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ON THE COHOMOLOGY OF THE CLASSIFYING
SPACE OF THE GAUGE GROUP

OVER SOME 4-COMPLEXES

BY

GREGOR MASBAUM (*)

RESUME. — Nous etudions Palgebre de cohomologie de 1'espace classifiant du groupe
de jauge d'un SU(2)-fibre sur certains espaces de dimension 4. En particulier, nous
obtenons des renseignements sur les proprietes de divisibility et de non-divisibilite,
des classes obtenues par Papplication p. introduite par S. Donaldson. Ces resultats ont
ete annonces dans [M3].

ABSTRACT. — We study the cohomology algebra of the classifying space of the
gauge group of a SU(2)-bundle over some 4-dimensional spaces. In particular, we obtain
information on divisibility and indivisibility properties of classes obtained via the map p,
introduced by S. Donaldson. These results were announced in [M3],

1. Introduction

We consider pairs (X, [X]), where X is a space having the homotopy
type of a bouquet of a finite number of 2-spheres with one 4-cell at-
tached, and [X] is a generator of H^X\J.) w Z. For example, it is well
known (see for instance [MH]) that any oriented closed simply-connected
4-manifold X, with fundamental class [X], is of this type. The alge-
braic invariants of the pair (X, [X]) are (L,(^), where L = H^(X',J.) is
a free Z-module of finite rank, and (p e BS(L*) is the symmetric bilinear
form on L* = H2(X', Z) given by the cup product and evaluation on [X].
We call (f the "intersection form" of X, even though X in general cannot
be realized as a manifold.

Consider a principal SU(2)-bundle P —> X, with second Chern num-
ber k. Let Gk(X) be the gauge group of P, that is the group of automor-
phisms of the bundle inducing the identity on X. It is well known [D2]
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2 G. MASBAUM

that the classifying space BGk(X) has the (weak) homotopy type of the
function space C(X,BS3)k of continuous maps f : X —^ BS3 = BSU(2)
of degree k, i.e. such that (/*(c2),[X]} = k. We are interested in the
cohomology of this space.

As in [D2], consider the linear map

^ : ̂ (X;Z) -. H^^X.BS3)^!)

defined by the slant product /^(a) = ev*(c2)/a, where :

ey'.XxC^X.BS^k -^ BS3

is the evaluation map. As observed by DONALDSON, the map [i generates
all of the rational cohomology ofC(X,B5'3)^. More precisely, the rational
cohomology o{C(X,BS3)k is isomorphic to the polynomial algebra

Q[/^([base point]), /^(ai) , . . . ,^(0^)],

where a\,..., 0:5 is a basis of L.

To analyze the situation, and study integral cohomology, we can
proceed as follows. There is a natural isomorphism BS(L*) w 7T3(M(L, 2)),
where M(L, 2) denotes the 2-dimensional Moore space over L. Viewing y
as an element of 7rs(M(L, 2)) via this isomorphism, we can replace X, up
to (oriented) homotopy, by the cofibre of (p : X ~ M(L,2) U<^ D4. This
induces a fibration :

(1) ^B -^ C^X.BS^k ̂  C(M(L,2),B53).

Here r denotes restriction of maps, B is the 4-connective covering of BS3,
and n is the loop space functor.

Set A(L) = H^C(M{L, 2), BS3)', Z). This algebra is a covariant functor
of L, and was determined in [Ml].

THEOREM 1.1.

A(L)=(j)A,(L)
i>0

=Z[p][{^(a)|z>0, ae£}]/J.

TOME 119 —— 1991 —— N° 1



COHOMOLOGY OF SOME GAUGE GROUPS 3

Here p has degree 4, /^(a) has degree 2%, and the ideal I is given by
the following relations :

(i) ^o(a) = 1;

(ii) ^(a+a')= ^ ^(a)^-(a');
i+^==n

/ • • • \ / \ / \ v^ ^+J - 2A;\ /z+^'- A; - 1\ , „
(m) ^(0)^(0)=]^ z - f c A A; J^-2^)jA

Moreover, we have /-A ([base point] )=-r*(j?), and /^(a) = r*(/Ai(a)),
a e L == I^P^Z). Consider then Serre's spectral sequence of fibra-
tion (1) :

E^ = A(L)^H\^B',T) =^ jr^X.B^^Z).

Note that the i^-terms is independent of (p and k. Moreover, A(L) has no
torsion, whereas H*(^B', Z) is torsion since 7r,(Q4^) = 7r^(S3) is finite
for i > 1. Thus the restriction map r induces an inclusion

r^.A(L)^H^C(X,BS3)^)

whose cokernel is torsion. From now on, we will identify A(L) with its
image under r*.

Here is a brief outline of this paper.

In paragraph 2, we define and study some "natural" cohomology classes
on the space C(X,BS3)k. In particular, the intersection form (p defines
an integral class Q of degree 4, and as a corollary we show that the class
{kp+n^p71-1 e H^(C{X, BS3)^ 1) is divisible by 2n+l. This also shows
that in general A(L) is not a direct summand in the integral cohomology
of the space C^B^3)^.

In paragraph 3, we use some results on Dyer-Lashof-operations to
describe explicitely the homology of H4^, the fiber of fibration (1).

Paragraph 4 is devoted to studying a certain map j : ^B —^ BO
in homology, which will be used later. We also describe the mod 2
cohomology algebra of ̂ B as a quotient of AT* (BO; F2).

In paragraph 5, we put together the results of the previous sections
to obtain some divisibility properties in the cohomology of C(X,BS3)k
that depend heavily on the second Chern number k. For example, in

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



4 G. MASBAUM

PROPOSITION 5.4 we show that in the integral cohomology of the space
C(S4,BS3)k, for any odd prime i, the element p^-1)/2 is divisible by i if
and only if k ^ 0 (£). The results of this section allow to distinguish some
of the topological group extensions :

1 ̂  G. wC.(X,S3) -^ Gk{X) -^ S3 -^ 1,

where G. is the subgroup of gauge transformations that act as the identity
on one fibre (see REMARK 5.6).

In paragraph 6, we study integral cohomology modulo torsion in
the special case X = S'4, k = 1. The main result of this sec-
tion is stated in PROPOSITION 6.1, where we completely determine the
subring of -^(^(^B,?3)!; Z) /torsion generated by p and the natural
classes of paragraph 2. It is possible that this subring is actually equal
to ^((^(.S^BS^i^/torsion. We show this to be the case at least in low
degrees, and after inverting 2 (see COROLLARY 6.3).

Finally, the main result of paragraph 7 is THEOREM 7.1 where we show
that in the case of base-point-preserving maps, the analogue of fibra-
tion (1) is a product when localised at a prime > 5. This gives an upper
bound on divisibility of classes of the form ji^a)71 (see COROLLARY 7.2).

REMARK. — Gauge Theory has been used by DONALDSON to prove
striking results on smooth 4-manifolds (see [Dl] for an overview). These
results are obtained by studying moduli spaces of anti-self-dual connec-
tions, using non-linear analysis and algebraic geometry. The definition of
Donaldson's "polynomial invariants" [D3] makes use, at least formally,
of the cohomology of the moduli space of all (irreducible) connections
on a SU(2)-bundle over a compact smooth 4-manifold X. This space has
the (weak) homotopy type of the classifying space of the group G'^(X\
the quotient of the gauge group Gk(X) of the bundle by its center
{±1} (c/. [D2]). Hence this space is at odd primes the same as the
space BGk{X) w C(X,BS3)k studied in this paper. This relationship orig-
inally motivated our interest in divisibility properties in the cohomology
ringofB^(X).

2. Natural cohomology classes on C(X,B53)^

Suppose we can associate to each (X, [X]) a cohomology class ^(X)
on C(X,BS3)k such that for any degree one map / : X —> X' (i.e. such
that f^[X] = [X'}) we have F*(o;(X)) == uj[X'\ where

F-.CiX^BS^k^C^X^BS3^

TOME 119 — 1991 — ?1



COHOMOLOGY OF SOME GAUGE GROUPS 5

is composition with /. Then we will call uj[X) a natural cohomology class.
For example, p = fi ([base point]) is natural. The intersection form y? of
X defines another natural class ^t as follows.

Recall that the universal quadratic module r2(L) is defined as F I R ,
where F is the free Z-module generated by L, and R is the smallest
submodule such that the map 72 : L -> F^L) defined in the obvious
way satisfies :

1) 72(no) = n^^a) for n C Z;
2) the map (a, /?) ̂  72(0 -1- f3) - 72(0) - ̂ {/3) is bilinear.

There is a well known natural isomorphism T^{L) w £?5(Z/*), given by
sending 72(0) to the bilinear form (4^2) 1-̂  ^1(0)^2(0). Next observe
that T^(L) is also the degree 4 part of the classical divided power algebra

W - Qr,(L) = Z[{7,(a) | i > 0, a C L}]/J,
i>0

where 7^(0;) has degree 2%, and the ideal J is given by relations (i), (ii)
and (iii) of THEOREM 1.1 with /^ replaced by 7,, and p = 0. (Note
that (iii) becomes simply 7, (0)7^ (a) = (^)7^(a).) The correspon-
dence /^(o) \-> 7n(o) defines a ring homomorphism A(L) —> r(L), whose
kernel is the ideal generated by p (cf. [Ml]). Moreover, the exact sequence

O ^ Z . p ^ A 2 ( L ) - . r 2 ( L ) ^ 0
is canonically split, upon lifting 72(0) to ^2(0). Here is then the promised
definition : the class fl e A^L) C ^(C^X^BS3)^ Z) is the canonical lift
of the intersection form ^ € £?5(L*), where the latter group is identified
with F^(L) as explained above.

Here is the main result of this section :
THEOREM 2.1

(i) There are natural classes pn(X) € ^(^(X.B^^Z^]), veri-
fying :

2(2n+l)^(pl(X),p2W,...)=(-l)7^+l(^+^)pn-l.
(ii) If the intersection form of X is even, there are natural classes

w,(X) e ̂ (X.B^3)^), verifying :

^(wi(X),W2(X),. . .)4 = (kp + nW1.
Moreover in this case the pn(X) are integral classes, and they verify the
relations given above in integral cohomology modulo an element oforder2.

Here Sn is the n-ih Newton polynomial, and "-?? means reduction mod 2.
Before defining these classes and proving their properties, let us point

out the following corollary :

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 G. MASBAUM

COROLLARY 2.2. — The class (kp + nfl)?71-1 C H^n(C{X,BS3)k^) is
divisible by 2n + 1.

Note that if (p C BS(L*) is indivisible (e.^. if (p is non-degenerate), and
if (k,n) = 1, then (fcp+TzO)^71"1 is indivisible in A^n(L). (Indeed, it is ob-
vious from the definition of the class fl, that kp-\-n^l is indivisible in A^(L)
if (A:,n) = 1. Moreover, it is not hard to see that A(-L) is isomorphic as a
J.\p]-module (but not as a ring, cf. [Ml]), to Z[p] (g) r(L). Hence multipli-
cation by p preserves indivisible elements, and the statement follows.)

Thus the corollary implies that the subalgebra

A^cir^X.B^^Z)

is not a direct summand in this case.

REMARK 2.3. — Note that JP^J^B^^ZVtorsion injects into
A(L) 0 Q. A calculation shows that modulo torsion, we have :

1 - Pi + P2 - ' ' '
,, , .-k/2 \ ( i ^V-i arctan^M= ( l + p ) ^exp|(A;-^)(l--^-)j

= 1 - ̂ (kp + Q) + —— [(18A; + 5A;2)?2 + {10k + 36)p^ + 5Q2] + • • •6 360

To define the classes appearing in THEOREM 2.1, we need the following
lemma, whose proof is left to the reader.

LEMMA 2.4. — The homology Chern character of X is injective.
Moreover, for all X of the considered type, we have

ch,(^oW)^^] ^jr,(x;z[j])c^(x;Q),

and if X has even intersection form, then

ch,(^oW) =^(X;Z)C^(X;Q).
We introduce the following notation. Let :

[X}K=W-l[X]eKo(X•,l[^).

Define rfx eK°(X x C^X.BS3)^^]) by the evaluation map

X x ^X.BS3)), -^ BS3 = BSU(2) ̂  BSU

TOME 119 —— 1991 —— N° 1



COHOMOLOGY OF SOME GAUGE GROUPS 7

and put ^x = r ] x / [ X ] K € K^^X.BS3)^ Z[^]) . We now define :

p,(X) = (-1)^(60 G ̂ (WB^^Z^]).

Note that, by LEMMA 2.4, we have [X\K € ^o(^) C ^o(^;Z[j])
if X has even intersection form. Hence f,x € ^(^(X.B^3)^) in this
case, and pn(X) e ^(CpC.B^^Z). Moreover, we can then de-
fine w,(X) = w,^x) € ^(X.B,?3)^).

It is not hard to see that ^x qualifies as natural in our sense, hence
the classes pn{X) and Wz{X) are natural. Moreover, after inverting 2,
a space X which is the cofiber of ^ C 7T3(M(L, 2)) has the same homotopy
type as a space X' which is the cofiber of 4(^ because there is an obvious
degree one map X —> X' induced by multiplication by 2 on L. Hence, to
prove THEOREM 2.1 we may suppose that X has even intersection form.

Consider Sg == M(Z2P,2) U^ D4, where (pg = EI^^L the standard
basis of I29 being (ei, e'i,..., eg, e'g). (Here, [a, /3] = 72(0 4- /3) - 72 (oQ -
72(/?) is the Whitehead product.) Note that Sg has the homotopy type
of a connected sum of g copies of S2 x S2. If X has even intersection
form (/?, then we can write ^ = ^[0^,0^] where o^,c^ C L. Clearly the
map / : I29 -> L, defined by f(e,) = a,, f{e\) = a[, extends to a degree
one map f : Sg —^ X. Since the classes p, n, pni ^i ^ve a^ natural, this
shows that it suffices to prove THEOREM 2.1 in the case X = S g .

From now one, we consider X = S g . The idea of proof is as follows. The
stabilisation map j : S3 = SU(2) —^ SU induces a commutative diagram :

SgXC^Sg^BS^k —————7———— B53

(2) ixj j
•• ' _ 'I'

SgXC(Sg,BS\J)k ————r1-———— BSU.

Here rj and rf are the evaluation maps. Let Cn e ^^(BSU; Z) be the n-th
Chern class. For n > 3 we have ^'*(cn) = 0, hence (1 x j^*^^)) = °-
Writing this equation explicitely will prove the theorem.

In order to calculate the total Chern class of rj, we will first decompose
the space C(5p,BSU)fc as a product. Let C.(Sg,BS\J)k be the subspace
formed by the base-point preserving maps. The restriction map

r : C. {Sg, BSU)^ ̂  C. (M(Z2^, 2), BSU)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



^ G. MASBAUM

admits a canonical section s defined as follows : thinking of M(Z'2^2) as
a bouquet of 2g copies of the 2-sphere, we have :

C.(M(12g,2),BSV) = (^BSV)29.

Let a, e\: S2 -^ M(Z^,2) ̂  Sg correspond to e,, e\ € I29, and define
retractions n, r\: Sg -^ S2 x S2 -^ S2 by first contracting to the base
point those parts of the 2-skeleton corresponding to an index different
from %, identifying the result in a standard way with S2 x S2, and then
projecting onto one of the two factors. Then the section s is defined by
the formula

^/iJL...JsJ;)^)=/i(ri(a;)).^(rUa;))---/<,(r<,(.c))./;(r,(a;)).

(Here we use the multiplication on BSU induced by Whitney sum of
bundles.) Next, define a map Q : C(Sg,BSV)k -^ C(Sg,BSV)k by the
formula

W)-^^^^)-1 '/)))"1/^)-1-/.
We may suppose that the multiplication on BSU has a strict identity. Then
the restriction of Q(f) to M(Z2^ 2) is the trivial map, hence Q factors in
the obvious way over a map Q : C(Sg,BSV)k -^ H^BSU. Moreover, the
following is a homotopy equivalence :

C(5,,BSU)fc ^BSUxC.(M(Z^,2),BSU) x^BSU

f^{f(pt).r(f(pt)-^f)^Q(f)).

Let F : S2 x BU -^ BSU, F : S4 x BU x k -^ BSU be adjoint to the
Bolt equivalences BU w n2 BSU, BU x k w ̂  BSU. Using the inverse of
the above homotopy equivalence, the evaluation map rj becomes :

Sg x BSU x(BU)^ x BU xk w Sg x C(Sg,BS\J)k ———— BSU

(x^Ay^yl^"^yg,ylg),y} ̂  z ' F ( r ^ ( x ) , y ^ ' F ( r [ ( x ) , y [ ) ' "
' " F ( r g ( x ) ^ y g ) .F(r,(rr),^) ' F([x]^y).

(Here, [x] means the image of x C Sg in 5p/M(L,2) w 54.) Let c be
the total Chern class. A standard calculation using the splitting principle
shows :

F"(c) =l+a^<SA, where A = En^-ir^ci^,...);

F*(c)=l+(74®5, wherefi^+E^-iy^-H^ci^,...).

TOME 119 — 1991 — ?1



COHOMOLOGY OF SOME GAUGE GROUPS 9

(Here, o-i is the standard generator of ^(S^; Z).) Let (ai,^,... ,a?,a^)
be the basis of H^^Sg'^T) == (Z29)* dual to (e^e'i,... ,e^,e ' ) , and let a =
[5^]* e H^{Sg',T} be the standard generator of H^(Sg\1L). Since our
multiplication on BSU is induced by Whitney sum of bundles, the total
Chern class of rj is given by :

c(rj) = ( l (g)c)( l+ai (g)Ai)(l+a'i 0A'i) • • •

• • • (1 + dg (8) Ag) (1 + a'g (g) Ag) (1 + a 0 B)

= 1 0 c + ̂  ai <g) cA, + ̂  a\ 0 cA'i + o- 0 c(B + EA^AO •

(Here, the classes c, A,, A^ and 5 € I:r*(C(^,BSU)fe;Z) are meant
to correspond in the obvious way to the different components of
C(Sg,BSV)k w BSUx(BU)^x BU x k. We also used a,a^ = S^a
and Ciidj = 0 = a^.)

Now consider diagram (2). Clearly the total Chern class of rj is of the
form :

c(r]) = 1 0 (1 + p) + ̂  a^ (g) &, + ̂  ̂  0 ̂  + a 0 A;.

Since H * ( S g ' , Z) has no torsion, we deduce :

r(c)=i+p, r(cA,)=^, r^)^^, r(c(^+EA^))=^
Multiplying by En>o(-ri71 ^ 1/(1 +^). we deduce ^*(A^ = ^/(1 +^).
j* (AO=^/ ( l+r i . Hence

rw = ̂  - ̂ -^ = ̂  4- D-1)7^ + ̂ w-

where we used ^^^ == H. Thus, the following lemma immediately
implies THEOREM 2.1.

LEMMA 2.5. — We have :

(i) 2j*(£?) = 2(fc - 2 ̂ (2n + l)^(pi,p2,...))
n>l €jr(c(^,B^),;z);

(ii) J^B) = ̂ >,(wi(X),W2(X),...)4 e ̂ (C^.B^3),;?^).
n>l

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



^ G. MASBAUM

Proof. — The main point here is that r j / [ S g ] (= ^°(C(5'g,BSU)fe) is
represented by the map Q : C(Sg,BSV)k -^ ^BSU w BU. This can be
seen as follows. Put TT, = e, o r,, ̂  = e\ o r^, and let TT : 5g -̂ 3 be the
constant map to the base point. Then for / € C(Sn,BSV)k, Q(f) can be
written :

( ( / °^) - l • ( /07r l ) • ( /o7^)- l . ( /07^0•• .

(f ° ̂ -1 • (/ ° ̂ ) • (/ 0 7T)-1 . (/ 0 TT'),,)) -1. (/ 0 7T)-1 . /.

Define $ : Sg x C(Sg, BSV)k -^ BSU by the formula

^f)=Q(f)(x)=r)(x,Q(f)).

Since ij(x,f o TT,) = f^x)} = fj(7ri(x),f), we see that in AT-theory we
can write :

$ = (q x l)(fj) € K°(Sg x C(Sg,BSV)k),

where q = K°(Sg) ̂  K°(Sg) is given by q = 1-^ ̂  -^ 7r;*+(2^-l)7r*.

Clearly, 9 is a projector onto ^°(54) c AT°(5g). Applying the Chern
character, it is not hard to see that q corresponds to [Sg\K = c\i^([S })
under the canonical isomorphism :

Hom(K°(Sg),K°(S4)} « Hom(^°(^),2) » Ko(Sg).

It follows
<s>=e^^/[s^),

where 0 € K°(S4) c K°(Sg) denotes the canonical generator. Since <S> is
essentially the adjoint of Q, this shows Q = f ] / [ S g ] K as required.

Thus, we have from the very definition of B :

B = k + ̂ (-l)^\n + lMci(^/[^),c207/[^),...).
TO^l

Since ̂ , = ̂ /[5^ =.f(Wg]^) € K0^^3)^, it follows :

rw^+^-ir^n+i^^j.c^,...).
n>l

Now recall that we have defined pn = (_l)"c2^(^,,), w, = w^s ).
Of course, the reason for this definition is that ̂  is in the imaged

TOME 119 — 1991 — ?1



COHOMOLOGY OF SOME GAUGE GROUPS 11

the complexification K0° —> jFC°, since the stabilisation map 5'3 —>• SU
factors over Sp. Thus, it follows from the well known description of the
complexification map BO —> BU in integral cohomology that the odd
Chern classes of ^5' are torsion of order 2. This implies :

52n(ci(^),C2(^ ) , • • • , ) =2sn(pi,p2,'") + an element of order 2,

whence part (i) of the lemma. Part (ii) is proved similarly.

This completes the proof of THEOREM 2.1.

REMARK 2.6. — Let Mg a closed orientable (real) surface of genus g.
Note that Mg has the homotopy type of a bouquet of circles with one 2-
cell attached. The analogy of this with the homotopy type of Sg may
be used to apply the above method to study the cohomology algebra
of C(Mg,BS3) w BQ(Mg), the classifying space of the gauge group of a
(necessarily trivial) SU(2)-bundle over Mg. This generalizes [Ml]. Here we
only state the result; details may be found in [M2].

Let a i , . . . , Oig, a[ , . . . , a'g be a symplectic basis of ffi {Mg; Z). Define

p = ii{ [base point]), /3, = ^(a,), /^ =/^), t=^{[Mg}),

where ^ : Hi{Mg; Z) -^ H^-^C^Mg.BS3); Z) is defined as in paragraph 1.
Set $ = EA^ e ^(^(M^B^Z). Let r] e K°(Mg x C(Mg,BS2))
correspond to the evaluation map, set [M^]^ = ch^Mp], and define
x, = c,(r]l[Mg\K) € ^(^(M^B^Z). Note ̂  = t. Then

ir^M^B^^cjr^Q)
^Qb]^AQ(A,...,/?,,^,...,^)^QM

is the subalgebra generated p, /3i , . . . , f3g, / 3 [ , . . . , f3g, and the Xi. (This fact
was already shown in [AB].) Calculating as in [Ml], we find :

v^ r / ^ \ arctan Jp $ 1
i^=exp^-^)——^+^-^j.

(This power series can be written exp(tf{p) + ^/'(p)), where f(p) =
arctan(^/p)/(^/p).)

Here is a description of this algebra analoguous to THEOREM 1.1. As
an algebra over Z[p] 0 Az(/?i , . . . ,f3g) (which is the cohomology algebra
corresponding to the 1-skeleton of Mg), H*{C(Mg,BS3)-, Z) is isomorphic

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



12 G. MASBAUM

to the algebra generated by the a^, divided by an ideal of relations of the
form :

00 ,,/?

E A k^
X i X j = A,jk£ Xi^j-^k-UP -^'

k^=0

(Note that ^ is divisible by i\ in Az(/?i , . . . , /?-) . ) Here is a formula for
the numbers A^i ''

A V^ . , f i + j - k - s - 3 £ - l \A^=g(-l)^ ^ J x

^ /z + j - 2k - 2A ( i + j(5 - h) - 1\ ( i + \{s +h)-l\

-s~<s^^-k-^h A ^-/l) ^ ^(5+/l) ^
h.=smod2

Note that, as they must, the numbers A^o coincide with the A^
given in THEOREM 1.1. It also follows from this description that x^ e
^^(^(M^B,?3);!) is divisible precisely by the power of 2 contained
in n\. This generalizes Corollary 1 of [Ml].

3. The classifying space of the based gauge group on S4

The subgroup of the gauge group formed by those gauge transforma-
tions whose restriction to the fiber over the base point is the identity, is
called the based gauge group, and denoted by G»(X). It is well known
that for any ^-bundle, it is isomorphic to the group C.(X,S3) of base-
point preserving maps X —> S3. Hence the classifying space of the based
gauge group on S4 has the homotopy type of the space Q4^, the fiber of
fibration (1).

The space ^B is the zero component of ^BS3 w ^S3 w ^S3^0,
and it is well known how to describe the homology of the latter in
terms of Dyer-Lashof-operations acting on [1] € ilo^3*?3) (see for ex-
ample [CLM]). However, since we are ultimately interested in cohomol-
ogy, it is more convenient to restrict attention to the zero component.
We proceed as follows. From the definition of B, we deduce a fibration :

s1 w K{I, i) -^ ̂ B -^ n2 as2 w n^3.

An easy calculation with the Serre spectral sequence then shows :

H^B^^^P(z^^E(f3z^).

TOME 119 —— 1991 —— N° 1



COHOMOLOGY OF SOME GAUGE GROUPS 13

(Here, t is a prime, P means polynomial algebra, E means exterior
algebra, Zn is an element of degreee n, and (3 is the Bockstein oper-
ator in (mod £) homology.) Proceeding as in [CLM, p. 229], we see
that H^{^B\¥^ is the free graded commutative algebra on generators
obtained by certain Dyer-Lashof-operations acting on an element y^-2 ^
^(Q4!?;^) obtained from z^ by transgression. (Note however that if
t = 2, y^ is well denned only modulo (fSy^)2.) Here is the result :

PROPOSITION 3.1.
a) H^B'^) w P[(Qi)^ (QiY{Q2Vy2 ; i j > 0] ;
b) for t > 3, ^(f^-E^F^) is the free graded commutative algebra

on generators ^(O^-ip/^Qs^-i))^^ where i, j > 0, £, £ C {0,1},
e < j and (j > 1 =^ e = 1).

(See [CLM, p. 7] for a definition of the operations Qn- Compare
also [Mi].)

Note that |(Oi)W = 2^1 - 1, |(Oi)W^| = 2^'+2 -2^-1, and
that |/?£(0,-lp/3£(Q2(,-l))^^-2| = 2^'(r+1 - 1) - e - e.

For i > 3, y2£-2 is clearly primitive, hence it follows from the Cartan
formula that ^(f^B;^) is primitively generated. This implies that the
mod t cohomology algebra H"{^B\ F^) is simply a tensor product of an
exterior algebra (on odd-dimensional generators) with a divided power
algebra (on even-dimensional generators), the generators being the duals
of the homology generators given above. The analoguous statement is
not true for mod 2 cohomology. In the next section, we will obtain a
presentation of .H"*^4!?; Fs).

The relations between Dyer-Lashof-operations and the higher Bock-
stein operators can also be found in [CLM]. This allows to determine the
additive structure of H^B', Z) as follows. Set n(zj; £) = W(i1 -1) and
^(^(i+^-^Ai-r).

PROPOSITION 3.2. — For any prime ^, the Poincare series of

E^n4^), r>2,

is given by
frW = JJ^n(2,r-l;^)(^)-

i>l

We leave it to the reader to write down /i(^), i.e. the Poincare series
of E1^^4^^) = ̂ (n4!^), using PROPOSITION 3.1.
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14 G. MASBAUM

Now recall that H^B', Z) = ©^ H^B; Z^), since the space ̂ B
is rationally contractible. Moreover, if we write

^(n^z^^z/rT-,
r>l

then the dnr are given by

V- .n _ fr(t) - fr^lW^anrt -———^———•
n>l

This determines the additive structure of H^^B',1). For later use,
we record the following

COROLLARY 3.3. — Let i = 2m + 1 be an odd prime, and set
N(£) = P - ̂  +3) if t > 5, and N(3) = 536. Suppose 1 < n < N(£).
Ifn = 0 (m), thenH^^B','!^) has exponent ̂ +^/^). Ifn ̂  0 (m),
^^^(n^Z^))^.

Here ̂  : Q* —> Z is ^-adic valuation.

Sketch of proof. — The Bockstein spectral sequence of^^n4!?; F^) has
a direct summand of the form P(yu-2} ̂  E(/3y^-^), with /?r+i^-2 ==

y^Z^y2^-2 • The Z^)-cohomology corresponding to this direct summand
verifies the statement of the corollary for all n. Moreover, it turns out
that for n < N{t), the exponent of H^^B', Z^) stems from this direct
summand. Details are left to the reader.

4. The map j : ̂ B -^ BO
The stabilisation map S3 = SU(2) —^ SU factors over the inclusion

Sp C SU. Thus, the induced map C(X,BS3) -> C(X,BSU) factors
over C(X,BSp). Restricting to base-point preserving maps, and using
real Bolt periodicity, we have a map fl^BS3 -> ^BSp w BO xZ. In
this section, let us denote by j : ^B —>• BO the map obtained by
restricting to the zero degree component. Clearly, this is a morphism of
4-fold loop spaces.

PROPOSITION 4.1. — ̂  : ̂ (^^Fs) -^ ^(BO;F2) is injective.

Proof. — Recall ^(BO; Fs) = P(ai, 02 , . . . ) , where |a^| = z. Since the
inclusion S3 —> Sp is 6-connected, j^ is an isomorphism in degrees < 2. Re-
placing, if necessary, y^ by ^2+(/?2/2)2, it follows j^) = a^J^/Sy^) = ai.
From [K], THEOREM 36, we know that in H^(BO',P^), we have Qn(ctk) =
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