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FORMALITY OF THE FUNCTION SPACE OF FREE MAPS

INTO AN ELLIPTIC SPACE

BY TOSHIHIRO YAMAGUCHI (*)

ABSTRACT. — Let X be an n-connected elliptic space and Y a non rationally contractible,
finite-type, g-dimensional CW complex, where q < n. We show that the function space XY of
free maps from Y into X is formal if and only if the rational cohomology algebra H*[X',Q) is
free, that is, X has the rational homotopy type of a product of odd dimensional spheres.

RESUME. — FORMALITE DES ESPACES DE FONCTIONS LIBRES DANS UN ESPACE ELLIP-
TIQUE. — Soient X un espace elliptique n-connexe et Y un CW complexe non rationnellement
contractile, de type fini et de dimension q < n. Nous montrons que Pespace XY des fonctions
libres de Y dans X est formel si et seulement si Palgebre H*(X,Q) est libre, i.e. X a Ie type
d'homotopie rationnelle d'un produit de spheres de dimensions impaires.

1. Introduction
D. Sullivan's minimal model (AY, d) satisfies a nilpotence condition on d, i.e.,

there is a well ordered basis {vi}z^i of V such that, i < j if deg^ < degvj for
each i . j e l and d(vi) G /\V^i. Here V<^ denotes the subspace of V generated
by basis elements {vj ; j € I , j < i}. According to [9, Def. 1.2], (AV, d) is called
normal if Ker[d[v] = Ker(d|y) where

Ker[d|y]: = \yi e V ; i e 7, d{vi) is cohomologus to zero in (Ay<i,d)}.

Let F, E and B be connected nilpotent spaces and let M(B) be a normal
minimal model. In this paper, we say that a rational fibration [7, p. 200]
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208 T. YAMAGUCHI

F -f—^ E -"-̂  B is M.N if there is a KS-extension:

inclusion / , projection _
M(B) ————> (M{B)^/\V,D) ————> (AV.D)(L1) [~- . [~- . 1 -
A* {B) ———7r———> A^E) ——l-————> A*(F)

in which {A4(B) 0 AV, D) is minimal (z.e., D is decomposable) and normal by a
suitable change ofKS-basis. Here A*(X) denotes the rational de-Rham complex
of a space X, M.{F) ^ (AV.P) and "c^" means quasi-isomorphic, %.e., the map
induces an isomorphism in cohomology. We remark that "M.N" is a characteristic
of the rational fibration but not of the total space.

Many rational fibrations are M.N. For example, the rational fibration given
by a KS-extension:

(A(^),0) — (A(^,z),D) — (A^O)

with |.r| = 3 (where \v\ means deg(v) for v G V), \y\ = 3, \z\ = 5 and D(z) = xy
is M.N. Of course, any rationally trivial fibration is M.N. On the other hand,
many rational fibrations are not M.N. For example, in the KS-model of the Hopf
fibration S3 -^ S7 -^ S4, the model of the total space (M(S4) (g) A^), D) with
\x^\ =3 is not even minimal. The rational fibration given by a KS-extension:

(A0r,7/),d) —— (A(.r,^),D) —— (A^O)

with \x\ = 2, \y\ =5, z\ = 3, D(x) = d(x) = 0, D(y) = d(y) = x3 and D(z) = x2

is minimal but can not be normal by any change of KS-basis.
In the following, a fibration means a rational fibration. A nilpotent space X

or the minimal model M.(X) is called (rationally) formal if there is a quasi-
isomorphism from A4(X) to (Jif*(X;Q),0) (see [3]). The reason we consider
M.N-type fibrations is that we can then state a necessary (but perhaps not
sufficient) condition for the formality of the total space as in [3, Thm4.1] when
the base space is formal (see Lemma 2.3).

A fibration F —> E —> B is called:
• a ' F if it has a rational section;
• W.H.T if TT^) 0 Q = (7r*(B) 0 Q) C (^(F) (g) Q) for the rational number

field Q and
• H.Tifit is rationally trivial (see [11]).
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FORMALITY OF THE FUNCTION SPACE OF FREE MAPS 209

The following lemma expresses the relations among these different types of
fibrations.

LEMMA 1.1.
1) "M.N" is embedded in the sequence of implications:

a . F =^ M.N =^ W.H.T,

where the reversed implications are false in general.
2) If a fibration F -^ E —> B is a-F and E is formal, then B is formal

(compare [4, Lemme 2])

Our object of interest is the function space XY of free, continuous maps from
a connected space Y into a connected space X, endowed with the compact-open
topology. Observe that XY is infinite dimensional and is connected if X is re-
connected and Y is a ^-dimensional CW-complex, where q <^ n. Furthermore,
XY is the total space of the fibration:

(*) (x,*)^'*) —xY —^x,

where (X, *)^'*^ is the function space of pointed maps, and TT is the evaluation
at the base point. We know that (*) has a section s, where s(x) is the constant
map at x. Therefore (*) is a-F. When Y = S1, N. Dupont and M. Vigue-Poirrier
proved the following formality result.

THEOREM (see [4, Theoreme]). — Let X be a simply connected space where
H*(X;Q) is finitely generated. Then X s 1 is formal iff H" (X; Q) is free, i.e., X
has the rational homotopy type of a product of Eilenberg Maclane spaces.

Our goal in this article is to generalize the theorem of Dupont and Vigue-
Poirrier to XY, when Y is of finite-type, i.e., TT^V) (g) Q is finite-dimensional
for all i, provided that X is elliptic, i.e., the total dimensions of H*(X',Q)
and TT^(X) 0 Q are finite. More precisely, we prove the following theorem.

THEOREM 1.2. — Let X be an n-connected elliptic space, and let Y be a non
rationally contractible, finite-type, q-dimensional CW complex, where q ^ n.
Then XV is formal iff H^(X;Q) is free, i.e., X has the rational homotopy type
of a product of odd dimensional spheres.

In proving Theorem 1.2, we use a model due to Brown and Szczarba [2] for
the connected component in XV of a map f:Y —> X, which is constructed
from minimal models of X, Y and /. We remark that, under the hypotheses
of Theorem 1.2, this non-formalizing tendency of XY does not depend on the
rational homotopy type of Y. We cannot easily relax the connectivity hypothesis.
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210 T. YAMAGUCHI

For example, when X = CP2 and Y = S3, we can see X^ ^ (CP2 x K{Q, 2))(o)
by the calculation in [2]. In particular, X^Q^ ls formal even though X does not
have the rational homotopy type of a product of odd dimensional spheres. Also
we must consider each connected component of XY in the general case.

In the following sections, our category is CDGA, that is, the objects are
commutative differential graded algebras (cdga) over Q, and the morphisms are
maps of differential graded algebra. Also, H*{ ) means H * ( ;Q) and I ( S ) denotes
the ideal in the algebra A generated by a basis of a subspace S in A. When B
is a subalgebra of A and both A and B contain 5', then I ( S ) denotes the ideal
in the algebra A and I B ^ S ) the ideal in the algebra B, unless otherwise noted.

2. Two changes of KS-basis
When a cdga A is formal, we can choose a minimal model M. = (AV, d) of A

such that V = Ker(d[v)©Ker('0|v) for a quasi-isomorphism ̂ :M —> {H* (A), 0).
Therefore, according to [3, Thm 4.1], A is formal iff there is a complement
N to Ker(d|y), V = Ker(d|y) (B N , such that any d-cocycle of I ( N ) is d-
exact. We remark this '.A/T must be a normal minimal model. Conversely, if
j\A = (AV,d) is a normal minimal model and formal, H"(M) is generated by
Ker(djy) as an algebra (see [9, Lemma 1.8]). Therefore for any quasi-isomorphism
^:M -^ (^(A^O), we have V = Ker(d\v) C Ker(^jy).

Following [8, p.5], we use the term "change of KS-basis" in this paper as
follows. Suppose that

(B^dp) — (B* 0AY,^ — (AY,^)
is a KS-extension with KS-basis {^}^j, z.e., a well-ordered basis of V such that
i < j if \Vi\ < \Vj\ for each i^j G I and 6(vz) G B* 0 AV<z. Define a map of
algebras ( / ) : B * (g) AY —> B* 0 AV by setting

(f)\B='^B and c()(vi) = Vi + Xz

on basis elements of V, where \i G B* 0AV<% (To be exact, this is different from
the definition of "KS-change of basis" of [8, p. 5] since \i may not be contained
in B^~ (g) AY.) Finally, define a new differential D on B* 0 /\V by

D = (j)~1 o 6 o ( / ) .
Then we have an isomorphism of KS-extensions

{B^da) —n^— (B*0AV,^) —proj— (AY, 5)

(2.1) | = 4> | ^ ^ | ^
^ s^ •Ĵ

(B*,^) —m!l— (B*0Ay,^) —pr^— (Ay,^),
where D\B- = ̂ |B* = ^B-

TOME 128 — 2000 — N° 2



FORMALITY OF THE FUNCTION SPACE OF FREE MAPS 211

In this section we introduce two changes of KS-basis. If the fibration (1 1) is
M.N, the normal minimal model M{E} ̂  (M(B) 0 AY, D) is given by a change
of KS-basis that we denote ̂  one of two basis changes studied in this section.

Proof of Lemma 1.1.
1) The implication (a • F =^ M.N) is given in terminology of (1.1) with KS-

basis {vi}i^i as follows. We know that (1.1) is a • F iff Dv - Dv e M^fB^^V
for v e V (see [10, VL6.(1)]). Therefore the minimality follows. Suppose there are
{vi}i^j with J c I such that Dv, is cohomologous to 0. For i e J, we can change
KS-basis inductively, as 0i(^) = v^- ̂  if Dv, = D(^) where ̂  e 5* (g) AV<,
and 0i (^) = ̂  for i e J - J . Put D = <^-1 oD o ̂  and then we have D(v,) = 0
for i e J. Thus we have Ker[^|v] = Ker(D|y). We put again D = D. Since
again Dv - Dv e A^+(B) 0 A"^ for v e V, we have for M(B) = (/\VB, dp)

^[^IvJ = ̂ r^)^] = Ker(dBj^) = Ker(Pj^).

The implication (M.N =^ W.H.T) is clear from the decomposability of D. On
the other hand, the first and last examples in Section 1 provide counter-examples
to the first and second converses, respectively.

^ 2) From 1), we can assume (A(VB C V),D) of (1.1) is minimal and normal.
Since E is formal, there is a complement N to Ker(D^^v) in VB C V such
that any D-cocycle ofJ(TV) is D-exact since H^E) is generated by Ker(D|^^)
(see [3], [9]) .Then7VnVB is a complement to Ker(/^J = Ker(dB|^) in^.
From (D - D)(V) C /^VB 0 A+y and D^ = ̂ , we see any d^-cocycle
of IB(N H VB) is da-exact, where ^(5') is the ideal of AVa generated by a
subset S of VB. The formality of B follows again from [3, Thm 4.1]. []

As in the proof of Lemma 1.1, part 1), given any KS-extension (1.1), we can
change KS-basis

0i: (A(VB © V), D) ̂  (/\(VB C V), D)

so that Ker[D|v] = Ker(D|v). We put again D = D.

Next we introduce the second type change of KS-basis, which we denote ^2.

LEMMA 2.1. — Let E be a formal space and F -^ E —> B a W.H.T fibra-
tion, with KS-model (AVa^a) -^ (A(VB C V),D) -. (AV.D). Then, for any
complement N to Ker(D|v) in V, there is a change KS-basis

02: {/\(VB © V),D) ̂  (/\(VB C V),D)

such that any D-cocycle of I(N) is D-exact.
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212 T. YAMAGUCHI

Proof. — Since the fibration is W.H.T, (A(VB © V),D) is a minimal model
of E with a KS-basis {^}^z of V. Let ^:(A(VB C V),^) -^ (H"(E),0) be a
quasi-isomorphism and K = Ker(^jy) with the sub-KS-basis {^}^j^. Then X
is a complement of Ker(D|y) in V such that any JD-cocycle of I ( K ) is D-exact
(see [3], [9]). Let {vj}j^i2 be the sub-KS-basis of Ker(D|y) where we assume
that I is indexed by i > j if \Vi \ = \Vj \ for i G Ji and j ^ I-2- Here I = I^Ul^ and
Ji His = <p. Then we can choose a basis of the given complement N to Ker(D|y)
as {^ + Z^ej,0^'^}^! with some a^ G Q. Here Ji = {j G h;\Vj = |^|}.
There is a regular liner transformation (j)^ :V —^ V given by

02(^) = Vz — ̂  ̂ j^j for i C Ji and ^(vj) = Vj for j € J2-
j'eJz

Extend it to an algebra map

^t\(VB(BV) —— f \(VB(BV)

by 02|v^ = ^^B an(^ define D = (f)^lD(f)^. Then N is also a complement to
Ker(D[y) in V and equals Ker('^^2|v). If an element w of ^(A^) is a D-cocycle,
then [w] = ^(j)^(w) = 0 and w is D-exact since ^*02 ls an isomorphism on
cohomology and Ker[D|y] = Ker(D|y). []

COROLLARY 2.2. — Let M. = (AV,d) be a normal minimal model. If M. is
formal^ for any complement N to Ker(djy) there is a change of basis (AV,G?) ^
(AV,d) ofV so that any d-cocycle of I(N) is d-exact.

Proof. — It follows by applying Lemma 2.1 when the base space is the one-
point space. \]

Let a fibration F -^ E —^ B be M.N. Let M(B) = (AV^da) be normal
and (AVa^a) —^ (A(VB <3 ^)^) a KS-extension, which is normal by a
suitable KS-basis change (f)\. Let B be formal. Then there is a quasi-isomorphism
PE'-^VB^B) —^ (^*(B),0) embedded in the commutative diagram:

(AVa^a) ——'—— {/\(VBOV)^D)

(2.2) Pa[ ^ [ p

(^*(B),0) ———— (^(^^A^D'),

which is push out in CDGA, i.e., D'\y: = {pa ^ 1) ° D\v- Here z and i' are
inclusions and p is a quasi-isomorphism since pa is [1]. There is a complement NB
to Ker(c^)y^) in V^ such that any dg-cocycle ofJ^(A^) is da-exact (see [3], [9]).
We remark that

NB = Ker(pB|vJ = ̂ (PIVB®^)-
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FORMALITY OF THE FUNCTION SPACE OF FREE MAPS 213

LEMMA 2.3. — Let E and B he formal spaces and F —^ E —> B be an M.N
fibration, with KS-model (AVa^a) -^ (A(VB © V)^D) -^ (f\V,D). Then, for
any complement N to Ker(Djv) in V, there is a change of KS-basis

02: (A(VB © V)^D) ̂  (A(VB C V)^D)

such that any D-cocycle of I(NB © N) is D-exact.

Proof. — Let ^:(A(VB © ̂ )^D) —^ (^f*(£'),0) be a quasi-isomorphism and
P: {/\(VBOV), D) -^ {H^B)(^/\V, D ' ) a quasi-isomorphism as in (2.2). If be NB,
p(b} = 0 since Ker(pB\vB) = Ker^jv-^). Then

0=^p^l[p(b)] =[^(b)]=^(b)

in H*{E). Hence NB C Ker('0|y^). We can change KS-basis by some ^2 for
a given complement N to Ker{D\v) m V as in Lemma 2.1, so that TV =
Ker(^02|v). Then 02|VB = idye and therefore we have

Ker(^2|VBev) = Ker(^|VB) e Ke^(^2|y) ^ ^B ® Ker(^2|v) = NB 0 N.

Thus we have that any D-cocycle of I(NB © TV) is D-exact since ̂ 2 is a quasi-
isomorphism and

Ker[D\vBev] == Ker[D02|^©v] = Ker[D|y^v]

= Ker(Dj^ev) = ̂ (^l^ev) = ̂ ^^IVB®^)- D

3. Proof of Theorem 1.2
We begin this section by recalling the construction of the model of XY due to

Brown and Szczarba [2]. Let (/\V,d) a free cdga and {B.da) a finite-type cdga.
Let (5*,d*) be the differential graded coalgebra with Bq = Rom(B~q,Q). The
differential d^ on B^ is the dual of da and the coproduct 9:B^ —^ B^ 0 £^ is the
dual of multiplication. Let A (AY 0 B^) be the free cdga generated by the vector
space AY 0 B^ with the differential induced by the tensor product differential d
on AY 0 5*, and let J be the ideal in A(AV 0 B^) generated by 1 0 1 - 1 and
by the all elements of the form

VlV2 ̂  /3 - ̂ (-l)''21-'^! 0 A)(^2 ̂  AO

with fi,'L'2 ^ AY, A,/?,' e &, and 9^ = ^, A ^ /^/. Then there is a natural
isomorphism

K: A(V 0 B,) ̂  A(AV 0 &0/Z

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



214 T. YAMAGUCHI

as graded algebras, induced by the inclusion V^B^ -^ AY0B^ (see [2, Thm 3.5]).
Note that d(I) C I . Define 6 on /\(V 0 B^) by 6 = /^J^. For example,
if dv = v\v^ where v^, v^ e V and 9(3 = ̂  f3i 0 ̂  (see [2, p. 6]),

6(v 0f3)= ^(-l)I^H^I (^ ^ ̂ ) . (^ ^ ̂ ') + (_i ) l^ l^ 0 ̂ (^).
i

In the following, we suppose that X is n-connected and finite-type, with
M(X) = (AV, d) (so that V = ©,>^ V1), and V is a non rationally contractible,
finite-type, g-dimensional CW complex, where q < n. Let M.{Y) = (AVy.dy)
and M^(Y) = Rom{M{Y),Q). Then

(A(Ay0^*(y)),J)/J^(A(y0A /(*(y)),^)^(Aw,(5)^c^(Aw,(5),

where W CV(S)M^(Y) with

TV = V (g) {the cohomology classes of dy-cocycles}^ ^ V (g) H^(Y)

as vector spaces and C a contractible cdga. Here a basis of W is inductively
constructed so that V (g) y^ C W for 2/ C Vy with dy(^) = 0 and <5(W) C AW
(see [2]). According to [2, Thm 1.5], the minimal model of XY is given by
M^) ̂  (AW, 6).

Write W = V © TV+, where TV+: = IV U (V (g) .M+(r)). Then a KS-model of
the fibration (*) (see Section 1) for a normal minimal model M(X) = (AY, d) is
given as

(**) (AV.d) — (Ay0AH+,^) — (AH+,^),

where (AW, ^) = (AV 0 AW+,^) is minimal but may not be normal. Since (*)
has a section, it is M.N by Lemma 1.1, part 1). Then there is a KS-basis change
of (**) that can be given as follows:

(AV.d) —l-—— (AV^AH+.P) ———— (ATV+.D)

(3.1) 1 - ^ 1 " ^ 1 "
(AV,^) ———— (/\V(S)^W^^) ———— (AW+,^),

where (AW, D) = (AY 0 ATV+, D) is normal with D = (j)^6(j)^.
In the following, we suppose that X is elliptic (z.e., diniQ V < oo) and XY is

formal, which implies that X is formal by Lemma 1.1, part 2). If X is elliptic, it
is known that H*(X) is a Poincare algebra (see [6]). Furthermore, if X is elliptic
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FORMALITY OF THE FUNCTION SPACE OF FREE MAPS 215

and formal, it is known that (AY, d) is two stage, i.e., V = VQ ® Vi with dVo = 0
and dVi c AVb (see [5]). Therefore we can put

W(Q) = {Vo ® M^(Y)} n W and W(i) = {Vi ® A^V)} n W.

Then W = W(Q) © W^, Vo c ^(o), Vi C W^, 6W(o) = 0, and SW^ c A^o).
Then <j)i\Ker(s\w) = idKer(6|^) and especially <pi\w^ = idiy^.

For the quasi-isomorphism px:(/\V,d) -^ (H*(X),0) with Ket(px\v) = Vi,
there are the push outs:

(AV.cO —————— (/\V®/\W+,6)

(3.2) ^PX ^
(ff*(x),o) ——— (Jr(JO®Aw+,<l)/)

and for the KS-basis change ̂ : (/\V<^/\W+, D) ̂  (AV®AW+, D) corresponding
to a certain complement N to Ker(Z)|y) in V as in Lemma 2.1,

(AV,d) ———'-——. (Ay®AW+,5)

(3.3) [ px ^ -p

(H*(X),0) —l-—— (H*(X)<s/\W+,D'),

where p ^ , 77 and p are quasi-isomorphisms.

CLAIM. — (H*(X) ® t\W+,D') ̂  (H*(X) 0 /\W+,6') as cdgas.

Proof of Claim. — Since (3.3) is a push out, there is a map ((^i^V such that
the following commutes:

(AV®AIV+,D) ——^——. (/\V(S>/\W+,6)
(3.4) [ p | „

— (^i^y "
(^*(X)0Aly+^/) ———-. (^W^ATV+^Q.

On the other hand, since (3.2) is a push out, there is a map (^^i"1)7 such that
the following commutes:

<^-l</>-l

(AV0AH+^) ———————> (AV^ATV+.D)
(3.5) | ^ | p

- (^r1)7 l

(^*(X)0Aiy+,^) ) (^W^AW+^Q.

Then G^"1^1/ 0 (^i^)7 = id and (^i^)' o (^^F1)' = id by universality.
Hence (^i^/ is an isomorphism in (3.4). []
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216 T. YAMAGUCHI

Proof of Theorem 1.2. — The if part is obvious since 6 = 0 if d = 0. The
only if part is shown as follows. Suppose V\ ̂  0. Let v = vi be a non-zero basis
element in a basis {vj}j^i of Vi, where i = max{j e J; |^| == H}, and let
^/ be a non-zero basis element of Vy with dy(y) = 0 for M(Y) = (AVy.dy).
Such an element y surely exists since Y is not rationally contractible and since
VY has a well-ordered basis {yz}i such that dy(^) G A(Vy<J. Then we can
regard v 0 T/* as a basis element of TV(I) with the index k of the basis for some k
and {vj 0 ̂ }j<i C W</c from the construction of W.

Suppose 6(v 0 2/*) = 6(\) for some ^ G AlV<fc. We can uniquely write

x=^ej(vj^y^+ ^
j<i

for 0j G AV<z and ̂  AY 0 (V 0 y^). Then
0 = (^ 0 ̂ ) - 6x = ̂ d^v - 0) 0 ?/*) = /^-1 (d(7; - 0) 0 ̂ )

for 0 = ̂  .^ ^Vj and ^(/^) = 0 since
(a) d(V (g) z^) C AV • (V 0 ̂ *) for any z C Vy, since ^(^) == ̂  o dy = 0 due

to the decomposability of dy, and
(b) d(V 0 ̂ ) C AY • (V 0 (A>lVy)*) C AY • A^V 0 A^+(r)) for any

^ G A ^ Y y .
Since the derivation ( ) 0^: t\V -^ 1\W is injective, d(v) = d(0) for 6> € AV<^

which contradicts the normality of (AV,cQ. Thus ^(-y 0 y ^ ) is not cohomologus
to zero.

We see therefore
^i(z'0?/*) = v0?/*

in (3.1) from the definition of change of KS-basis in the proof of Lemma 1.1 (1).
Also

D(v 0 y^) = (f)^6^(v 0 ̂ ) = (^T1^ ̂  V^ = 6^ 0 ̂ *) ^ °
since ^(W(i)) C AW(O) and (f)i\w^ = ^^o)- Hence v 0 ̂  ^ Ker(D|^). Then,
from Lemma 2.1, we can change KS-basis ^\{1\W,D) ^ (/\W,D), so that any
D-cocycle of I ( N ) is D-exact, for some subspace N of W^ HW+ with v^y^ C N .
We fix a particular N .

Let [w] be the fundamental class of JP(X). Then [w] • (^ 0 ̂ ) is a ^'-cocycle
of JI*(X) 0 AW+. In fact, if dv = ̂  ̂ ^i- • • ̂  for ^. c ^o and a, G Q,

^([w] • (v 0 ̂ )) = [w] • (px 0 1)^(^ ̂  2/*)

= ̂  ^ ±a,[w^, • • • v^ • • • Vi^} • (̂ . 0 y^)
i l<j<_ni

must be zero since the degree of wv^ •••v^ ' • ' v^ is always greater than the
formal dimension of X.
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Let 02 (^ 0 y^) = v 0 y^ + c with c a .D-cocycle. Since 0i|iv/o. = idyi/^, we
obtain

0=Dc=(^ l^l(c)=(^l(c),

i.e., 0i (c) is a ^-cocycle. Then [w](v 0 ̂  + 0i(c)) is a ^'-cocycle but cannot be
(^-exact since v 0 2^ + 0i(c) contains a non-zero element of TV(I) D IV+ due to
the definition of change of KS-basis and since

(a) 6'(W^ C H^X) 0 (l^(o) H IV+), and

(b) (^(A^H^) C H^X) 0 A^T^.
Then, according to the Claim above, [w}{v (g) y ^ ) is a non-exact lY-cocycle,

since

(^l^)^^^^^^)) = [W](0i(2;(g)^)+0i(c)) = H((z;0^)+0l(c))

in (3.4). Since p is a quasi-isomorphism in (3.3), there exists a non-exact D-
cocycle w • (v 0 ̂ ) + ^ in ATY, such that p(^) = 0. Since

Ker(p|y^^) = Ker(px|v©H/+) = ^i,

we obtain that ^ G ^(Vi) and thus w ' {v 0 y ^ ) + ̂  e T^YI © A^). This contradicts
Lemma 2.3. Hence Vi = 0.

Since dimQ H^X) < oo, this means VQ = V^ and ^*(X) = A^o0^),
i.e., X has the rational homotopy type of a product of odd dimensional spheres
if VQ ^ 0 and is rationally contractible if VQ = 0. []
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