ell})$ is the free graded commutative algebra on generators $\beta^{\varepsilon} (Q_{\ell-1})^j \beta^{\overline{\varepsilon}} (Q_{2(\ell-1)})^i y_{2\ell-2}$, where $i, j \geq 0, \varepsilon, \overline{\varepsilon} \in \{0, 1\}, \varepsilon \leq j \text{ and } (j \geq 1 \Rightarrow \overline{\varepsilon} = 1).$

(See [CLM, p. 7] for a definition of the operations Q_n . Compare also [Mi].)

Note that $|(Q_1)^i \beta y_2| = 2^{i+1} - 1$, $|(Q_1)^i (Q_2)^j y_2| = 2^{i+j+2} - 2^i - 1$, and that $|\beta^{\varepsilon} (Q_{\ell-1})^j \beta^{\overline{\varepsilon}} (Q_{2(\ell-1)})^i y_{2\ell-2}| = 2\ell^j (\ell^{i+1} - 1) - \varepsilon - \overline{\varepsilon}$.

For $\ell \geq 3$, $y_{2\ell-2}$ is clearly primitive, hence it follows from the Cartan formula that $H_*(\Omega^4 \hat{B}; \mathbb{F}_\ell)$ is primitively generated. This implies that the mod ℓ cohomology algebra $H^*(\Omega^4 \hat{B}; \mathbb{F}_\ell)$ is simply a tensor product of an exterior algebra (on odd-dimensional generators) with a divided power algebra (on even-dimensional generators), the generators being the duals of the homology generators given above. The analoguous statement is not true for mod 2 cohomology. In the next section, we will obtain a presentation of $H^*(\Omega^4 \hat{B}; \mathbb{F}_2)$.

The relations between Dyer-Lashof-operations and the higher Bockstein operators can also be found in [CLM]. This allows to determine the additive structure of $H_*(\Omega^4 \widehat{B}; \mathbb{Z})$ as follows. Set $n(i, j; \ell) = 2\ell^j (\ell^i - 1)$ and $\varphi_n(t) = (1 + t^{n-1})/(1 - t^n)$.

PROPOSITION 3.2. — For any prime ℓ , the Poincaré series of

$$E^r H_*(\Omega^4 \widehat{B}; \mathbb{F}_\ell), \qquad r \ge 2,$$

is given by

$$f_r(t) = \prod_{i \ge 1} \varphi_{n(i,r-1;\ell)}(t).$$

We leave it to the reader to write down $f_1(t)$, *i.e.* the Poincaré series of $E^1H_*(\Omega^4\widehat{B};\mathbb{F}_\ell) = H_*(\Omega^4\widehat{B};\mathbb{F}_\ell)$, using PROPOSITION 3.1.

Now recall that $\widetilde{H}_*(\Omega^4 \widehat{B}; \mathbb{Z}) = \bigoplus_{\ell} \widetilde{H}_*(\Omega^4 \widehat{B}; \mathbb{Z}_{(\ell)})$, since the space $\Omega^4 \widehat{B}$ is rationally contractible. Moreover, if we write

$$H_n(\Omega^4\widehat{B};\mathbb{Z}_{(\ell)}) \approx \bigoplus_{r\geq 1} (\mathbb{Z}/\ell^r)^{a_{nr}},$$

then the a_{nr} are given by

$$\sum_{n \ge 1} a_{nr} t^n = \frac{f_r(t) - f_{r+1}(t)}{1+t}.$$

This determines the additive structure of $H_*(\Omega^4 \widehat{B}; \mathbb{Z})$. For later use, we record the following

COROLLARY 3.3. — Let $\ell = 2m + 1$ be an odd prime, and set $N(\ell) = \ell^2 - \frac{1}{2}(\ell+3)$ if $\ell \geq 5$, and N(3) = 536. Suppose $1 \leq n < N(\ell)$. If $n \equiv 0$ (m), then $H^{4n}(\Omega^4 \widehat{B}; \mathbb{Z}_{(\ell)})$ has exponent $\ell^{1+\nu_\ell(n/m)}$. If $n \neq 0$ (m), then $H^{4n}(\Omega^4 \widehat{B}; \mathbb{Z}_{(\ell)}) = 0$.

Here $\nu_{\ell} : \mathbb{Q}^* \to \mathbb{Z}$ is ℓ -adic valuation.

Sketch of proof. — The Bockstein spectral sequence of $H_*(\Omega^4 \widehat{B}; \mathbb{F}_{\ell})$ has a direct summand of the form $P(y_{2\ell-2}) \otimes E(\beta y_{2\ell-2})$, with $\beta_{r+1} y_{2\ell-2}^{\ell r} = y_{2\ell-2}^{\ell r-1} \beta y_{2\ell-2}$. The $\mathbb{Z}_{(\ell)}$ -cohomology corresponding to this direct summand verifies the statement of the corollary for all n. Moreover, it turns out that for $n < N(\ell)$, the exponent of $H^{4n}(\Omega^4 \widehat{B}; \mathbb{Z}_{(\ell)})$ stems from this direct summand. Details are left to the reader.

4. The map $j: \Omega^4 \widehat{B} \to BO$

The stabilisation map $S^3 = SU(2) \rightarrow SU$ factors over the inclusion Sp \subset SU. Thus, the induced map $\mathcal{C}(X, BS^3) \rightarrow \mathcal{C}(X, BSU)$ factors over $\mathcal{C}(X, BSp)$. Restricting to base-point preserving maps, and using real Bott periodicity, we have a map $\Omega^4 BS^3 \rightarrow \Omega^4 BSp \approx BO \times \mathbb{Z}$. In this section, let us denote by $j : \Omega^4 \widehat{B} \rightarrow BO$ the map obtained by restricting to the zero degree component. Clearly, this is a morphism of 4-fold loop spaces.

PROPOSITION 4.1. — $j_*: H_*(\Omega^4 \widehat{B}; \mathbb{F}_2) \to H_*(\mathrm{BO}; \mathbb{F}_2)$ is injective.

Proof. — Recall $H_*(BO; \mathbb{F}_2) = P(a_1, a_2, \ldots)$, where $|a_i| = i$. Since the inclusion $S^3 \to Sp$ is 6-connected, j_* is an isomorphism in degrees ≤ 2 . Replacing, if necessary, y_2 by $y_2 + (\beta y_2)^2$, it follows $j_*(y_2) = a_2$, $j_*(\beta y_2) = a_1$. From [K], THEOREM 36, we know that in $H_*(BO; \mathbb{F}_2)$, we have $Q_n(a_k) =$

томе 119 — 1991 — N° 1

 $\binom{n+k-1}{k}a_{n+2k}$ modulo decomposable elements. Since j_* commutes with Q_1 and Q_2 , it follows that j_* sends the generators of $H_*(\Omega^4 \widehat{B}; \mathbb{F}_2)$ given in PROPOSITION 3.1 to indecomposable elements. This implies the proposition.

Corollary 4.2. — $H^*(\Omega^4 \widehat{B}; \mathbb{F}_2) \approx H^*(\mathrm{BO}; \mathbb{F}_2)/(\ker j^*)$.

The Hopf algebra structure of $H^*(BO; \mathbb{F}_2)$ is given by

$$\Delta a_n = \sum a_i \otimes a_{n-i}.$$

Since j_* is injective, it follows $\Delta y_2 = 1 \otimes y_2 + \beta y_2 \otimes \beta y_2 + y_2 \otimes 1$. This and the Cartan formula for Dyer-Lashof-operations completely determine the Hopf algebra structure of $H_*(\Omega^4 \widehat{B}; \mathbb{F}_2)$. Note that generators of the form $(Q_1)^i \beta y_2$ are primitive, whereas those of the form $(Q_1)^i (Q_2)^j y_2$ are not.

For *n* a positive integer, let $\varepsilon_0(n)$ be the number of zeros of *n* when written in binary form. Note that $H_*(\Omega^4 \widehat{B}; \mathbb{F}_2)$ has a generator precisely in those degrees *n* such that $\varepsilon_0(n) \leq 1$. Recall that $H^*(\mathrm{BO}; \mathbb{F}_2)$ is a polynomial algebra on the Stiefel-Whitney-classes w_i . The following proposition will be proved in the appendix :

Proposition 4.3

(i) For each n such that $\varepsilon_0(n) \ge 2$, the ideal ker $(j^*) \subset H^*(BO; \mathbb{F}_2)$ contains an element r_n of degree n, such that if $n = 2^{\ell}m$ where m is odd, then r_n is indecomposable if $\varepsilon_0(m) \ge 2$, and r_n is the square (the fourth power) of an indecomposable element if $\varepsilon_0(m) = 1$ ($\varepsilon_0(m) = 0$).

(ii) The ideal ker $(j^*) \subset H^*(BO; \mathbb{F}_2)$ is freely generated by any system of elements r_n verifying the indecomposability properties of part (i).

Note that the proposition implies $w_n^4 \in \ker(j^*)$ for all n. Here are generators for $\ker(j^*)$ in degrees $\leq 16: w_1^4, w_2^4, s_9, s_5^2, w_3^4, w_4^4$. (s_n means the *n*-th Newton polynomial of the w_i .) In the appendix, we will give an algorithm to construct generators r_n in terms of Stiefel-Whitney-classes.

We now study the map j at an odd prime ℓ . Recall that $H_*(\Omega^4 B; \mathbb{F}_{\ell})$ is the free graded commutative algebra on certain elements of the form $\beta^{\varepsilon}(Q_{\ell-1})^j \beta^{\overline{\varepsilon}}(Q_{2(\ell-1)})^i y_{2\ell-2}$.

PROPOSITION 4.4. — The kernel of $j_* : H_*(\Omega^4 \widehat{B}; \mathbb{F}_\ell) \to H_*(\mathrm{BO}; \mathbb{F}_\ell)$ is the ideal generated by those of the above elements whose degree is not divisible by 4.

Note that these are precisely the generators not of the form $(Q_{2(\ell-1)})^i y_{2\ell-2}, i \geq 0.$

Proof. — Clearly these elements are in the kernel of j_* , since $H_n(\mathrm{BO}; \mathbb{F}_{\ell})$ is zero unless n is divisible by 4. To complete the proof, it suffices to show that the subalgebra of $H_*(\Omega^4 \widehat{B}; \mathbb{F}_{\ell})$ generated by the classes $(Q_{2(\ell-1)})^i y_{2\ell-2}$ injects into $H_*(\mathrm{BO}; \mathbb{F}_{\ell})$. To see this, we proceed as follows. Write

$$H_*(\Omega^3 S^3; \mathbb{F}_{\ell}) = H_*(\Omega^4 B; \mathbb{F}_{\ell}) \otimes \mathbb{F}_{\ell}[\mathbb{Z}],$$
$$H_*(\mathrm{BO} \times \mathbb{Z}; \mathbb{F}_{\ell}) = H_*(\mathrm{BO}; \mathbb{F}_{\ell}) \otimes \mathbb{F}_{\ell}[\mathbb{Z}].$$

From [CLM] we know that in $H_*(\Omega^3 S^3; \mathbb{F}_{\ell})$, one has $Q_1(1 \otimes [1]) \neq 0$. Hence $y_{2\ell-2}$ may be chosen such that $Q_1(1 \otimes [1]) = y_{2\ell-2} \otimes [\ell]$. From [K], THEOREM 33, we know that in $H_*(\mathrm{BO} \times \mathbb{Z}; \mathbb{F}_{\ell})$, we have $Q_1(1 \otimes [1]) = \mathfrak{p}_{(\ell-1)/2} \otimes [\ell]$. Here $\mathfrak{p}_n \in H_{4n}(\mathrm{BO}; \mathbb{F}_{\ell})$ is the dual of \bar{p}_n , the mod ℓ reduction of the *n*-th Pontryagin class. (The dual is taken with respect to the obvious basis of $H^{4n}(\mathrm{BO}; \mathbb{F}_{\ell})$ given by monomials in the \bar{p}_j , $j \leq n$.) Since the map $\Omega^3 S^3 \to \mathrm{BO} \times \mathbb{Z}$ is a morphism of 3-fold loop spaces, and respects components, it follows $j_*(y_{2\ell-2}) = \mathfrak{p}_{(\ell-1)/2}$. From [K], THEOREM 25, it follows :

$$j_*((Q_{2(\ell-1)})^i y_{2\ell-2}) = (Q_{2(\ell-1)})^i \mathfrak{p}_{(\ell-1)/2} = \pm \mathfrak{p}_{(\ell^{i+1}-1)/2}.$$

It is well known that \mathfrak{p}_n is, up to scalar multiples, the unique primitive element in $H_{4n}(\mathrm{BO};\mathbb{F}_{\ell})$. (Recall that $H_*(\mathrm{BO};\mathbb{F}_{\ell}) \approx P(a_n ; n \geq 1)$, with $|a_n| = 4n$, and $\Delta a_n = \sum a_i \otimes a_{n-i}$.) From the Newton formula, we see that $\mathfrak{p}_{(\ell^i-1)/2}$ is indecomposable, since $\frac{1}{2}(\ell^i - 1)$ is not divisible by ℓ . Thus, $\mathrm{Im}(j_*)$ is freely generated by $\{\mathfrak{p}_n \mid n = \frac{1}{2}(\ell^i - 1), i \geq 1\}$. This implies the proposition.

5. Divisibility properties depending on k

In this section, we study the fibration (1) in cohomology. First, we study the situation at the prime 2.

PROPOSITION 5.1. — If X has even intersection form, then the mod 2 cohomology spectral sequence of fibration (1) degenerates at the E_2 -level

Proof. — It suffices to prove this in the case $X = S_g$, since there is a degree one map $S_g \to X$ (cf. the proof of THEOREM 2.1). The stabilisation map $S^3 \to \text{Sp}$ induces a morphism of fibrations $\mathcal{C}(S_g, BS^3)_k \to \mathcal{C}(S_g, BSp)_k$ whose restriction to the fiber is the map $j : \Omega^4 \widehat{B} \to \text{BO}$ studied in paragraph 4. Proceeding as in the proof of THEOREM 2.1, we can decompose $\mathcal{C}(S_g, BSp)_k$ as a product $BSp \times$ $(\Omega Sp)^{2g} \times BO$. Hence the spectral sequence of this fibration degenerates at the E_2 -level. Since $j^* : H^*(BO; \mathbb{F}_2) \to H^*(\Omega^4 \widehat{B}; \mathbb{F}_2)$ is surjective by PROPOSITION 4.1, the result follows.

tome $119 - 1991 - n^{\circ} 1$

COROLLARY 5.2. — If X has even intersection form, then

$$H^*(\mathcal{C}(X, \mathbf{B}S^3)_k; \mathbb{F}_2)$$

is an extension of the algebra $H^*(BO; \mathbb{F}_2)/\ker(j^*)$ determined in Proposition 4.3 by $A(L) \otimes \mathbb{F}_2$.

Note that $\tilde{w}_1^4 = k\bar{p} + \overline{\Omega}$ by THEOREM 2.1, hence the above extension of algebras is non-trivial if k is odd.

COROLLARY 5.3. — If X has even intersection form, then

$$H^*(\mathcal{C}(X, \mathrm{B}S^3)_k; \mathbb{Z}_{(2)}) \approx A(L) \otimes \mathbb{Z}_{(2)} \oplus \text{torsion.}$$

Here, $\mathbb{Z}_{(2)}$ is \mathbb{Z} localized at 2. Note that this is not true at odd primes, *cf.* COROLLARY 2.2.

Now let ℓ be an odd prime. Consider first the case $X = S^4$.

PROPOSITION 5.4. — In $H^*(\mathcal{C}(S^4, \mathbb{B}S^3)_k; \mathbb{Z})$, the element $p^{(\ell-1)/2}$ is divisible by ℓ if and only if $k \neq 0$ (ℓ).

Proof. — To simplify notation, set $C_k = \mathcal{C}(S^4, \mathbb{B}S^3)_k$ and $m = \frac{1}{2}(\ell-1)$. From PROPOSITION 3.1, it follows $H^i(\Omega^4 \widehat{B}; \mathbb{F}_\ell) = 0$ for $1 \leq i \leq 4m-2$, $H^{4m-1}(\Omega^4 \widehat{B}; \mathbb{F}_\ell) \approx \mathbb{F}_\ell$, $H^{4m}(\Omega^4 \infty \widehat{B}; \mathbb{F}_\ell) \approx \mathbb{F}_\ell$. Moreover, the latter is generated by $i^*(\widetilde{p}_m)$ where $i : \Omega^4 \widehat{B} \to C_k$ is the inclusion of the fiber. This follows from PROPOSITION 4.4 since $i^*(\widetilde{p}_m) = j^*(p_m)$ where $j : \Omega^4 \widehat{B} \to \mathbb{B}O$ is the map studied in paragraph 4. Also, in the mod ℓ cohomology spectral sequence of the fibration $\Omega^4 \widehat{B} \to C_k \to \mathbb{B}S^3$, the first non-trivial differential is :

$$\mathbf{d}_{4m}: H^{4m-1}(\Omega^4\widehat{B}; \mathbb{F}_\ell) \to H^{4m}(\mathbf{B}S^3; \mathbb{F}_\ell).$$

Clearly, p^m is divisible by ℓ if and only if $d_{4m} \neq 0$.

If $k \neq 0$ (ℓ), then it follows immediately from COROLLARY 2.2 that p^m is divisible by ℓ . Now suppose $k = \ell k'$. Consider :

$$z = 4(-1)^{m+1} s_m(\tilde{p}_1, \tilde{p}_2, \ldots) - 2k' p^m \in H^{4m}(\mathcal{C}_k; \mathbb{Z}).$$

Since $i^*(z) = \pm 4s_m(i^*(\tilde{p}_1), i^*(\tilde{p}_2), \ldots) = \pm 4mi^*(\tilde{p}_m)$, we have $\bar{z} \neq 0 \in H^{4m}(\mathcal{C}_k; \mathbb{F}_{\ell})$. On the other hand, THEOREM 2.1 implies $\ell z = 0$. It follows that \bar{z} is in the image of the mod ℓ cohomology Bockstein operator. In particular, we have $H^{4m-1}(\mathcal{C}_k; \mathbb{F}_{\ell}) \neq 0$. This implies $d_{4m} = 0$ in the spectral sequence, hence p^m is not divisible by ℓ .

This completes the proof of PROPOSITION 5.4.

For general X, we have :

PROPOSITION 5.5. — Suppose $\mathcal{C}(X, BS^3)_k$ and $\mathcal{C}(X, BS^3)_{k'}$ have isomorphic cohomology algebras. Then for each prime $\ell \geq 5$, one has:

$$k \equiv 0 \ (\ell) \iff k' \equiv 0 \ (\ell).$$

Moreover, if the intersection form of X is even, or divisible by 3, then this is also true for $\ell = 2$, or $\ell = 3$, respectively.

As an example where the last condition is satisfied, one may take $X = S^4$.

Proof. — Let $\varphi \in BS(L^*)$ be the intersection form of X, and set $C_k = C(X, BS^3)_k$. As before, set $m = \frac{1}{2}(\ell - 1)$. We distinguish three cases.

 $Case \ 1: \ell = 2.$ Then φ is even by hypothesis, hence by Theorem 2.1, we have :

$$\tilde{w}_1^8 = s_2 \left(\tilde{w}_1, \tilde{w}_2 \right)^4 = k \bar{p}^2.$$

PROPOSITION 5.1 implies $\bar{p}^2 \neq 0$. Hence we have $\tilde{w}_1^8 = 0$ if and only if $k \equiv 0$ (2). Since \tilde{w}_1 generates $H^1(\mathcal{C}_k; \mathbb{F}_2) \approx \mathbb{F}_2$, the result follows.

Case 2 : ℓ an odd prime, and $\varphi \equiv 0$ (ℓ). Then $\overline{\Omega}$, the mod ℓ reduction of Ω , is zero. In this case, we proceed as in the case $X = S^4$ to see that p^m is divisible by ℓ if and only if $k \neq 0$ (ℓ). Actually the proof shows that $H^{4m-1}(\mathcal{C}_k; \mathbb{F}_{\ell}) = 0$ if and only if $k \neq 0$ (ℓ). The result follows.

Case 3 : ℓ a prime ≥ 5 , and $\varphi \neq 0$ (ℓ). We consider again the fibration $\Omega^4 \widehat{B} \to \mathcal{C}_k \xrightarrow{r} \mathcal{C}(M(L,2), \mathbb{B}S^3)$. In this proof, all cohomology classes will be reduced modulo ℓ . But here we will distinguish between \overline{p} , $\overline{\Omega}$ as cohomology classes on $\mathcal{C}(M(L,2), \mathbb{B}S^3)$, and their images $r^*(\overline{p})$, $r^*(\overline{\Omega})$ on \mathcal{C}_k . THEOREM 2.1 implies $r^*((k\overline{p} + m\overline{\Omega})\overline{p}^{m-1}) = 0$. Since $\varphi \neq 0$ (ℓ), it follows easily from the description of A(L) that for all k, the element $(k\overline{p} + m\overline{\Omega})\overline{p}^{m-1}$ is non-zero (compare the reasoning following COROLLARY 2.2). Arguing as in the proof of PROPOSITION 5.4, we see from the spectral sequence that in degree 4m, $\ker(r^*) = \operatorname{Im}(d_{4m})$ is one-dimensional. Hence $\ker(r^*)$ is generated by $(k\overline{p} + m\overline{\Omega})\overline{p}^{m-1}$.

Now let $\alpha^* : H^*(\mathcal{C}_{k'}; \mathbb{F}_{\ell}) \approx H^*(\mathcal{C}_k; \mathbb{F}_{\ell})$ be a (graded) algebra isomorphism. Affect all objects concerning $\mathcal{C}_{k'}$ with *a*. Since $\ell \geq 5$, r^* and r'^* are isomorphisms in degree 4. Hence, there are elements $\bar{q}, \bar{\Lambda} \in \overline{A(L)}$ of degree 4 such that :

$$lpha^*ig(r'^*(ar p)ig)=r^*(ar q),\quad lpha^*ig(r'^*(ar \Omega)ig)=r^*(ar \Lambda).$$

Again, THEOREM 2.1 implies $r'^*((k'\bar{p}+m\overline{\Omega})\bar{p}^{m-1}) = 0$. Applying α^* , it follows $(k'\bar{q}+m\overline{\Lambda})\bar{q}^{m-1} \in \ker r^*$. Since $\ker r^*$ is one-dimensional, there is $\lambda \neq 0$ such that $(k'\bar{q}+m\overline{\Lambda})\bar{q}^{m-1} = \lambda \ (k\bar{p}+m\overline{\Omega})\bar{p}^{m-1}$. It then follows easily from the description of A(L) that $k \equiv 0$ (ℓ) if and only if $k' \equiv 0$ (ℓ).

This completes the proof.

tome 119 — 1991 — n° 1

REMARK 5.6. — PROPOSITION 5.5 was motivated by the following amusing application. Consider the family of topological group extensions

$$1 \to \mathcal{G}_{\bullet} \approx \mathcal{C}_{\bullet}(X, S^3) \to \mathcal{G}_k(X) \to S^3 \to 1$$

depending on the second Chern number k. Here the map $\mathcal{G}_k(X) \to S^3$ is given by restriction to the fiber over the base point. One wants to conjecture that these extensions are distinguished by k. Since $B\mathcal{G}_k(X) \approx \mathcal{C}(X, BS^3)_k$, PROPOSITION 5.5 gives a partial answer. In the literature, there seems to be only the following invariant : if X has even intersection form, then the central element $-1 \in \mathcal{G}_k(X)$ is homotopic to 1 if and only if k is even [FU].

6. The classifying space $B\mathcal{G}_1(S^4)$

We now consider the special case

$$X = S^4, \quad k = 1.$$

Set $C_1 = C(S^4, BS^3)_1 \approx B\mathcal{G}_1(S^4)$. Theorem 2.1 implies that

$$H^*(\mathcal{C}_1;\mathbb{Z})/\operatorname{torsion} \subset H^*(\mathcal{C}_1;\mathbb{Q}) = \mathbb{Q}[p]$$

contains classes \tilde{p}_i such that :

$$1 + \tilde{p}_1 + \tilde{p}_2 + \dots = \exp\left(\sum_{i=1}^{\infty} \frac{p^i}{2i(2i+1)}\right) = 1 + \frac{1}{6}p + \frac{23}{360}p^2 + \frac{1493}{45360}p^3 + \dots$$

We introduce the following notation. If ℓ is a prime, set $m = \frac{1}{2}(\ell - 1)$ if ℓ is odd, and m = 1 if $\ell = 2$. For $n \in \mathbb{N}$, set $\mu_{\ell}(n) = \nu_{\ell}([(\ell/m) \cdot n]!)$, where $\nu_{\ell} : \mathbb{Q}^* \to \mathbb{Z}$ is ℓ -adic valuation, and [x] means the greatest integer $\leq x$. The main result of this section is :

PROPOSITION 6.1. — The subring of $H^*(\mathcal{C}_1; \mathbb{Z})/$ torsion generated by pand the \tilde{p}_i is generated in degree 4n by p^n/α_n , where

$$\alpha_n = \prod_{\ell} \ell^{\mu_\ell(n)}.$$

Before giving the proof, we point out that it is tempting to conjecture that $H^*(\mathcal{C}_1;\mathbb{Z})/$ torsion is actually equal to this subring. Here is a proof for this conjecture in low degrees, and after inverting 2. From fibration (1), we have an exact sequence :

$$0 \to \mathbb{Z} \cdot p^n \hookrightarrow H^{4n}(\mathcal{C}_1; \mathbb{Z}) \to Q^{4n} \to 0,$$

where Q^{4n} is torsion. Moreover, it follows easily from the spectral sequence that the exponent of Q^{4n} is less or equal than the product of the exponents of $H^{4i}(\Omega^4 \hat{B};\mathbb{Z})$ for $1 \leq i \leq n$. Now let ℓ be an odd prime. An easy calculation using COROLLARY 3.3 shows that for $n < N(\ell)$, the exponent of the ℓ -primary part of Q^{4n} is less or equal than $\ell^{\mu_\ell(n)}$. (Recall N(3) = 536, and $N(\ell) = \ell^2 - \frac{1}{2}(\ell + 3)$ if $\ell \geq 5$.) On the other hand, PROPOSITION 6.1 implies that p^n is divisible by $\ell^{\mu_\ell(n)}$ in $H^{4n}(\mathcal{C}_1;\mathbb{Z})/$ torsion. Putting things together, one easily deduces the following corollary.

COROLLARY 6.2. — Let ℓ be an odd prime, and $n < N(\ell)$. Then $p^n \in H^{4n}(\mathcal{C}_1;\mathbb{Z})$ is divisible by $\ell^{\mu_\ell(n)}$, and $H^{4n}(\mathcal{C}_1;\mathbb{Z}_{(\ell)})/$ torsion is generated by $p^n/\ell^{\mu_\ell(n)}$.

Note that the smallest $N(\ell)$ is N(5) = 21. Since by PROPOSITION 5.1 $p^n \in H^{4n}(\mathcal{C}_1; \mathbb{Z})$ is not divisible by 2, it follows :

COROLLARY 6.3. — For n < 21, $p^n \in H^{4n}(\mathcal{C}_1;\mathbb{Z})$ is divisible precisely by $\prod_{\ell \geq 3} \ell^{\mu_\ell(n)}$. Moreover, in degrees less than $4 \times 21 = 84$, $H^*(\mathcal{C}_1;\mathbb{Z}\lceil \frac{1}{2} \rceil)$ / torsion coincides with the subring generated by p and the \tilde{p}_i .

We now prove PROPOSITION 6.1. Write $\tilde{p}_n = b_n p^n \in H^{4n}(\mathcal{C}_1; \mathbb{Q})$. We leave it to the reader to deduce PROPOSITION 6.1 from the following lemma, using the easily verified inequality $\mu_\ell(n_1) + \mu_\ell(n_2) \leq \mu_\ell(n_1 + n_2)$.

LEMMA 6.4. — For $n \ge 1$, one has $\nu_{\ell}(b_n) \ge -\mu_{\ell}(n)$. Moreover, equality holds if $n \equiv 0$ (m).

To prove LEMMA 6.4, recall that by definition :

$$\exp\left(\sum_{i=1}^{\infty} \frac{p^i}{2i(2i+1)}\right) = \sum_{n=0}^{\infty} b_n p^n.$$

Differentiating this expression, we obtain :

$$b_{n+1} = \frac{1}{2(n+1)} \sum_{i=0}^{\infty} \frac{b_i}{2n-2i+3}$$

Using the well known fact $\nu_{\ell}(x + y) = \min(\nu_{\ell}(x), \nu_{\ell}(y))$ whenever $\nu_{\ell}(x) \neq \nu_{\ell}(y)$, it is not hard to deduce $\nu_{2}(b_{n}) = -\nu_{2}((2n)!)$ and $\nu_{3}(b_{n}) = -\nu_{3}((3n)!)$ by induction on *n*. This proves LEMMA 6.4 for $\ell \in \{2, 3\}$.

In the general case, we proceed as follows. We have the following expression :

$$b_n = \sum_k \sum_{n_1+2n_2+\dots+kn_k=n} \frac{1}{\prod_{i=1}^k n_i ! (2i(2i+1))^{n_i}}$$

томе 119 — 1991 — N° 1

Let E_n denote the set of sequences $(n_1, n_2, ...)$ such that $n_1 + 2n_2 + \cdots \leq n$. Define $f: E_n \to \mathbb{Z}$ by the formula :

$$f(n_1, n_2, \ldots) = \nu_\ell \Big(\prod_i n_i ! (2i (2i + 1))^{n_i} \Big).$$

Note that E_n contains the sequence $(n_1^{(0)}, n_2^{(0)}, \ldots)$ defined by $n_m^{(0)} = [n/m]$, $n_i^{(0)} = 0$ for $i \neq m$. Moreover,

$$f(n_1^{(0)}, n_2^{(0)}, \ldots) = \nu_\ell ([n/m]!) + [n/m] = \mu_\ell(n).$$

Clearly, it follows from the expression for the b_n given above that the following LEMMA 6.5 implies LEMMA 6.4.

LEMMA 6.5. — For all sequences $(n_1, n_2, ...) \in E_n$, one has the inequality $f(n_1, n_2, ...) \leq \mu_{\ell}(n)$. Moreover, if $n \equiv 0$ (m), then equality holds if and only if:

$$(n_1, n_2, \ldots) = (n_1^{(0)}, n_2^{(0)}, \ldots).$$

We now prove LEMMA 6.5. Consider $(n_1, n_2, \ldots) \in E_n$. Set $h_i = [in_i/m]$.

SUBLEMMA 1. — If $n_i \ge 0$, then $\nu_{\ell}(n_i !) < h_i$ unless $h_i = 0$.

Indeed, $\nu_{\ell}(n_i !) \leq \frac{n_i - 1}{2m} < \frac{n_i}{2m} \leq \frac{mh_i + m - 1}{2mi} < \frac{h_i + 1}{2} \leq h_i.$

Sublemma 2. — If $n_i > 0$ and i > m, then $n_i \nu_\ell(2i(2i+1)) < h_i$.

Since $h_i = [in_i/m] \ge n_i > 0$, this is obvious unless $i \equiv 0$ (ℓ) or $2i + 1 \equiv 0$ (ℓ). First, suppose $i \equiv 0$ (ℓ). Then we have

$$n_i \nu_\ell (2i(2i+1)) = n_i \nu_\ell(i) \le n_i \log_\ell(i) \le \frac{mh_i + m - 1}{i} \log_\ell(i),$$

hence it suffices to show $((mh + m - 1)/i)\log_{\ell}(i) < h_i$, which is equivalent to

$$(*) i^{mh_i+m-1} < \ell^{ih_i}.$$

We will show this inequality by induction on h_i , keeping *i* fixed. Observe that we may suppose $h_i \ge 2$. Indeed, since $i \ge \ell$, we have

$$1 \le n_i \le \frac{mh_i + m - 1}{i} \le \frac{mh_i + m - 1}{\ell},$$

which is impossible if $h_i \leq 1$.

Letting $h_i = 2$ in (*), we obtain :

$$(**) i^{3m-1} < \ell^{2i}.$$

Observe that once we know (**), it follows $i^m \leq i^{(3m-1)/2} < \ell^i$, which implies the induction. Thus, it only remains to show (**), which is equivalent to :

$$i < \ell^{2i/(3m-1)} = \ell^{4i/(3\ell-5)}$$

Now this is obvious if $i = \ell$, moreover, differentiating with respect to i yields :

$$1 < \frac{4}{3\ell - 5} \log(\ell) \, \ell^{4i/(3\ell - 5)} = \frac{4\ell}{3\ell - 5} \log(\ell) \, \ell^{(4i - 3\ell + 5)/(3\ell - 5)}$$

which is true for $i \ge \ell$. This implies (**), hence SUBLEMMA 2 in the case $i \equiv 0$ (ℓ).

The case $2i + 1 \equiv 0$ (ℓ) is similar and left to the reader.

Sublemma 3. — $\sum_{i>1} h_i \leq [n/m], \quad \sum_{i>m} n_i \leq [n/m].$

This is obvious since $n = \sum_{i>1} i n_i$.

Applying these sublemmas, we have :

$$\begin{split} f(n_1, n_2, \ldots) &= \sum_{i \ge 1} \left(\nu_\ell(n_i \, !) + n_i \, \nu_\ell(2i(2i+1)) \right) \le \sum_{i \ge m} \nu_\ell(n_i !) + \sum_i h_i \\ &\le \nu_\ell([n/m] \, !) + [n/m] = \mu_\ell(n) = f(n_1^{(0)}, n_2^{(0)}, \ldots). \end{split}$$

This implies the first part of LEMMA 6.5. Now suppose we have equality here. Then it follows from sublemmas 1 and 2 that $n_i = 0$ for all i > m, and $h_i = 0$ for all i < m. But this implies :

$$f(n_1, n_2, \ldots) = n_m + \nu_\ell(n_m!),$$

hence $n_m = [n/m]$. If $n \equiv 0$ (m), then this is impossible unless :

$$(n_1, n_2, \ldots) = (n_1^{(0)}, n_2^{(0)}, \ldots).$$

This completes the proof of LEMMA 6.5.

томе 119 — 1991 — N° 1

22

7. The classifying space of the based gauge group

For $\varphi \in \Gamma_2(L) = \pi_3(M(L,2))$, define $F_{\varphi} : \mathcal{C}_{\bullet}(M(L,2), \mathbb{B}S^3) \to \Omega^3 \mathbb{B}S^3$ by $F_{\varphi}(f) = f \circ \varphi$. Clearly, the map :

$$F: \Gamma_2(L) \to \left[\mathcal{C}_{\bullet}(M(L,2), \mathrm{B}S^3), \Omega^3 \mathrm{B}S^3\right], \quad \varphi \mapsto F_{\varphi}$$

is a homomorphism of abelian groups. (Here, the notation [A,B] means based homotopy classes of based maps $A \to B$.) The main result of this section is the following theorem.

THEOREM 7.1. — ker $F = 12 \Gamma_2(L)$.

We apply this as follows. It is not hard to see that, up to homotopy, $\mathcal{C}_{\bullet}(X, BS^3)$ is the total space of the fibration induced by F_{φ} from the path fibration over $\Omega^3 BS^3$. Thus THEOREM 7.1 implies that for any prime $\ell \geq 5$, we have an ℓ -equivalence :

$$\mathcal{C}_{\bullet}(X, \mathrm{B}S^3) \sim_{(\ell)} \mathcal{C}_{\bullet}(M(L, 2), \mathrm{B}S^3) \times \Omega^4 \, \mathrm{B}S^3.$$

Moreover, this is still true for $\ell = 3$, or $\ell = 2$, if we suppose $\varphi \equiv 0$ (3), or $\varphi \equiv 0$ (4), respectively. On the other hand, if $\varphi \neq 0$ (3), then $\mathcal{C}_{\bullet}(X, BS^3)_{(3)}$ is not a product, as follows from THEOREM 2.1. Similarly, if φ is odd, then $\mathcal{C}_{\bullet}(X, BS^3)_{(2)}$ is not a product (see also REMARK 7.8).

Since $H * (\mathcal{C}_{\bullet}(M(L,2), \mathbb{B}S^3); \mathbb{Z})$ is the divided power algebra $\Gamma(L)$, we deduce :

COROLLARY 7.2. — Let $\alpha \in L$ be indivisible. If

$$\mu(\alpha)^n \in H^{2n}\left(\mathcal{C}(X, \mathbf{B}S^3)_k; \mathbb{Z}\left[\frac{1}{6}\right]\right)$$

is divisible by N, then N divides n!. Moreover, if $\varphi \equiv 0$ (3), then this is true with coefficients in $\mathbb{Z}\left[\frac{1}{2}\right]$.

Note that if φ is even (as a bilinear form), then COROLLARY 5.3 together with COROLLARY 1 of [M1] imply that $\mu(\alpha)^n \in H^{2n}(\mathcal{C}(X, BS^3)_k; \mathbb{Z}_{(2)})$ is divisible exactly by n!.

We now prove THEOREM 7.1. We start with two lemmas whose proof is left to the reader.

LEMMA 7.3. — The suspension $\Sigma C_{\bullet}(M(L,2), BS^3)$ has the homotopy type of a bouquet of spheres.

LEMMA 7.4. — There is a natural filtration (induced by a Postnikov decomposition of BS^3):

$$\left[\mathcal{C}_{\bullet}(M(L,2),\mathrm{B}S^{3}),\Omega^{3}\,\mathrm{B}S^{3}\right]=\mathcal{F}_{0}\supset\mathcal{F}_{1}\supset\mathcal{F}_{2}\supset\cdots,$$

where $\mathcal{F}_{n-1}/\mathcal{F}_n \approx \Gamma_n(L) \otimes \pi_{2n+2}(S^3)$.

Using this filtration, the map F defines natural linear maps :

$$\begin{aligned} \theta_1: \Gamma_2(L) &\longrightarrow \mathcal{F}_0/\mathcal{F}_1 \approx \Gamma_1(L) \otimes \pi_4(S^3) = L \otimes \mathbb{Z}/2, \\ \theta_2: \ker(\theta_1) &\to \mathcal{F}_1/\mathcal{F}_2 \approx \Gamma_2(L) \otimes \pi_6(S^3), \end{aligned}$$

where $\theta_i(\varphi) = F_{\varphi} \mod \mathcal{F}_i$. It is not hard to see that θ_1 corresponds to the suspension $\Gamma_2(L) = \pi_3(M(L,2)) \xrightarrow{\Sigma} \pi_4(\Sigma M(L,2)) = L \otimes \mathbb{Z}/2$. Alternatively, θ_1 is given by the formula $\theta_1(\gamma_2(x)) = \bar{x}$, $(x \in L)$. Thus, $\ker(\theta_1)$ consists exactly of the even forms.

The following two lemmas will imply THEOREM 7.1.

LEMMA 7.5. — Let $w = [i_1, i_2] \in \pi_3(S^2 \vee S^2) = \Gamma_2(\mathbb{Z} \oplus \mathbb{Z})$ be the Whitehead product of the obvious inclusions i_1, i_2 . If we localize at a prime $\ell \geq 5$, then F_w becomes null homotopic.

LEMMA 7.6. — Let $h \in \pi_3(S^2) = \Gamma_2(\mathbb{Z})$ be a generator. Then $\theta_2(2h)$ is the double of a generator of $\Gamma_2(\mathbb{Z}) \otimes \pi_6(S^3) \approx \mathbb{Z}/12$.

Granting these lemmas, here is a proof of the theorem.

First, we show $12 \Gamma_2(L) \subset \ker F$. Suppose $\varphi \in 12 \Gamma_2(L)$. It follows from LEMMA 7.3 that the abelian group $[\mathcal{C}_{\bullet}(M(L,2), BS^3), \Omega^3 BS^3]$ is (nonnaturally) isomorphic to $\prod_{j \in J} \pi_{n_j}(S^3)$ for some integers n_j . It clearly suffices to show that the image of F_{φ} in each of the $\pi_{n_j}(S^3)$ is zero. Now it is well known [S] that the ℓ -primary part of $\pi_i(S^3)$ $(i \geq 4)$ has exponent ℓ , for ℓ an odd prime, and exponent 4, for $\ell = 2$. Thus, the 2- and 3-primary parts of F_{φ} are zero. To study the ℓ -primary part for $\ell \geq 5$, we may as well localise at ℓ . The image of $w = [i_1, i_2]$ in $\pi_3(S^2)$ under the obvious sum map $S^2 \vee S^2 \to S^2$ is 2h, where h is a generator of $\pi_3(S^2)$. Thus, LEMMA 7.5 implies that F_{2h} is null-homotopic (after localization at ℓ). But F_{2h} is homotopic to $2 \circ F_h$, where 2 means the self-map of $\Omega^3 BS^3_{(2)}$ induced by multiplication by 2 on S^3 . Since this map is a homotopy equivalence, it follows that F_h is null-homotopic. By naturality, this implies that (the ℓ -primary part of) F_{φ} is null-homotopic for any $\varphi \in \Gamma_2(L)$. This shows $12\Gamma_2(L) \subset \ker F$.

Next, we show ker $F \subset 12 \Gamma_2(L)$. By naturality, LEMMA 7.6 implies that there is a generator $\varepsilon \in \pi_6(S^3)$ such that $\theta_2(2\varphi) = 2\varphi \otimes \varepsilon \in \Gamma_2(L) \otimes \pi_6(S^3)$ for any $\varphi \in \Gamma_2(L)$. Now, suppose we have $\varphi \in \ker F$. Then $2\varphi \in \ker F$, whence $2\varphi \otimes \varepsilon = \theta_2(2\varphi) = 0$. Thus φ must be divisible by 6. In particular, we have $\varphi = 2\varphi'$, thus we can repeat the argument to find $\varphi \otimes \varepsilon = \theta_2(\varphi) = 0$. Thus φ must be divisible by 12.

томе 119 — 1991 — N° 1

24

It remains to prove LEMMAS 7.5 and 7.6.

Proof of Lemma 7.5. — Set $G = S^3_{(\ell)}$. We must show that

$$F_w: \mathcal{C}_{\bullet}(S^2 \vee S^2, \mathbf{B}G) = \Omega^2 BG \times \Omega^2 \mathbf{B}G \to \Omega^3 \mathbf{B}G$$

is null-homotopic.

Recall that the join X * Y of two spaces X, Y is defined as the quotient of the product $X \times I \times Y$ by the identifications (x, 0, y) = (x', 0, y), (x, 1, y) = (x, 1, y'). Think of S^3 as $S^1 * S^1$. Think of S^2 as $S^1 \wedge S^1$. For $t \in I = [0, 1]$, let [t] be its image in $S^1 = I/(0 = 1)$. Then the map $w: S^3 = S^1 * S^1 \to S^2 \vee S^2$, defined by :

$$w(x,t,y) = \begin{cases} i_1([2t] \wedge x) & \text{if } t \leq \frac{1}{2}, \\ i_2([2-2t] \wedge y) & \text{if } t \geq \frac{1}{2}, \end{cases}$$

represents the Whithehead product $[i_1, i_2]$.

Similarly, define $\tilde{w}: G * G \to \Sigma G = S^1 \wedge G$ by the formula :

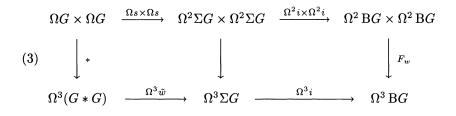
$$\tilde{w}(a,t,b) = \begin{cases} [2t] \wedge a & \text{if } t \leq \frac{1}{2}, \\ \\ [2-2t] \wedge b & \text{if } t \geq \frac{1}{2}. \end{cases}$$

Let $s: G \to \Omega \Sigma G$ be the canonical map, sending $x \in G$ to the loop $t \mapsto t \wedge x$. Let $i: \Sigma G \to BG$ be the map classifying the principal *G*-bundle whose clutching function is the identity $G \to G$. Then it is well known that the composition

$$G \xrightarrow{s} \Omega \Sigma G \xrightarrow{\Omega i} \Omega B G$$

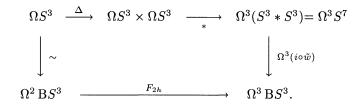
is a homotopy equivalence.

The key observation is that the following diagram is homotopy commutative :



Here, the map * is the join, that is *(f,g) = f * g, where f * g(x,t,y) = (f(x),t,g(y)). Now $i \circ \tilde{w} \in [G * G, BG] \approx \pi_7(BS^3)_{(\ell)}$. But this group is zero, since $\pi_7(BS^3) = \pi_6(S^3) = \mathbb{Z}/12$, and $\ell \geq 5$. This implies that F_w is null-homotopic, since $(\Omega i) \circ s$ is a homotopy equivalence. This proves LEMMA 7.5.

Proof of Lemma 7.6 : recall that the image of $w = [i_1, i_2]$ in $\pi_3(S^2)$ under the obvious sum map $S^2 \vee S^2 \to S^2$ is 2*h*. Thus, diagram (3) gives a homotopy commutative diagram :



Here, Δ is the diagonal map, and \ast is the join. As in Lemma 7.4, we have a filtration :

 $\left[\Omega S^3, \Omega^3 S^7\right] = \mathcal{F}'_0 \supset \mathcal{F}'_1 \supset \mathcal{F}'_2 \supset \cdots,$

where $\mathcal{F}'_{n-1}/\mathcal{F}'_n \approx \Gamma_n(\mathbb{Z}) \otimes \pi_{2n+3}(S^7)$. Since $\mathcal{F}'_0/\mathcal{F}'_1 = 0$, the map $* \circ \Delta$ defines an element

$$\eta \in \mathcal{F}_1'/\mathcal{F}_2' \approx \pi_7(S^7).$$

Moreover, identifying $\pi_6(S^3) = \pi_7(BS^3)$, we have by naturality :

$$\theta_2(2h) = (i \circ \tilde{w})_*(\eta).$$

As is well known [T], $i \circ \tilde{w}$ is a generator of $\pi_7(BS^3)$. Thus, identifying $\pi_7(S^7) = \mathbb{Z}$, we are reduced to prove the following :

Claim : $\eta = \pm 2$.

To prove the claim, let $A: \Sigma^3 \Omega S^3 \to S^7$ be the the map adjoint to $* \circ \Delta$. Note that the induced map $H_7(A; \mathbb{Z})$ is of the form $\mathbb{Z} \to \mathbb{Z}$, and it is not hard to see that this is actually multiplication by η .

I owe P. VOGEL the following argument. Represent a generator of $H_4(\Omega S^3; \mathbb{Z}) \approx \mathbb{Z}$ by a map $g: M^4 \to \Omega S^3$, where M^4 is a closed oriented 4-manifold. Call F the composition

$$F: S^3 \times M \to \Sigma^3 M \xrightarrow{\Sigma^3 g} \Sigma^3 \Omega S^3 \xrightarrow{A} S^7.$$

tome 119 — 1991 — $^{\rm n^o}$ 1

Clearly η is equal to $d^{\circ}(F)$, where $d^{\circ}(F)$ means the degree of F as a map between smooth compact oriented manifolds. Now let f be the map $S^1 \times M \to \Sigma M \to S^3$ adjoint to g. Identifying $S^3 = S^1 * S^1$, $S^7 = S^3 * S^3$, we see that F is given by the formula

$$F((a,t,b,),x) = (f(a,x),t,f(b,x)).$$

We may suppose f is smooth. Then F is also smooth, and has a regular value of the form $(z, t_0, z') \in S^3 * S^3$, where $0 < t_0 < 1$. Thus

$$d^{\circ}(F) = \#\left\{\left((a,t_0,b),x\right) \mid f(a,x) = z, \ f(b,x) = z'\right\}$$
$$= \pm d^{\circ}(\widetilde{F}),$$

where $\widetilde{F}:S^1\times S^1\times M\to S^3\times S^3$ is given by $\widetilde{F}(a,b,x)=(f(a,x),f(b,x)).$

Finally, we can calculate $d^{\circ}(\widetilde{F})$ as follows. Let $\sigma \in H^{3}(S^{3}; \mathbb{Z})$ and $\theta \in H^{1}(S^{1}; \mathbb{Z})$ be the standard generators. Then $f^{*}(\sigma) = \theta \otimes g^{*}(\alpha)$, with α a generator of $H^{2}(\Omega S^{3}; \mathbb{Z})$. Hence $\widetilde{F}^{*}(\sigma \otimes \sigma) = \pm \theta \otimes \theta \otimes g^{*}(\alpha)^{2}$, and since $\frac{1}{2}\alpha^{2}$ generates $H^{4}(\Omega S^{3}; \mathbb{Z})$, we see $d^{\circ}(\widetilde{F}) = \pm 2$.

This proves LEMMA 7.6, and completes the proof of THEOREM 7.1.

COROLLARY 7.7. — Let $\varphi \in \Gamma_2(L)$. Then $F_{\varphi} : \mathcal{C}_{\bullet}(M(L,2), \mathbb{B}S^3) \to \Omega^3 \mathbb{B}S^3$ is homotopy linear if and only if F_{φ} is null-homotopic.

Proof. — Let $i_1, i_2 : M(L, 2) \to M(L \oplus L, 2)$ be induced by the obvious inclusions $L \to L \oplus L$. For $\varphi \in \Gamma_2(L)$, define

 $\mathbf{d}(\varphi) = (i_1 + i_2) \circ \varphi - i_1 \circ \varphi - i_2 \circ \varphi \in \pi_3 \big(M(L \oplus L, 2) \big) = \Gamma_2(L \oplus L).$

Then F_{φ} is homotopy linear if and only if

$$F_{\mathrm{d}(\varphi)} \in [\mathcal{C}_{\bullet}(M(L \oplus L, 2), \mathrm{B}S^3), \Omega^3 \mathrm{B}S^3]$$

is zero. But the linear map $\Gamma_2(L) \to \Gamma_2(L \oplus L), \varphi \mapsto d(\varphi)$ is injective. This implies the corollary.

REMARK 7.8. — Consider the fibration

. ^

$$\Omega^4 \widehat{B} \to \mathcal{C}_{\bullet}(X, \mathrm{B}S^3)_k \to \mathcal{C}_{\bullet}(M(L, 2), \mathrm{B}S^3)$$

obtained from fibration (1) by restricting to base point preserving maps. It is not hard to see that in the homology spectral sequence, the differential :

$$\begin{split} \mathbf{d}_{2,0}^2 : E_{2,0}^2 &\approx H_2\big(\mathcal{C}_{\bullet}(M(L,2),\mathbf{B}S^3);\mathbb{Z}\big) \approx L^* \\ & \longrightarrow E_{0,1}^2 \approx H_1\big(\Omega_k^4\,\mathbf{B}S^3;\mathbb{Z}\big) \approx \pi_4(S^3) \approx \mathbb{Z}/2 \end{split}$$

corresponds to $\theta_1(\varphi)$ via the natural isomorphism

$$\operatorname{Hom}(L^*, \mathbb{Z}/2) \approx L \otimes \mathbb{Z}/2.$$

Recall that $H_*(\mathcal{C}_{\bullet}(M(L,2), \mathbb{B}S^3); \mathbb{Z})$ is a polynomial algebra on 2-dimensional generators. Thus, if the homology spectral sequence were *multiplicative*, then the condition $\theta_1(\varphi) = 0$ would imply that the whole spectral sequence degenerates at the E^2 -level. However, the only geometric condition to ensure multiplicativity of the spectral sequence we can think of is that F_{φ} be homotopy linear. Curiously enough, if $\theta_1(\varphi) = 0$, then the mod 2 spectral sequence *does* degenerate by PROPOSITION 5.1, although F_{φ} , even localised at 2, need not be homotopy linear as follows from COROLLARY 7.7.

Appendix : proof of Proposition 4.3. — Write :

$$A_* = H_*(BO; \mathbb{F}_2) = P(a_i; i \ge 1), \quad B_* = \operatorname{Im}(j_*) = P(b_n; \varepsilon_0(n) \le 1).$$

Here b_n is the image of the generator of degree n appearing in PROPOSI-TION 3.1. Recall that the b_n are indecomposable, and their expression in terms of the a_i can be found in [K]. We will use the following notation. When $I = (i_1, i_2, \ldots, i_s)$ is a partition of n, then $a(I) = a_{i_1}a_{i_2} \ldots a_{i_s}$, $b(I) = b_{i_1}b_{i_2} \ldots b_{i_s}$, and $a(I)^*$ is the dual of a(I) with respect to the basis of A_* given by the monomials in the a_i . We need the following lemma :

LEMMA. — Let $I = (i_1, i_2, ..., i_s)$ be a partition of $2^{\lambda}m$, where $\lambda \ge 1$ and m is an odd integer. Suppose all $i_{\nu} \equiv 0(m)$. Then $a(I)^*$ is indecomposable if and only if I = (m, m, ..., m).

Proof. — Recall $H^*(BO; \mathbb{F}_2) = P(w_i; i \ge 1)$, where w_i is the mod 2 reduction of the i^{th} symmetric polynomial σ_i in formal indeterminates t_1, t_2, \ldots In terms of symmetric polynomials, the element $a(I)^*$ can be written

$$a(I)^* = s_{i_1,...,i_s} = \sum t_1^{i_1} \dots t_s^{i_s}$$

(cf. [MS] for this notation). We will also use the notation

$$S_m^{(i)} = s_{m,...,m} = (a_m^i)^*.$$

Observe that $s_m^{(i)} = \sigma_i(t_1^m, t_2^m, \ldots)$. Finally, recall the Newton formula :

$$s_n - \sigma_1 s_{n-1} + \dots + (-1)^{n-1} \sigma_{n-1} s_1 + (-1)^n n \sigma_n = 0.$$

томе 119 — 1991 — N^o 1

Consider a partition of $2^{\lambda}m$ of the form $I = (j_1m, \ldots, j_rm)$. First, suppose $r < 2^{\lambda}$. Define an algebra homomorphism $\Phi : H^*(BO) \to \mathbb{F}_2$ by setting $\Phi(t_{\nu}) = 1$ for $1 \le \nu \le 2^{\lambda}$, $\Phi(t_{\nu}) = 0$ for $\nu > 2^{\lambda}$. Then $\Phi(w_j) = {2 \choose j}$, hence $\Phi(w_j) = 0$ for $j < 2^{\lambda}$, and $\Phi(w_{2^{\lambda}}) = 1$. Similarly, $\Phi(s_{j_1,\ldots,j_r}) = {2^{\lambda} \choose r} = 0$, since $r < 2^{\lambda}$. Hence s_{j_1,\ldots,j_r} is a polynomial in $w_1,\ldots,w_{2^{\lambda}-1}$. This implies that s_{j_1m,\ldots,j_rm} is a polynomial in $s_m, s_m^{(2)},\ldots,s_m^{(2^{\lambda}-1)}$. Thus $a(I)^* = s_{j_1m,\ldots,j_rm}$ is decomposable.

Now suppose $r = 2^{\lambda}$, that is $a(I)^* = (a_m^{2^{\lambda}})^* = s_m^{(2^{\lambda})}$. We must show that this is indecomposable. To see this, we work in the ring of symmetric polynomials with integral coefficients. By the Newton formula, $s_{2^{\lambda}m} + 2^{\lambda}m \sigma_{2^{\lambda}m}$ is decomposable. Applying the Newton formula with the formal variables t_i replaced by t_i^m shows that $s_{2^{\lambda}m} + 2^{\lambda}s_m^{(2^{\lambda})}$ is also decomposable. Hence $s_m^{(2^{\lambda})} \equiv m \sigma_{2^{\lambda}m}$ modulo decomposable elements. Since m is odd, the result follows.

This completes the proof of our lemma.

We now prove PROPOSITION 4.3. For each n such that $\varepsilon_0(n) \ge 2$, we define $r_n \in \ker(j^*)$ as follows. Write $n = 2^{\ell}m$ where m is odd. Also, write $n = 2^{\lambda}\mu$ where $\mu = 4m$ if $\varepsilon_0(m) = 0$, $\mu = 2m$ if $\varepsilon_0(m) = 1$, and $\mu = m$ if $\varepsilon_0(m) \ge 2$. Set $r_n^{(0)} = (a_{\mu}^{2\lambda})^*$. Define inductively

$$r_n^{(i)} = r_n^{(i-1)} + \sum \langle r_n^{(i-1)}, b(I) \rangle a(I)^*$$

where the sum is over all partitions $I = (i_1, i_2, ..., i_s)$ of n such that $s \ge 2^{\lambda} - i$ and all $i_{\nu} \equiv 0$ (μ). Then set $r_n = r_n^{(2^{\lambda})}$.

We now show $r_n \in \ker(j^*)$. It suffices to show that $\langle r_n, b(I) \rangle = 0$ for all possible monomials b(I) of degree n. By the very definition of r_n , it is clear that we only have to consider those monomials b(I)where the partition $I = (i_1, i_2, \ldots, i_s)$ is such that all $i_{\nu} \equiv 0$ (μ). Call these partitions admissible, and call s the length of such a partition. Observe that since $\varepsilon_0(\mu) \geq 2$, there is no generator b_{μ} . Hence there is no admissible partition of length 2^{λ} . It then follows from the definition of $r_n^{(1)}$ that $\langle r_n^{(1)}, b(I) \rangle = 0$ for all admissible partitions of length $\geq 2^{\lambda} - 1$. Similarly, since $\langle a(I)^*, b(I') \rangle = 0$ whenever the length of I' is greater than the length of I, we see by induction on i that $\langle r_n^{(i)}, b(I) \rangle = 0$ for all admissible partitions of length $\geq 2^{\lambda} - i$. This shows $r_n \in \ker(j^*)$.

Next we show that the r_n verify the indecomposability properties claimed in Proposition 4.3. First suppose $\varepsilon_0(m) \ge 2$. Then $\mu = m$ is

odd, and the above lemma implies that r_n is indecomposable. Second, suppose $\varepsilon_0(m) = 1$. Then $\mu = 2m$, hence r_n admits a unique square root $x_{n/2}$. (Indeed, r_n is a sum of terms of the form $s_{j_1\mu,\ldots,j_r\mu}$, and we have $s_{j_1\mu,\ldots,j_r\mu} = (s_{j_1m},\ldots,j_rm)^2$). Moreover, the lemma implies that $x_{n/2}$ is indecomposable. Similarly, if $\varepsilon_0(m) = 0$, then $\mu = 4m$, and r_n is the fourth power of an indecomposable element $x_{n/4}$.

This completes the proof of part (i) of PROPOSITION 4.3. For part (ii), suppose given a system of elements $r_n \in \ker(j^*)$ with the above indecomposability properties. For $n = 2^{\ell}m$ where m is odd, define $x_n = r_n$ if $\varepsilon_0(m) \ge 2$, $x_n = (r_{2n})^{1/2}$ if $\varepsilon_0(m) = 1$, and $x_n = (r_{4n})^{1/4}$ if $\varepsilon_0(m) = 0$. Since all x_n are indecomposable, we have $H^*(\mathrm{BO}; \mathbb{F}_2) = P(x_n; n \ge 1)$. This shows that no r_n is in the ideal generated by the r_i with i < n. Using this, an easy calculation shows that that the Poincaré series of $\ker(j^*)$ coincides with the Poincaré series of the ideal freely generated by the r_n . This proves part (ii) of PROPOSITION 4.3.

Remarks :

1) If $\varepsilon_0(m) = 0$, then r_n is a fourth power, and we may replace r_n by $w_{n/4}^4$.

2) If $\varepsilon_0(m) \leq 1$, then $r_n = r_n^{(0)} = (a_\mu^{2^\lambda})^*$. This is obvious if $\varepsilon_0(m) = 0$, since in this case $\mu \equiv 0$ (4), and there are no generators b_n in degrees divisible by 4. If $\varepsilon_0(m) = 1$, the argument is as follows. We must show $\langle (a_\mu^{2^\lambda})^*, b(I) \rangle = 0$ for all possible monomials b(I)of degree $n = 2^{\ell}m = 2^{\ell-1}\mu$. Suppose $I = (j_1, \ldots, j_r)$ is a partition of nsuch that there is a monomial b(I). Then $\sum j_\nu = n$, and all $\varepsilon_0(j_\nu) \leq 1$. If $\langle (a_\mu^{2^\lambda})^*, b(I) \rangle = 1$, then all j_ν must be divisible by $\mu = 2m$. But we will show that this is impossible. Indeed, suppose that all j_ν are divisible by $\mu = 2m$. Set $k_\nu = \frac{1}{2}j_\nu$. Then $\sum k_\nu = \frac{1}{2}n = 2^{\lambda}m$. Moreover, we have $\varepsilon_0(k_\nu) = 0$, hence we can write $k_\nu = 2^{\ell_\nu} - 1$. Let ℓ_0 denote the order of 2 in $(\mathbb{Z}/m)^*$. Since each k_ν is divisible by $2^{\ell_0} - 1$, hence so is $\sum k_\nu = \frac{1}{2}n = 2^{\lambda}m$. It follows that m is divisible by $2^{\ell_0} - 1$. On the other hand, m divides $2^{\ell_0} - 1$ by definition. Thus $m = 2^{\ell_0} - 1$. But this implies $\varepsilon_0(m) = 0$, thus contradicting our hypothesis.

3) It turns out that the smallest n such that $r_n \neq (a_{\mu}^{2^{\lambda}})^*$, is n = 144. In this case, the algorithm yields $r_{144} = (a_9^{16})^* + (a_{27}^{3}a_{63})^*$.

томе 119 — 1991 — N^o 1

Acknowledgements. — The author wishes to thank his advisor, Professor Pierre VOGEL, for many helpful discussions.

BIBLIOGRAPHY

- [AB] ATIYAH (M.F.), BOTT (R.). The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, t. 303, 1982, p. 523-615.
- [D1] DONALDSON (S.K.). The Geometry of 4-Manifolds, Proceedings of the International Congress of Mathematicians, Berkeley, 1986, p. 43– 54.
- [D2] DONALDSON (S.K.). Connections, cohomology and the intersection forms of 4-manifolds, J. Differential Geom., t. 24, 1986, p. 275–341.
- [D3] DONALDSON (S.K.). Polynomial invariants for smooth 4-manifolds, Topology, (In press).
- [FU] FREED (D.) and UHLENBECK (K.). Instantons and 4-manifolds, Math. Sci. Res. Inst. Publ., Vol. 1, Springer, New York, 1984.
- [CLM] COHEN (F.), LADA (T.) and MAY (J.P.). The Homology of Iterated Loop Spaces, Lecture Notes in Mathematics, Vol. 533, Springer, 1976.
 - [K] KOCHMAN (S.). Homology of the Classical Groups over the Dyer-Lashof-Algebra, Trans. Amer. Math. Soc., t. 185, 1973, p. 83–136.
 - [M1] MASBAUM (G.). Sur l'algèbre de cohomologie entière du classifiant du groupe de jauge, C. R. Acad. Sci. Paris, t. 307, I, 1988, p. 339–342.
 - [M2] MASBAUM (G.). Thesis, Nantes, 1989.
 - [M3] MASBAUM (G.). Sur la cohomologie du classifiant du groupe de jauge sur certains 4-complexes, C. R. Acad. Sci. Paris, t. 310, I, 1990, p. 115–118.
 - [Mi] MILGRAM (R. J.). Iterated Loop Spaces, Ann. of Math., t. 84, 1966, p. 386–403.
 - [MH] MILNOR (J.) and HUSEMOLLER (D.). Symmetric bilinear forms, Ergebnisse der Mathematik 73, Springer, 1973.
 - [MS] MILNOR (J.) and STASHEFF (J.). Lectures on characteristic classes, Ann. of Math. Studies 197, Princeton University Press, 1974.
 - [S] SELICK (P.). Odd Primary Torsion in $\pi_k(S^3)$, Topology, t. 17, 1978, p. 407–412.
 - [T] TODA (H.). Generalized Whitehead products and homotopy groups of spheres, J. Inst. Polytechn. Osaka City Univ., t. 3, 1952, p. 43–82.