AYDIN AYTUNA

Extension operators for analytic functions defined on certain closed subvarieties of a Stein space

<http://www.numdam.org/item?id=BSMF_1995__123_2_243_0>

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/
EXTENSION OPERATORS FOR ANALYTIC FUNCTIONS
DEFINED ON CERTAIN CLOSED SUBVARIETIES
OF A STEIN SPACE

BY

AYDIN AYTUNA (*)

ABSTRACT. — Let M be an irreducible Stein space and let V a closed subvariety of M with the property that $\mathcal{O}(V)$ is a power series space. In this paper we give a necessary and sufficient condition for the existence of a continuous linear extension operator from $\mathcal{O}(V)$ into $\mathcal{O}(M)$ in terms of plurisubharmonic functions defined on these varieties. Actually we obtain these results by solving a general lifting problem. We also consider some consequences of these results.

0. — Let M be an irreducible Stein space and V a closed subvariety of M. One of the consequences of the Oka-Cartan theory is that every analytic function on V can be extended to an analytic function on M. The question as to whether this extension process can be achieved by a continuous linear extension operator was studied by various authors.

Such a continuous operator if it exists, will imbed the Fréchet space of all analytic functions on $V, \mathcal{O}(V)$, into $\mathcal{O}(M)$ as a closed complemented subspace. In some cases this simple observation exhibits an obstruction, for the existence of a continuous linear extension operator. This situation
occurs for example, when $\mathcal{O}(V)$ has no continuous norm (i.e. when V has infinite number of irreducible components) or when every continuous linear mapping from $\mathcal{O}(V)$ into $\mathcal{O}(M)$ is compact (see [9]). On the other hand positive answers in the cases:

(i) when M is a strictly pseudoconvex domain in a Stein manifold and V is of the form $V = M \cap \tilde{V}$ where \tilde{V} is a closed submanifold near \tilde{M} intersecting ∂M transversally, and

(ii) when $M = \mathbb{C}^n$ and V a closed submanifold for which $\mathcal{O}(V)$, is isomorphic to $\mathcal{O}(\mathbb{C}^d)$ for some d as Fréchet spaces, e.g. when V is a smooth algebraic variety (see [17]),

were obtained in [10] by using $\overline{\partial}$-methods. In both of the cases considered above, the spaces $\mathcal{O}(V)$ turns out to belong to a well studied and well understood class of Fréchet spaces. A power series space is a sequence space of the form

$$
\Lambda_R(\alpha) = \left\{ x = \{x_n\}_{n=1}^{\infty}; \quad \|x\|_r = \sum_{k=1}^{\infty} |x_k| r^{\alpha_k} < +\infty \quad \text{for all } 0 < r < R \right\}
$$

where $0 < R \leq +\infty$ and $\alpha = \{\alpha_n\}$ is an increasing unbounded sequence of positive numbers. The space $\Lambda_R(\alpha)$ equipped with the norms $\| \cdot \|_r$, for $0 < r < R$ is a Fréchet space. It is easy to see that for a fixed α, the spaces $\Lambda_R(\alpha)$, for $0 < R < +\infty$, are all isomorphic to each other and so we have two types of power series spaces; the ones that are isomorphic to $\Lambda_1(\alpha)$, (finite type), and the ones that are isomorphic to $\Lambda_\infty(\alpha)$ (infinite type). A large number of Fréchet function spaces occurring in analysis are actually power series spaces [14]. In the case (i) considered above, $\mathcal{O}(V)$ is (isomorphic to) $\Lambda_1(n^{1/d})$ and in the case (ii) is $\Lambda_\infty(n^{1/d})$ where in both cases d is the dimension of V.

In this article we shall investigate the above mentioned question in the case when $\mathcal{O}(V)$ is a power series space. More generally we consider for a given data (M, V, W, T) consisting of a irreducible Stein space M, a subvariety V of M, a Stein space W for which $\mathcal{O}(W)$ is a power series space and a continuous linear operator T from $\mathcal{O}(W)$ into $\mathcal{O}(V)$, the problem of finding a continuous linear operator \widetilde{T} such that the following diagram commutes

$$
\begin{array}{ccc}
\mathcal{O}(W) & \xrightarrow{R} & \mathcal{O}(V) \\
& \searrow \widetilde{T} \downarrow T & \\
& \mathcal{O}(M) & \\
\end{array}
$$

where R is the restriction operator. Observe that in the special case
$W = V$ and $T = I$ the identity of $\mathcal{O}(V)$, if it exists, is a continuous linear extension operator. The obstruction to finding \bar{T} for an arbitrary T in the above set up is due to the non vanishing of the first derived functor $\text{Ext}^1(\cdot, \cdot)$ of the functor Pro in the terminology of the locally convex homological algebra developed by Palamadov [11] (cf. [15]). Indeed in the above set up, denoting by $I(V)$ the ideal of the variety V, the short exact sequence

$$0 \to I(V) \to \mathcal{O}(M) \xrightarrow{R} \mathcal{O}(V) \to 0$$

gives rise to the exact sequence

$$0 \to L(\mathcal{O}(W), I(V)) \to L(\mathcal{O}(W), \mathcal{O}(M)) \to L(\mathcal{O}(W), \mathcal{O}(V)) \to \text{Ext}^1(\mathcal{O}(W), I(V)) \to \text{Ext}^1(\mathcal{O}(W), \mathcal{O}(M)) \to \text{Ext}^1(\mathcal{O}(W), \mathcal{O}(V)) \to 0$$

where $L(E, F)$ denotes the space of all continuous linear operators from E into F (see [15]). For a nuclear Fréchet space E, $\text{Ext}^1(E, I(V))$ can be identified with the first Čech cohomology group of the sheaf $I^E(V)$, of germs of E^* valued analytic functions on M that vanish on V (see for example [1]). Hence the possible non vanishing of Ext^1 in this case reflects the failure of the Cartan theorem (B) for E^* valued coherent analytic sheaves on M. Various conditions on the pair of Fréchet spaces which assure the vanishing of this derived functor are given in [15] (see also [1]). In particular the vanishing of $\text{Ext}^1(\mathcal{O}(W), I(V))$ when $\mathcal{O}(W)$ is a power series space of infinite type follows from these general considerations (see also Remark 1). Hence in the above mentioned set up we will restrict our attention to Stein spaces W for which $\mathcal{O}(W)$ is isomorphic to a finite type power series space.

We shall use the standard terminology and notation of complex analysis as in [6], [7] except perhaps in our usage of the term Stein space. In this note by a Stein space we mean a reduced, irreducible Stein space in the sense of [6] which has a Hausdorff, separable topology.

Some results of this work was announced in [3].

1. — Returning to our problem, let us fix a Stein space M, a closed subvariety V of M and a Stein space W for which $\mathcal{O}(W)$ is a power series space. Since we will be investigating the extendibility of continuous linear operators from $\mathcal{O}(W)$ into $\mathcal{O}(V)$, we can, without loss of generality take W to be either Δ^d, the unit polydisc in \mathbb{C}^d, or \mathbb{C}^d itself depending
upon the type of the power series space $O(W)$, where $d = \text{dim } W$. In both case a continuous linear operator T from $O(W)$ into $O(V)$ induces a plurisubharmonic function ρ_T on V via the formula

$$\rho_T(z) = \lim_{\xi \to z} \lim_{|n| \to \infty} \frac{\ln |T(z^n)(\xi)|}{|n|}$$

where we have used the multi index notation $z^n = z_1^{n_1} \cdots z_d^{n_d}$ for $n = (n_1, \ldots, n_d)$ and $|n| = n_1 + \cdots + n_d$. In the case when $W = \Delta^d$, it is readily seen that this plurisubharmonic function takes negative values.

With the above notation we have:

Theorem 1. — For a continuous linear operator T from some $O(\Delta^d)$ into $O(V)$ the following conditions are equivalent:

(i) There exists a continuous linear operator $\widetilde{T} : O(\Delta^d) \to O(M)$ such that $R \circ \widetilde{T} = T$ where R is the restriction operator from $O(M)$ onto $O(V)$.

(ii) There exists a negative plurisubharmonic function ρ on M such that $\rho_T \leq \rho|_V$ on V.

Proof.
(i) \Rightarrow (ii). Let

$$\rho(z) = \lim_{\xi \to z} \lim_{|n| \to \infty} \frac{\ln |T(z^n)(\xi)|}{|n|}.$$

Then ρ is a plurisubharmonic function on M and in view of the fact that \widetilde{T} is an extension of T one has

$$\rho_T(z) \leq \rho(z) \quad \text{for } z \in V.$$

(ii) \Rightarrow (i). Using multi index notation we set $e_n = z_1^{n_1} \cdots z_d^{n_d}$, $f_n = T(e_n) \in O(V)$ for $n = (n_1, \ldots, n_d) \in \mathbb{N}^d$. Now choose a negative plurisubharmonic function $\Phi : M \to \mathbb{R}$ with the property that

$$\lim_{\xi \to z} \lim_{|n| \to \infty} \frac{\ln |f_n(\xi)|}{|n|} = \rho_T(z) < \Phi(z)$$

for all $z \in V$. Let

$$\Omega_V = \left\{ (z, w) \in M \times \mathbb{C}^d ; z \in V, \max_{1 \leq i \leq d} |w_i| \leq \|w\| < e^{-\Phi(z)} \right\}.$$

Fix $(z_0, w_0) \in \Omega_V$ with $\rho_T(z_0) \neq -\infty$, say $\|w_0\| < e^{-\Phi(z_0) - \delta}$ for some $\delta > 0$. We choose an $\epsilon > 0$ with $2\epsilon < \delta$ and find a neighborhood U_1 of z_0 in V such that

$$\text{TOME 123 — 1995 — N° 2}$$
(i) \(\sup_{\xi \in \hat{U}_1} \rho_T(z_0) < -\epsilon, \)

(ii) \(\sup_{\xi \in \hat{U}_1} \Phi(\xi) \leq \Phi(z_0) + \epsilon. \)

Now Hartog's lemma ([8, p. 21], cf. [12]) implies the existence of a neighborhood \(U_1 \subset \hat{U}_1 \) of \(z_0 \) in \(V \) such that

\[
\sup_{\xi \in U_1} \frac{\ln |f_n(\xi)|}{|n|} \leq \rho_T(z_0) + \epsilon \quad \text{for } n \text{ large.}
\]

Fix a neighborhood \(U_2 \) of \(w_0 \) in \(\mathbb{C}^d \) such that \(\sup_{w \in U_2} \|w\| < e^{-\Phi(z_0) - \delta}. \)

Now let \(U = U_1 \times U_2 \subseteq M \times \mathbb{C}^d \). For \((\xi, w) \in U\) we have

\[
\|w\| < e^{-\Phi(z_0) - \delta + \epsilon} \leq e^{-\Phi(\xi) + \epsilon - \delta + \epsilon} < e^{-\Phi(\xi)}
\]

so \(U \subseteq \Omega_V \). Moreover for large \(n \), we have:

\[
\sup_{(\xi, w) \in U} \left| f_n(\xi) \right| |w_1^{n_1} \cdots w_d^{n_d}| \leq e^{n|\{\rho_T(z_0) - \Phi(z_0) + 2\epsilon - \delta\}|}.
\]

An estimate of this kind can also be easily obtained in the case when \(\rho_T(z_0) = -\infty \). It follows that the function \(F \) defined by a locally uniformly convergent infinite series via the formula

\[
F(z, w) \doteq \sum_{n \in \mathbb{N}^d} f_n(z)w^n
\]

is an analytic function on \(\Omega_V \). We set:

\[
\Omega_M = \{(z, w) \in M \times \mathbb{C}^d ; \|w\| < e^{-\Phi(z)}\}.
\]

Then \(\Omega_M \) is a Stein space (see [5, Thm 5.4]) and \(\Omega_V \) is a closed analytic subvariety of \(\Omega_M \).

In view of Cartan theorem B, there exists an analytic function \(G \) on \(\Omega_M \) such that \(G \) restricted to \(\Omega_V \) is \(F \). This function can be represented in the usual way, as a convergent (uniformly on compacta of \(\Omega_M \)) infinite series via the formula

\[
G(z, w) = \sum_{n \in \mathbb{N}^d} a_n(z) w_1^{n_1} \cdots w_d^{n_d}
\]

where

\[
a_n(z) = \frac{1}{(2\pi i)^d} \int \cdots \int_{|\xi| = r} \frac{G(z, \xi_1, \ldots, \xi_d)}{\prod \xi_j^{n_j+1}} \, d\xi_1 \cdots d\xi_d,
\]

BULLETIN DE LA SOCIÉTÉ MATHEMATIQUE DE FRANCE
with $0 < r < e^{-\Phi(z)}$ and $n \in \mathbb{N}^d$. Since for $z \in V$, one has
\[
\sum_{n} a_n(z) w^n = \sum_{n} f_n(z) w^n
\]
on the polydisc $\Delta(0, e^{-\Phi(z)})$, we conclude that $a_n(z) = f_n(z)$ for all $z \in V$ and $n \in \mathbb{N}^d$; in other words the analytic function $a_n \in \mathcal{O}(M)$ is an extension of $f_n \in \mathcal{O}(V)$ for each $n \in \mathbb{N}^d$.

Moreover, in view of the Cauchy inequalities applied to $G(z, \cdot)$, $z \in M$ we have:

\begin{equation}
\lim_{|n| \to \infty} \frac{\ln |a_n(z)|}{|n|} \leq \Phi(z).
\end{equation}

Now fix a compact set K of M and choose another compact subset \hat{K} of M, such that $K \subset \hat{K}$. Set
\[
\max_{z \in K} \Phi(z) \equiv -\alpha.
\]
We fix an $\beta > 0$, with $\beta < \alpha$. In view of Hartog’s lemma and (1) above for $|n|$ large enough we have:
\[
\sup_{z \in K} \frac{\ln |a_n|}{|n|} \leq -\alpha + \beta.
\]
It follows that for every compact subset K of M there exists an $R(K) < 1$ and a $C > 0$ such that:

\begin{equation}
\sup_{z \in K} |a_n(z)| \leq C \sup_{\|z\| \leq R(K)} |e_n(z)|.
\end{equation}

But this means that the linear operator \widetilde{T} defined from $\mathcal{O}(\Delta^d)$ into $\mathcal{O}(M)$ by the formula $\widetilde{T}(e_n) \equiv a_n$, for $n \in \mathbb{N}^d$, is a continuous operator satisfying $R \circ \widetilde{T} = T$. This finishes the proof of the Theorem 1. \[
\]

The above result can also be interpreted as giving a description of the kernel of the operator δ appearing in the long exact sequence (1). Our next result gives a necessary and sufficient condition for this operator to be the zero operator. But first we need a lemma on the structure of plurisubharmonic functions on Stein spaces.
LEMMA 1. — Let X be a Stein space and p a plurisubharmonic function on X. Then there exists a sequence \(\{f_n\}_n \) of holomorphic functions on X and a sequence of integers \(\{c_n\}_n \) such that

\[
\rho(z) = \lim_{n \to \infty} \frac{\ln |f_n(z)|}{c_n}, \quad z \in X.
\]

Proof. — First we will show that the possibility of approximating a continuous plurisubharmonic function on compact subsets by Hartog's type functions, which is well known for domains of holomorphy in \(\mathbb{C}^N \), (see [9, p. 55]), is also valid for Stein spaces. To this end let us fix a continuous plurisubharmonic function \(\psi \) on X, and a holomorphically convex compact subset \(K \subseteq X \). Choose a Oka-Weil domain \(\mathcal{P} \), such that \(K \subseteq \mathcal{P} \subset X \), and fix a holomorphic mapping \(\Phi : X \to \mathbb{C}^N \) such that \(\Phi \) restricted to \(\mathcal{P} \) is a biholomorphism onto a closed subvariety \(V \) of the unit polydisc \(\Delta^N \subseteq \mathbb{C}^N \). We can think of \(\psi \) as a plurisubharmonic function on \(V \). Arguing as in the proof of Theorem 5.3.1 of [5] we find a Stein domain \(\Omega \) of \(\Delta^N \) containing \(V \) and a plurisubharmonic function \(\tilde{\psi} \) on \(\Omega \) such that \(\tilde{\psi} | V = \psi \). Although \(\psi \) need not be continuous on \(\Omega \) representing it on compacta as a pointwise limit of a decreasing sequence of continuous plurisubharmonic functions and observing that on \(K = \psi(K) \) the convergence is uniform, in view of [9, p. 55] for a given \(\epsilon > 0 \), we can find analytic functions \(f_1, \ldots, f_s \) near \(K \), and integers \(c_1, \ldots, c_s \) such that:

\[
\psi(z) - \epsilon \leq \max_{1 \leq i \leq s} \frac{\ln |f_i(z)|}{c_i} \leq \psi(z) + \epsilon, \quad \forall z \in K.
\]

Now fix a point \(z_0 \in K \) and choose an \(f_j \) and \(c_j \) such that:

\[
\psi(z_0) - \epsilon \leq \frac{\ln |f_j(z_0)|}{c_i} \leq \psi(z_0) + \epsilon.
\]

Since \(\psi \) is continuous we can find a ball \(U \) around \(z_0 \) such that:

\[
e^{c_j(\psi(z)-2\epsilon)} < |f_j(z)| \quad \text{for } z \in U.
\]

(3)

By approximating \(f_j \) on the holomorphically convex compact set \(K \cup \bar{U} \) uniformly by global analytic functions we can find an \(F \in \mathcal{O}(X) \) such that (3) holds with \(f_j \) replaced by \(F \) and also

\[
\psi(z) + 2\epsilon \geq \log \frac{|F(z)|}{c_j}, \quad z \in K.
\]
Now cover K with balls constructed above to get for a given $\varepsilon > 0$ analytic functions F_1, \ldots, F_k on X and integers c_1, \ldots, c_k such that:

$$
\psi(z) - 2\varepsilon < \max_{1 \leq j \leq k} \left\{ \frac{\ln |F_j(z)|}{c_j} \right\} \leq \psi(z) + 2\varepsilon, \quad z \in K
$$

Hence Proposition 2 of [9] is valid also for Stein spaces.

Now let ρ be a given plurisubharmonic function on X. In view of Theorem 5.5 of [5] there exists a sequence of continuous plurisubharmonic functions $\{\rho_n\}$ that decrease pointwise to ρ. Choose an exhaustion of X by holomorphically convex compact sets $\{K_n\}_n$. Fix a sequence of positive numbers $\{\epsilon_n\}_n$ that decrease to zero. For each n there exists analytic functions $F^n_1, \ldots, F^n_{\rho(n)}$ and integers $c^n_1, \ldots, c^n_{\rho(n)}$ such that:

$$
\rho_n(z) - \epsilon_n \leq \max_{1 \leq i \leq \rho(n)} \frac{\ln |F^n_i(z)|}{c^n_i} \leq \rho_n(z) + \epsilon_n \quad \forall z \in K_n.
$$

We enumerate $\{F^n_i\}_{i,n}$ (similarly $\{c^n_i\}_{i,n}$) as

$$
\{F'_1, \ldots, F'_{\rho(1)}, \ldots, F^n_1, \ldots, F^n_{\rho(n)} \ldots
$$

and denote the resulting sequence by $\{G_\alpha\}_{\alpha}$, (similarly $\{c_\alpha\}_{\alpha}$). Set:

$$
\gamma_\alpha(z) = \frac{\ln |G_\alpha(z)|}{c_\alpha}.
$$

Now fix a point $z \in X$, say $z \in K_N$. Let $n > N$ and

$$
k = \sum_{i=1}^{n-1} \rho(i) + 1.
$$

Since $K_N \subset K_n$ we have

$$
\rho_n(z) - \epsilon_n \leq \max_{1 \leq i \leq \rho(n)} \frac{\ln |F^n_i(z)|}{c^n_i} \leq \rho_n(z) + \epsilon_n.
$$

Hence

$$
\rho(z) - \epsilon_n \leq \sup_{\alpha > k} \gamma_\alpha(z)
$$

and so

(4) $$
\rho(z) - \epsilon_n \leq \inf_{s} \sup_{\alpha > s} \gamma_\alpha(z).
$$
On the other hand choose any α with $\alpha > k$, with k as above, then

$$\gamma_\alpha(z) = \frac{\ln|F^s(z)|}{c^s_i}$$

for some $s \geq n$. So we have $\gamma_\alpha(z) \leq \rho_s(z) + \epsilon_s = \rho_n(z) + \epsilon_n$; hence $\sup_{\alpha > k} \gamma_\alpha(z) \leq \rho_n(z) + \epsilon_n$. It follows that:

$$\inf_{t} \sup_{\alpha > t} \gamma_\alpha(z) \leq \inf_n (\rho_n(z) + \epsilon_n) = \rho(z).$$

So combining (4) and (5) and setting $f_n \doteq G_n$ we get:

$$\rho(z) = \lim_n \frac{\ln|f_n(z)|}{c_n}.$$

This finishes the proof of the Lemma.

Corollary 1. — Let M be a Stein space and V a closed subvariety of M. Then the following are equivalent:

(i) For every Stein space W for which $\mathcal{O}(W)$ is a finite type power series space and for every continuous linear operator $T : \mathcal{O}(W) \to \mathcal{O}(V)$ there exists a continuous linear operator $\hat{T} : \mathcal{O}(W) \to \mathcal{O}(M)$ such that $R \circ \hat{T} = T$ where R is the restriction operator from $\mathcal{O}(M)$ into $\mathcal{O}(V)$.

(ii) For every negative plurisubharmonic function ρ on V there exists a negative plurisubharmonic function $\hat{\rho}$ on M such that $\rho \leq \hat{\rho}|_V$.

Proof. — In view of Theorem 1 we only need to prove the implication (i) \Rightarrow (ii). To this end we fix a negative plurisubharmonic function ρ on V. In view of the Lemma we can find a sequence $\{f_n\}_n$ of analytic functions on V, and a sequence of positive integers $\{c_n\}_n$, with $c_n \uparrow \infty$ such that:

$$\rho(z) = \lim_n \frac{\ln|f_n(z)|}{c_n}.$$

In view of Hartog’s lemma for every compact set K in V there exists a negative number α and a constant $c > 0$ such that, for all n,

$$\sup_{z \in K} |f_n(z)| \leq c e^{\alpha c_n}.$$

Hence the assignment

$$T(z^n) = \begin{cases}
0 & \text{if } n \notin \{c_k\}_k, \\
 f_{c_s} & \text{if } n = c_s \text{ for some } s
\end{cases}$$
defines, in view of (6), a continuous linear operator \(T : \mathcal{O}(\Delta) \to \mathcal{O}(V) \). We fix a \(\hat{T} : \mathcal{O}(\Delta) \to \mathcal{O}(M) \) with \(\hat{T}|_V = T \) and let as usual

\[
\rho_{\hat{T}}(z) = \lim_{\xi \to z} \lim_{n \to \infty} \frac{\ln |\hat{T}(z^n)(\xi)|}{n}.
\]

Since \(\rho = \rho_T \), the argument given in (i) \(\Rightarrow \) (ii) of THEOREM 1 shows that \(\rho \leq \rho_{\hat{T}}|_V \). This finishes the proof of COROLLARY 1.

The above corollary can be used to characterize among the hyperconvex varieties \(V \) of a Stein space \(M \) (i.e. the varieties \(V \) such that \(\mathcal{O}(V) \) is a finite type power series space, see [2]) the ones which admit a continuous linear extension operator \(\mathcal{E} : \mathcal{O}(V) \to \mathcal{O}(M) \). Recall that for a Stein space \(X \) and a compact set \(K \subset X \) the plurisubharmonic function :

\[
w^X_K(z) = \lim_{\xi \to z} \sup \left\{ u(\xi) : u \in \text{PSH}(X), \right. \\
\left. u \leq 0 \text{ on } X \text{ and } u \leq -1 \text{ on } K \right\}
\]

is called the plurisubharmonic measure (\(\mathcal{P} \)-measure) of \(K \) relative to \(X \) (see eg. [4], [13], [18]). These functions are natural complex counterparts of harmonic measures of classical potential theory. Since any negative plurisubharmonic function on a Stein space is dominated by a constant multiple of a \(\mathcal{P} \)-measure one can reexpress the condition (ii) above using \(\mathcal{P} \)-measures to obtain :

COROLLARY 2. — Let \(M \) be a Stein space and \(V \) a hyperconvex subvariety of \(M \). Then the following conditions are equivalent :

(i) There exists a continuous linear extension operator

\[
\mathcal{E} : \mathcal{O}(V) \to \mathcal{O}(M).
\]

(ii) There exists compact sets \(K \subset V, S \subset M \) with non empty interiors and a constant \(C > 0 \) such that :

\[
w^V_K \leq C \, w^M_S|_V.
\]

REMARKS.

(i) Although we have chosen to treat the case when \(\mathcal{O}(W) \) is isomorphic to an infinite type power series space by making use of some general considerations, we note that the line of reasoning given in the proof of THEOREM 1 can also be used in this case. Indeed the existence of
an operator $\widehat{T} : \mathcal{O}(W) \to \mathcal{O}(M)$ with $R\circ \widehat{T} = T$ for any $T : \mathcal{O}(W) \to \mathcal{O}(V)$ can be deduced, in this case, from the fact that for any plurisubharmonic function ρ on V there exists a plurisubharmonic function $\hat{\rho}$ on M such that $\rho \leq \hat{\rho}|_V$.

(ii) In the case when $\mathcal{O}(M)$ is isomorphic to an infinite type power series space and when W is hyperconvex, Theorem 1 characterizes the operators T for which such a \widehat{T} exists as the ones for which $\sup_{z \in V} \rho_T(z) < 0$. This family is precisely the family of all compact operators from $\mathcal{O}(W)$ into $\mathcal{O}(V)$. This can also be derived from the general extension properties of compact operators and the fact that every continuous operator from a finite type power series space into an infinite type power series space is compact.

(iii) For a smoothly bounded relatively compact domain D with C^2 boundary in a Stein manifold and a negative plurisubharmonic function ρ on D one has that

$$\rho(z) < C\{-d(z, \partial D)\}, \quad z \in D$$

for some constant $C > 0$ where $d(z, \partial D)$ is the distance of z from ∂D (see [10, Lemma 3.2]). Hence in the case when D is given by $D = \{z : u(z) < 0\}$, for some C^2 plurisubharmonic function u defined in a neighborhood of \overline{D}, we have that any negative plurisubharmonic function on D is dominated by a positive constant multiple of u, since $-d(\cdot, \partial D)$ is dominated by a positive constant multiple of u. This property remains valid for submanifolds of D of the form $D \cap M'$ where M' is a closed complex submanifold in a neighborhood of \overline{D} which intersects ∂D transversally since in this case $D \cap M' = \{z \in M' : u(z) < 0\}$. Now combining Corollary 5 of [2] with Corollary 2 above we obtain the following slight generalization of Theorem 4.2 of [10].

Corollary 3. — Let M be a Stein manifold and $D \subset \subset M$ a smoothly bounded domain in M of the form $D = \{z : u(z) < 0\}$ for some C^2 plurisubharmonic function defined in a neighborhood of \overline{D}. For a complex manifold M' in a neighborhood of \overline{D} which intersects ∂D transversally there exists a continuous linear extension operator $E : \mathcal{O}(D \cap M') \to \mathcal{O}(D)$.

Even if we drop the transversality condition in the above corollary we can still get some information about the class of continuous linear operators $T : \mathcal{O}(\Delta^d) \to \mathcal{O}(D \cap M')$ which admit a continuous linear extension operator, namely these are precisely the operators for which $\rho_T \leq Cu$ on $D \cap M'$ for some $C > 0$. This observation can be used in constructing concrete operators for which no such \widehat{T} exists. For example following
Example 5.3 of [10], let
\[D = \{ (z; w) \in \mathbb{C}^2 : |z|^2 + |w - 1|^2 < 1 \} \]
and
\[M' = \{ (z, w) \in \mathbb{C}^2 : w = z^2 \}. \]
Then the operator \(T : \mathcal{O}(\Delta) \to \mathcal{O}(D \cap M') \) defined as \(T(f)(z, w) = f(e^{-z^2}) \) admits no extension operator \(\hat{T} : \mathcal{O}(\Delta) \to \mathcal{O}(D) \), since, an easy computation shows the impossibility of finding a \(C > 0 \) satisfying
\[\rho_T(z, w) = \ln |e^{-z^2}| \leq C\{ |z|^2 + |w - 1|^2 - 1 \}. \]

BIBLIOGRAPHIE

