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GRADED LAGRANGIAN SUBMANIFOLDS

BY Paul SEIDEL (*)

ABSTRACT. — Symplectic Floer cohomology is a graded abelian group but only in a relative
sense. The notion of graded Lagrangian submanifold serves to fix this ambiguity. We explain
the theory in detail and give several applications.

RESUME. — SOUS-VARIETES LAGRANGIENNES GRADUEES. — La cohomologie de Floer
symplectique est un groupe abelien gradue, mais seulement dans un sens relatif. La notion
de sous-variete Lagrangienne graduee serf a lever cette ambiguite. On expose cette notion en
details, avec plusieurs applications.

1. Introduction
Floer theory assigns, in favourable circumstances, an abelian group HF(LQ, Li)

to a pair (Z/o,Li) of Lagrangian submanifolds of a symplectic manifold (M,C(;).
This group is a qualitative invariant, which remains unchanged under suitable
deformations of LQ or L\. Following Floer [7] one can equip HF(LQ^ Li) with a
canonical relative Z/TV-grading, where 1 ̂  N <^ oo is a number which depends
on (M,c^), LQ and L\ (for N = oo we set Z/7V = Z). Relative mostly means that
the grading is unique up to an overall shift, although there are also cases with
more complicated behaviour.

In this paper we take a different approach to the grading: we consider
Lagrangian submanifolds equipped with certain extra structure (these are what
we call graded Lagrangian submanifolds). This extra structure removes the
ambiguity and defines an absolute Z/TV-grading on Floer cohomology. There
is also a parallel notion of graded symplectic automorphism, which bears the
same relation to the corresponding version of Floer theory. Both concepts were
first discovered by Kontsevich, at least for N = oo; see [13, p. 134]. Somewhat
later, the present author came upon them independently.
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104 p. SEIDEL

One way to approach the definition of graded Lagrangian submanifold is to
start with the case N = 2. It is well-known that orientations of LQ and Li
determine an absolute Z/2-grading

HF(L^ Li) = HF\L^ L,) © HF\L^ L,).

One can reformulate this as follows: consider the natural fibre bundles C -^ M
(resp. C01 -^ M) whose fibres are the unoriented (resp. oriented) Lagrangian
Grassmannians of the tangent spaces TM^. Any Lagrangian submanifold L
comes with a canonical section S L ' . L -^ C\L, and an orientation of L is the same
as a lift of this section to /^or. Hence the right objects for a Floer theory with
an absolute Z/2-grading are pairs (L, L) consisting of a Lagrangian submanifold
and a lift L:L -^ C^ of SL.

In order to define the absolute Z/TV-grading one proceeds in the same way,
only that ^or must be replaced by a Z/TV-covering of C of a certain kind. Such
coverings, which we call Maslov coverings, need not exist in general, and they
are also not unique. In fact, choosing an TV-fold Maslov covering is equivalent
to lifting the structure group of TM from Sp(2n) to a certain finite extension
SpN(2n); and the particularly simple situation for N = 2 is due to the fact that

Sp^n) ^ Sp(2n) x Z/2.

In itself this "graded symplectic geometry" is not particularly deep, but it
does make Floer cohomology into a more powerful invr riant. To put it bluntly,
the advantage of the new framework is this: in passing to graded Lagrangian
submanifolds there is a choice of Z/7V for any Lagrangian submanifold L (the
choice of the lift of s^). In comparison, if one uses only the relative grading, there
is a Z/TV-ambiguity for any pair of Lagrangian submanifolds, and this greater
amount of choice entails a loss of information. We illustrate this through three
applications, which form the main part of this paper.

(a) Lagrangian submanifolds of CP71. — We prove that any Lagrangian
submanifold L C CP71 must satisfy ^(L^/^n + 2)) ^ 0 (the actual result
is slightly sharper, see Theorem 3.1).

(b) Symplectically knotted Lagrangian spheres. — The paper [30] provides
examples of compact symplectic four-manifolds (with boundary) M with the
following property: there is a family of embedded Lagrangian two-spheres
L^ C M, k G Z, such that any two of them are isotopic as smooth submanifolds,
but no two are isotopic as Lagrangian submanifolds. In such a situation we
say that M contains infinitely many symplectically knotted Lagrangian two-
spheres. The examples in [30] were constructed using a special class of symplectic
automorphisms, called generalized Dehn twists, and the main step in the proof
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GRADED LAGRANGIAN SUBMANIFOLDS 105

was a Floer cohomology computation using Pozniak's [24] Morse-Bott type
spectral sequence. Both the construction and the proof can be generalized to
produce Lagrangian n-spheres with the same property for all even n.

Here, using the method of graded Lagrangian submanifolds, we will first
reprove the result from [30] and its generalization in a considerably simpler
way. Then, by a more complicated construction, we produce similar examples of
Lagrangian n-spheres for all odd n > 5. The reason why the remaining case n = 3
cannot be settled in the same way is topological, and seems to have nothing to
do with Floer theory.

We can also improve on [30] in a different direction, by showing that sui-
table K3 and Enriques surfaces contain infinitely many symplectically knotted
Lagrangian two-spheres. These are the first known examples of closed symplec-
tic manifolds with this property. As a by-product one obtains that for these
manifolds the map

7To(Aut(M,a;)) —>7To(Diff(M))

has infinite kernel, sharpening a result of [28]. Unfortunately, at the present state
of development in Floer theory, it is impossible for technical reasons to carry out
a similar argument in dimensions > 4.

(c) Weighted homogeneous singularities. — Let p G C[rro, • . . , Xn\i n ^> 1, be a
weighted homogeneous polynomial with an isolated critical point at the origin.
One can introduce the Milnor fibre of p, which is a compact symplectic manifold
(M277-,^) with boundary, and the symplectic monodromy / G Aut(M, QM.uj)
of the Milnor fibration. This refines the usual notion of geometric monodromy
by taking into account the symplectic geometry of the situation. We will show
that [/] G 7To(Aut(M, QM, uj}) has infinite order whenever the sum of the weights
is 7^ 1. It is not known whether the condition on the weights is really necessary.

It should be mentioned (although this will not be used later on) that this
application and the previous one are related. In fact, generalized Dehn twists
are maps modelled on the monodromy of the quadratic singularity

P(x)=x2o+••'+x^

and the construction of odd-dimensional knotted Lagrangian spheres is inspired
by the monodromy of the singularity

•? 1 . . . I /y.2 J- nf^p(x) =XQ+-"-^-X^ +x

of type (A2).
The importance of "graded symplectic geometry" for these applications varies.

For (a) and (c) its role is that of a convenient language. In fact one could replace
it by monodromy considerations in the style of [29] without changing the essence
of the argument. For (a) there is also a more algebraic argument, based on the
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106 P. SEIDEL

fact that HF(L, L) is a module over the quantum cohomology QH^^CP^. The
situation in (b) is different, since the "graded" framework allows us to state a
basic geometric property of generalized Dehn twists (Lemma 5.7) which it seems
hard to encode in any other way.

Notation and conventions. — All manifolds are usually assumed to be connec-
ted. The automorphism group of a symplectic manifold (M, c<;) will be denoted by
Aut(M,ci;). If M is compact, we equip this group with the C°° -topology. If M is
a symplectic manifold with nonempty boundary, Aut(M, QM^uj) C Aut(M,cj)
is the subgroup of automorphisms (f) which are equal to the identity on some
neighbourhood (depending on <p) of the boundary. Lagrangian submanifolds are
always assumed to be compact; if the symplectic manifold has a boundary, any
Lagrangian submanifold is assumed to lie in the interior. Lag(M, uj) stands for
the space of Lagrangian submanifolds of M, with the C°° -topology. S1 will often
be identified with R/Z. Ordinary (co)homology groups have Z-coefficients unless
otherwise stated.

Acknowledgements. — This paper is an offshoot of my joint work with Mikhail
Khovanov; several of the ideas presented here arose in conversations with him.
I am indebted to Maxim Kontsevich for explaining his joint work with Fukaya
to me. The idea of considering symplectic manifolds with a circle action on the
boundary, which is the subject of Section 4, was suggested to me by Leonid
Polterovich and Yakov Eliashberg. This paper was written while I was staying
at the Max Planck Institute (Bonn) and ETH Zurich, and I would like to thank
both institutions for their hospitality. I am indebted t j the referee for several
helpful suggestions.

2. Basic notions

2.a. Linear algebra. — By a Z/TV-covering (1 <, N <^ oo) of a space X we
mean a covering XN with covering group Z/7V. Such coverings are classified up to
isomorphism by H^-^X^/N). For connected X, this correspondence associates
to a homomorphism TT: ^i(X) —^ Z/7V the covering

XN =X x^Z/TV,

where X is the universal cover. If X is a connected Lie group, all Z/TV-coverings
of it (even the non-connected ones) have canonical Lie group structures.

• Let (V271,/^) be a symplectic vector space, Sp(V, f3) the linear symplectic
group, and C(V, f3) the Lagrangian Grassmannian, which parametrizes linear
Lagrangian subspaces of V. Both Sp(V, (3) and C(V, f3) are connected with infinite
cyclic fundamental group. Moreover, there are preferred generators

^y^e^SpCy,/?)) and ^(y.^e^^y,^))
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GRADED LAGRANGIAN SUBMANIFOLDS 107

(the second one is called the Maslov class) so that one can canonically identify
the fundamental groups with Z. Sp(V, f3) acts transitively on C(V,(3), and any
orbit is a map Sp(V, f3) -^ C(V, f3) which takes C(V,(3) to 2<5(y,/3).

• For 1 ^ N ^ oo, let /^(V^) be the Z/TV-covering of C(V, f3) which
corresponds to the image of C(V,f3) in H1^^, /3);Z/7V).

• The Z/TV-action on r^V,/?) will be denoted by p.
• Define Sp^V, f3) to be the group of pairs (<!>, <!>) consisting of ^ € Sp(V, /3)

and a Z/TV-equivariant diffeomorphism <!> of/^V, f3), which is a lift of the action
of <I> on C(V, f3). This is a Lie group and fits into an exact sequence

1 ̂  Z/TV —> Sp^V,^) —— Sp(V,/3) ̂  1,

where Z/A/' is the central subgroup of pairs (^>,^) = (id,p(k)). It follows that
Sp^(y,/3) must be isomorphic to some Z/TV-covering of Sp(V,f3). The next
Lemma identifies that covering.

LEMMA 2.1. — Sp^y,/:?) is isomorphic {as a Lie group) to the Z/7V-covering
ofSp(V,f3) associated to the image of26(V,f3) in ̂ (SpfV^Z/W).

Proof. — Let Sp(V, f3) be the universal cover of Sp(V,f3). Take a loop
0:[0;1]^> Sp(V,f3) with 0(0) = 0(1) = id and (6\V, f3), [(/)]) = 1, and let
0(1) G Sp(y,/3) be the endpoint of the lift 0 of 0 with 0(0) = id. The action of
Sp(V, f3) on C(V, f3) can be lifted uniquely to an action of Sp(V, f3) on ̂  (V, f3).
This action commutes with the Z/TV-action p, and 0(1) acts in the same way
as p(2). Therefore one obtains a homomorphism

Sp(y,/3)x,z/7v—Sp^y,/^

where TT: 71-1 (Sp(Y, f3)) = Z -^ Z/7V is multiplication by two. It is not difficult to
see that this is an isomorphism, which proves the desired result. Q

As an example consider the case N = 2. One can identify /^(V^) with the
oriented Lagrangian Grassmannian ^(V^). Since Sp(V, (3) acts naturally on
/^(y,/?) one has

Sp2(V^f3)^Z/2xSp(V^f3).

More generally, one can try to compare Sp^V, f3) with the more obvious covering
Sp^V, f3Y of Sp(V, /^) obtained from the mod N reduction of 6(V, (3). One finds
that Sp^y./D' ^ Sp^V,^) if N is finite and odd, and that

(2.1) Sp^V, f3) ̂  Sp^V, i3)' x^ Z/27V.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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In particular, SpN (V, f3) is connected iff N is finite and odd, and has two
connected components otherwise.

Let J be a /3-compatible complex structure on V, and g the corresponding
inner product. Recall that the unitary group U(V, J, g) C Sp(V, /3) is a deforma-
tion retract, and that 6(V,(3) is represented by the determinant

U ^ J ^ g ) ^ S 1 .

Let U^^^J.g) be the Z/TV-covering of U(V,J,g) determined by the mod N
reduction of 2(5(Y,/3). These coverings are clearly deformation retracts of
Sp^y,/?), and they are explicitly given by

( {(<!>, 9) € U { V ^ J ^ g ) x S1 | det(^)2 = qN}
for N < oo,

(2.2) U N ( y , J , g ) = {
{(^) C U(V,J,g) x R | det(^>)2 = e2^}

for N = oo.

In future we will abbreviate ^(M2",^^) by £(2n).
Similarly we will write C7(2n), /^n), Sp(2n), Sp7v(2n), and [/^(n).

2.b. Graded symplectic geometry. — Let (M27^) be a symplectic
manifold, possibly with boundary. Let P —> M be the principal Sp(2n)-bundle
associated to the symplectic vector bundle (TM,^), and £ -^ M the natural
fibre bundle whose fibres are the Lagrangian Grassmannians C^ = C(TMx^x)'
One can identify

-C=Pxsp(2n)^(2n).

(a) An Sp^\2n)- structure (1 ^ A^ ^ oo) on M is a principal Sp^^-bundle
pN _, ̂  together with an isomorphism

^Xsp^(2n)Sp(2n)^P.

(b) An N-fold Maslov covering is a 2/A^-covering CN -> C whose restriction
to C^ = /:(rM^,^), for any a: € M, is isomorphic to /^(TM^Cc^). The Z/7V-
action on C1^ will always be denoted by p.

(c) A ^o^ Maslov class mod A^ is a class CN G T^^Z/TV) whose
restriction to any fibre is the mod N reduction of the ordinary Maslov class.

There are canonical bijections between (isomorphism classes of) these three
kinds of objects. If P^ is an Sp^r^-structure then the associated fibre bundle
with fibre C1^(2n) is an TV-fold Maslov covering. Conversely, in the presence of a

TOME 128 —— 2000 —— N° 1



GRADED LAGRANGIAN SUBMANIFOLDS 109

Maslov covering /^7V, the transition maps of any system of local trivializations of
(TM,UJ) have canonical lifts from Sp(2n) to SpN (2n) which satisfy the cocycle
condition, hence define an Sp^^n^structure. The connection between Maslov
coverings and global Maslov classes is obvious. Now assume that we have chosen
an c^-compatible almost complex structure J on M, and consider the line bundle
A=An(^M,J)0 2 .

(d) An N-th root of A (1 ^ N < oo) is a complex line bundle Z together
with an isomorphism r: Z^ —> A. Two pairs (Z, r), (Z7, r ' ) are called equivalent
if there is an isomorphism y.Z —> Z ' such that r/j^N = r. In addition, we define
an oo-th root to be a trivialization of A, and two of them are called equivalent
iff they are homotopic.

There is a canonical bijection between Sp^(2n)-structures and equivalence
classes of TV-th roots of A; it is defined as follows.

Let Pu be the principal ?7(n)-bundle associated to (TM,UJ,J). A U^(n)-
structure on M is a principal ^(n)-bundle together with an isomorphism of the
associated [/(n)-bundle with Pu. Because UN{n) C Sp^^ (2n) is a deformation
retract, there is a canonical bijection between U N (n}- structures and Sp3^ (2n)-
structures. On the other hand, by looking at (2.2) one sees that a U^\n)-
structure is just a choice of TV-th root of A.

Among the equivalent notions (a)-(d) we will most frequently work with
Maslov coverings, since that is convenient for dealing with Lagrangian subma-
nifolds.

LEMMA 2.2. — (M271,^) admits an N-fold Maslov covering ifflc^M.uj) goes
to zero in H'2(M•^/N). The isomorphism classes of such coverings {provided
that any exist) form an affine space over H1(M•^/N).

Proof. — This is immediate if one uses an almost complex structure and the
description (d). Alternatively one can use (a) and an argument based on the
exact sequence

0 ̂  H\M^/N) —> H1 (M; SpN(2n))

—^ H^M; Sp(2n)) —. ^(A^Z/AQ

of non-abelian cohomology groups, just as in the classification of spin structures
in [15, Appendix A]. Q

Let /^ be an TV-fold Maslov covering on (M,C<J). For every Lagrangian
submanifold L C M there is a natural section

S L ' . L -^ C\^ SL{X) = TL^ e C(TM^,^).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



110 P. SEIDEL

An C^-grading of L is a lift L'.L —^ C1^ of SL. The pair (L,L) is called an
^ -graded Lagrangian submanifold. We write

Lag^M,^;/:^)

for the set of such pairs, and equip it with the topology which comes from the
space of compact submanifolds of CN (by considering the image of L). This
topology defines the notion of an isotopy of graded Lagrangian submanifolds.
Clearly, if L is an /^-grading of L then so is p(k) o L for any k € Z/7V. This
defines a free Z/TV-action on Lag^M,^;/^).

LEMMA 2.3. — The forgetful map Lag^M.a;;/:^) -^ Lag(M^) is a Z/7V-
covering of its image. The image itself consists of those L such that 5^(07^) €
^(T^Z/TV) is zero, where CN is the global Maslov class corresponding to C1^.
In particular, a Lagrangian submanifold with ^(I^Z/TV) == 0 always admits
an ^N—grading.

Proof. — By definition, L admits an /^-grading iff s*^^) —> L is a trivial
covering, which is equivalent to 5^(07^) = 0. The rest is obvious. []

Let ̂  be an TV-fold Maslov covering on (M, uj) and ( / ) a symplectic automor-
phism. There is a natural map

^:C——/:, ^(A)=Z^(A),

which covers (j). An CN—grading of 0 is a Z/TV-equivariant diffeomorphism (j)
of ̂  which is a lift of ̂ .

The pair (^, 0) is called an C1^—graded symplectic automorphism.
Such pairs form a group which we denote by Aut^M,^;/^).
If M is compact, we equip this group with the topology induced from

embedding it into Diff^^)2/^. The pairs (<^, 0) = (id,p(A;)) form a central
subgroup Z/7V C Aut^M.cj;/^). /^-graded symplectic automorphisms act
naturally on /^-graded Lagrangian submanifolds by

(^^)(L,£)=(^(L),^oZo(/)-1).

LEMMA 2.4. — Let C1^ be an N-fold Maslov covering. The forgetful homomor-
phism Aut^M,^;/^) —> Aut(M,c^) fits into an exact sequence

1 -^ Z/7V —. Aut^M.o;;/:^) —> Aut(M,^) -9-^ ^(A^Z/TV).

Here 9 is not a group homomorphism, but it satisfies

W)=^*6W+9W,

so that its kernel is a subgroup o/Aut(M,^). If M is compact then this is a
sequence of topological groups, with Z/W and ^(M'.Z/N) discrete.
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GRADED LAGRANGIAN SUBMANIFOLDS 111

Proof. — By definition, a symplectic automorphism (/) admits an /^-grading
iff the two Maslov coverings (^^(jC1^) and /^ are isomorphic. By Lemma 2.2
the difference between these two coverings can be measured by a class in
^(M'^/N). We define <9(0) to be this class. The rest is easy. Q

REMARK 2.5. — Assume that M has nonempty boundary. Then one can
consider the subgroup Aut^M, 9M,^JCN) C Aut^M,^;/:^) consisting of
pairs with 0 G Aut(M,<9M,^) and where (J)\C,N = id for any x G 9M (here C^
is the part of ̂  which lies over C^). The central elements (id,p(A;)), k ^ 0,
do not lie in Avitsr(M,9M^^CN). In fact one has an exact sequence (with 9
defined in a similar way as before)

1 -^ Aut^M.aM,^;/:^) -^ Aut(M,<9M,^) -^ H\M,9M'^/N).

The minimal Chern number NM of (M,o;) is defined to be the positive
generator of the group (ci(M), H^(M)) C Z.

Similarly, the relative minimal Chern number NL of a Lagrangian submanifold
L C M is the positive generator of the group (2ci(M, L), H^ (M, L)), where now
2ci(M,L) € ^(M.L) is the relative first Chern class.

These numbers, or variants of them, are familiar from the definition of
the relative grading on Floer cohomology. Their relationship to the concepts
introduced here, at least in the case H^{M) = 0, is as follows.

LEMMA 2.6.—A symplectic manifold (M,UJ) with H-^(M) = 0 admits a Maslov
covering C1^ of order N iffN divides 2A/M- Moreover, this covering is unique up
to isomorphism. A Lagrangian submanifold L C M admits an CN—grading iff N
divides NL.

Proof.—Because J^i(M) = 0, it follows from the universal coefficient sequence
that 2ci(M) goes to zero in H2(M^/N) iff (2ci(M),^) is a multiple of N for
any x € H^ (M). In view of Lemma 2.2, this proves the first part.

Take a compact oriented surface E and a map w:(S,<9E) —> (M,L). The
number (2ci(M, L), [w}) G Z can be computed as follows: choose a trivialization
of the pullback w*£, that is to say, a fibre bundle map

r(2n) x E —r——> C

S ——————>M.

One has r~1 O S L O (w|<9E)(^) = {\{x),x) for some map A:<9E -^ £(2n), and

(2ci(M,L),[w])=(C7(2n),A,[9E]).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



112 P. SEIDEL

Let C1^ be the unique Maslov covering of some order N on (M, uj) and CN

its global Maslov class. The pullback T^CN) G ^^l(/:(2n) x S;Z/7V) is of the
form C{2n) + y for some ^/ e ^(S^Z/TV). Hence in Z/7V one has

(^(C^.W^S]) = (C^, (SL 0 W)aE)*[9q)

^(^.(T-^OWl^MaS])

= (C(2n),A.[9S]) + (^ [BS]) = <2ci(M,L), [w]).

If TV [ NL then (2ci(M, L), [w]} is always a multiple of N . Since one can choose
w in such a way that w*[<9S] is an arbitrary class of H\(L\ it follows that
s^(CN) = 0, which means that L admits an /^-grading. The converse is equally
simple. [}

In future we will use the following notation.
• Instead of (0, 0) and (L, L) we will often write only 0 and L.
. The action of Aut^M,^;/^) on Lag^M.cc;;/:^) will be written as ( J ) ( L ) .
• We will denote (id,p(-/c)) G Aut^M^;/:^) by [k] and call it the A;-fold

shift operator.
• The graded Lagrangian submanifold p(—k) o L, which is obtained from L

by the action of [k}^ will be denoted by L[k].
The similarity with homological algebra is intentional, and the sign in the

definition of [k] has been introduced with that in mind.

2.c. Examples. — We will now complement the basic definitions by several
examples and remarks, some of which will be used later on.

EXAMPLE 2.7. — Since

Sp^n) ^ Sp(2n) x Z/2,

an Sp^r^-structure is just the choice of a real line bundle $ on M. The
corresponding two-fold Maslov covering, which we denote by ^C01^, is the space of
pairs (A, o), where A G C is a Lagrangian subspace ofTMa; and o is an orientation
of the vector space A 0^ ^. An /^'^-grading of a Lagrangian submanifold
L C M is the same as an orientation of TL (g) (£,\L)' An /y^-grading of a
symplectic automorphism <j) is the same as a bundle isomorphism <^*($) —> $•
In particular, the trivial line bundle yields a two-fold Maslov covering /^or for
which a grading of a Lagrangian submanifold is just an orientation, and such
that Aut^M.cc;;/^) ^ Aut(M,c^) x Z/2.
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GRADED LAGRANGIAN SUBMANIFOLDS 113

EXAMPLE 2.8. — One can associate to any spin structure on M an Sp^n)-
structure. The reason, in the notation of (2.1), is that the restriction of the
universal cover of GL~^{2n) to the subgroup Sp(2n) is again a nontrivial double
cover, hence isomorphic to Sp^n)', and that

Sp^^Sp^n/x^Z^.

Note that not all Sp4(2?^)-structures arise in this way.

EXAMPLE 2.9. — The following discussion relates our point of view to
another one (which is also originally due to Kontsevich). Let (V, f3) be a 2n-
dimensional symplectic vector space, J a compatible complex structure, and g
the corresponding inner product. Set

WJ)=An(v,J)^2,
and let SA(V, J ) C A(V, J ) be the unit circle (with respect to the metric induced
by 9 ) ' One can define a fibration with simply-connected fibres

del2 :/:(y, f3) —— 5A(V, J), det^A) = (ei A ... A e,)02,

where (ej) is any orthonormal basis of (A,^). After choosing an element
9 € A(V,J)* of unit length one can identify S/\(V, J ) with S1. In this way
one obtains a map

de4:/:(y,^) — — S 1 .

The Maslov class C(V, f3) is equal to the pullback of the standard generator [S1].
Hence C°°(y, f3) is isomorphic to the pullback of the standard covering R —^ 5'1.

Now let (M, uj) be a symplectic manifold and J a compatible almost complex
structure. Assume that 2ci(M,ci;) = 0, which means that A = A^TM, J)02 is
trivial. Choose a section 0 of A* (in other words, a quadratic complex n-form)
which has length one everywhere. As before this determines a map det|) : C —^ S1,
and one can define an oo-fold Maslov covering by

(2.3) C°° = {(A,t) e C x R | det|(A) - e27^}.

An /^-grading of a Lagrangian submanifold L is just a lift to R of the map

detio^: L —> S1.

This approach is particularly useful in complex geometry: let (M,c<;,J) be a
Calabi-Yau manifold, take a covariantly constant holomorphic n-form 0 of unit
length, and set 9 = 6^2. A Lagrangian submanifold L C M is called special
if (im O)\L = 0. This condition is equivalent to deti OSL ^ 1 € 54. It follows
that special Lagrangian submanifolds have a canonical /^-grading.
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